材料物理性能-复习资料
材料物理性能考试复习资料

1. 影响弹性模量的因素包括:原子结构、温度、相变。
2. 随有温度升高弹性模量不一定会下降。
如低碳钢温度一直升到铁素体转变为奥氏体相变点,弹性模量单调下降,但超过相变点,弹性校模量会突然上升,然后又呈单调下降趋势。
这是在由于在相变点因为相变的发生,膨胀系数急剧减小,使得弹性模量突然降低所致。
3. 不同材料的弹性模量差别很大,主要是因为材料具有不同的结合键和键能。
4. 弹性系数Ks 的大小实质上代表了对原子间弹性位移的抵抗力,即原子结合力。
对于一定的材料它是个常数。
弹性系数Ks 和弹性模量E 之间的关系:它们都代表原子之间的结合力。
因为建立的模型不同,没有定量关系。
(☆)5. 材料的断裂强度:a E th /γσ=材料断裂强度的粗略估计:10/E th =σ6. 杜隆-珀替定律局限性:不能说明低温下,热容随温度的降低而减小,在接近绝对零度时,热容按T 的三次方趋近与零的试验结果。
7. 德拜温度意义:① 原子热振动的特征在两个温度区域存在着本质差别,就是由德拜温度θD 来划分这两个温度区域:在低θD 的温度区间,电阻率与温度的5次方成正比。
在高于θD 的温度区间,电阻率与温度成正比。
② 德拜温度------晶体具有的固定特征值。
③ 德拜理论表明:当把热容视为(T/θD )的两数时,对所有的物质都具有相同的关系曲线。
德拜温度表征了热容对温度的依赖性。
本质上,徳拜温度反应物质内部原子间结合力的物理量。
8. 固体材料热膨胀机理:(1) 固体材料的热膨胀本质,归结为点阵结构中质点间平均距离随温度升高而增大。
(2) 晶体中各种热缺陷的形成造成局部点阵的畸变和膨胀。
随着温度升高,热缺陷浓度呈指数增加,这方面影响较重要。
9. 导热系数与导温系数的含义:材料最终稳定的温度梯度分布取决于热导率,热导率越高,温度梯度越小;而趋向于稳定的速度,则取决于热扩散率,热扩散率越高,趋向于稳定的速度越快。
即:热导率大,稳定后的温度梯度小,热扩散率大,更快的达到“稳定后的温度梯度”(☆)10. 热稳定性是指材料承受温度的急剧变化而不致破坏的能力,故又称为抗热震性。
材料物理性能复习资料

2012年贵州大学材料及冶金学院材料物理性能复习资料一.名词解释:1. 磁化:物质在磁场中由于受磁场的作用表现出来一定的磁性的现象。
3.磁矩:及磁偶极子等效的平面回路的电流和回路面积的乘积定义为磁矩。
其方向及环形电流法线方向一致,可用右手定则确定。
4.磁化强度M:一个物体在外磁场中被磁化的程度,用单位体积内磁矩多少来衡量,5.抗磁性:磁化方向及外加磁场方向相反,即当磁化率χ或磁化强度M为负时,固体表现为抗磁性。
χ=M/H<0,很小,约为-10-4~-10-6。
6.顺磁性:在外加磁场作用下,每个原子磁矩比较规则地取向,材料显示极弱的磁性。
磁化强度M及外磁场方向一致,M为正,而且M严格地及外磁场H成正比。
7.铁磁性:过渡金属Fe、Co、Ni和某些稀土金属如Gd等物质,无论是否施加外磁场,都具有永久磁矩,且在无外加磁场或较弱的磁场作用下,就能产生很大的磁化强度。
室温下的磁化率χ很大,可达106数量级,属于强磁性物质。
8.热传导:当固体材料一端的温度比另一端高时,热量会从热端自动地传向冷端的现象。
9.热阻:是材料对热传导的阻隔能力。
11.热膨胀:物体的体积或长度随温度的升高而增大的现象称为热膨胀。
12.魏得曼-弗兰兹定律:在室温下许多金属的热导率及电导率之比几乎相同,而不随金属的不同而改变。
13.材料的热稳定性:热稳定性是指材料承受温度的急剧变化而不致破坏的能力,又称为抗热震性。
14.导体:可在电场作用流动自由电荷的物体,能传导电流的元件15.绝缘体:不善于传导电流的物质16.半导体:电阻率介于金属和绝缘体之间并且有负的电阻温度系数的材料17、磁畴:未加磁场时铁磁质内部已经磁化到饱和状态的若干个小区域。
18、磁矫顽力:反磁化过程中,当反向磁畴扩大到同正向磁畴大小相相等时,它们的磁化对外对外部的效果相互抵消,有效磁化强度为零,这时的磁场强度称为磁矫顽力。
19、磁化率:即单位外磁场强度下材料的磁化强度。
它的大小反映了物质磁化的难易程度,是材料的一个重要的磁参数。
材料物理性能复习

※ 材料的导电性能1、 霍尔效应电子电导的特征是具有霍尔效应。
置于磁场中的静止载流导体,当它的电流方向与磁场方向不一致时,载流导体上平行于电流和磁场方向上的两个面之间产生电动势差,这种现象称霍尔效应。
形成的电场EH ,称为霍尔场。
表征霍尔场的物理参数称为霍尔系数,定义为:霍尔系数RH 有如下表达式:en R i H 1±= 表示霍尔效应的强弱。
霍尔系数只与金属中自由电子密度有关 2、 金属的导电机制只有在费密面附近能级的电子才能对导电做出贡献。
利用能带理论严格导出电导率表达式:式中: nef 表示单位体积内实际参加传导过程的电子数;m *为电子的有效质量,它是考虑晶体点阵对电场作用的结果。
此式不仅适用于金属,也适用于非金属。
能完整地反映晶体导电的物理本质。
量子力学可以证明,当电子波在绝对零度下通过一个完整的晶体点阵时,它将不受散射而无阻碍的传播,这时电阻为零。
只有在晶体点阵完整性遭到破坏的地方,电子波才受到散射(不相干散射),这就会产生电阻——金属产生电阻的根本原因。
由于温度引起的离子运动(热振动)振幅的变化(通常用振幅的均方值表示),以及晶体中异类原子、位错、点缺陷等都会使理想晶体点阵的周期性遭到破坏。
这样,电子波在这些地方发生散射而产生电阻,降低导电性。
3、 马西森定律 (P94题11) 试说明用电阻法研究金属的晶体缺陷(冷加工或高温淬火)时威慑年电阻测量要在低温下进行。
马西森(Matthissen )和沃格特(V ogt )早期根据对金属固溶体中的溶质原子的浓度较小,以致于可以略去它们之间的相互影响,把金属的电阻看成由金属的基本电阻ρL(T)和残余电阻ρʹ组成,这就是马西森定律( Matthissen Rule ),用下式表示:ρʹ是与杂质的浓度、电缺陷和位错有关的电阻率。
ρL(T)是与温度有关的电阻率。
4、 电阻率与温度的关系金属的温度愈高,电阻也愈大。
若以ρ0和ρt 表示金属在0 ℃和T ℃温度下的电阻率,则电阻与温度关系为:在t 温度下金属的电阻温度系数:5、 电阻率与压力的关系在流体静压压缩时,大多数金属的电阻率降低。
材料物理性能总复习

奈曼-柯普定律
化合物分子热容等于构成此化合物各元素原子热容之和。
杜隆珀替定律
恒压下元素的原子热容等于25J/(K.mol)。
经典热容理论:模型过于简单,不能解释低温下热容减小的现象
1
2
3
4
5
6
2、经典热容理论
• 爱因斯坦热容理论假设:每个原子皆为一个独立的振子,原子之间彼此无关。
高温部分符合较好,但低温部分的理论值比实验值下降得过快。
磁性是一切物质的基本属性,从微观粒子到宏观物体以至于宇宙间的天体都存在着磁的现象。 磁性是磁性材料的一种使用性能,磁性材料具有能量转换、存储或改变能量状态的功能。
材料的磁学性能
01
02
1、基本磁参量的概念与定义以及影响因素
磁矩
磁化强度
磁导率
方向与环形电流法线的方向一致,其大小为电流与封闭环形面积的乘积IΔS,与电流I和封闭环形面积ΔS成正比
6、半导体的载流子浓度、迁移率及其电阻率 本征半导体 本征载流子浓度与温度T和禁带宽度Eg 有关: 随温度增加,载流子浓度增加; 禁带宽度大时,载流子浓度小; μn 和μp 分别表示在单位场强下自由电子和空穴的平均漂移速度(cm/s),称为迁移率。 杂质半导体 多子导电
温 度 升 高
半导体载流子浓度、迁移率及其电阻率与温度的关系
n -- 单位体积内载流子数目 q -- 为每一载流子携带的电荷量
E -- 为外电场电场强度
μ为载流子的迁移率,其含义为单位电场下载流子的平均漂移速度。
J -- 为电流密度
2、导电性本质因素
决定材料导电性好坏的本质因素有两个:
载流子浓度
载流子迁移率
温度、压力等外界条件,以及键合、成分等材料因素都对载流子数目和载流子迁移率有影响。任何提高载流子浓度或载流子迁移率的因素,都能提高电导率,降低电阻率。
材料物理性能复习资料整理

材料在外力作用下发生形状和尺寸的变化,称为形变。
材料承受外力作用、抵抗变形的能力及其破坏规律,称为材料的力学性能或机械性能。
材料在单位面积上所受的附加内力称为应力。
法向应力导致材料伸长或缩短,而剪切应力引起材料的切向畸变。
应变是用来表征材料在受力时内部各质点之间的相对位移。
对于各向同性材料,有三种基本类型的应变:拉伸应变ε,剪切应变γ和压缩应变Δ。
若材料受力前的面积为A0,则σ0=F/A0称为名义应力。
若材料受力后面积为A,则σT=F/A称为真实应力。
对于理想的弹性材料,在应力作用下会发生弹性形变,其应力与应变关系服从胡克(Hook)定律(σ=Eε)。
E是弹性模量,又称为弹性刚度。
弹性模量是材料发生单位应变时的应力,它表征材料抵抗形变能力(即刚度)的大小。
E越大,越不容易变形,表示材料刚度越大。
弹性模量是原子间结合强度的标志之一。
泊松比:在拉伸试验时,材料横向单位面积的减少与纵向单位长度的增加之比值。
粘性形变是指粘性物体在剪切应力作用下发生不可逆的流动形变,该形变随时间增加而增大。
材料在外应力去除后仍保持部分应变的特性称为塑性。
材料发生塑性形变而不发生断裂的能力称为延展性。
在足够大的剪切应力τ作用下或温度T较高时,材料中的晶体部分会沿着最易滑移的系统在晶粒内部发生位错滑移,宏观上表现为材料的塑性形变。
滑移和孪晶:晶体塑性形变两种基本形式。
蠕变是在恒定的应力σ作用下材料的应变ε随时间增加而逐渐增大的现象。
位错蠕变理论:在低温下受到阻碍而难以发生运动的位错,在高温下由于热运动增大了原子的能量,使得位错能克服阻碍发生运动而导致材料的蠕变。
扩散蠕变理论:材料在高温下的蠕变现象与晶体中的扩散现象类似,蠕变过程是在应力作用下空位沿应力作用方向(或晶粒沿相反方向)扩散的一种形式。
晶界蠕变理论:多晶陶瓷材料由于存在大量晶界,当晶界位相差大时,可把晶界看成是非晶体,在温度较高时,晶界粘度迅速下降,应力使得晶界发生粘性流动而导致蠕变。
材料物理性能复习资料

材料物理性能复习资料材料物理性能总复习(⽆材⼀)考试题型:1 名词解释 5个*3分,共15分;2 简答 7个*5分,共35分;3 计算 2个*10分,共20分;4 论述 2个*15分,共30分。
考试时间:2013-1-14. 考试重点1 材料的受⼒形变不同材料应⼒应变曲线的区别A (A 点):⽐例极限; E (B 点):弹性极限; P (C 点):屈服极限; U (D 点):断裂极限;E ,可逆线性正⽐例关系,当应⼒在 E 和 P 之间,外⼒去除后有⼀定程度的永久变形,即发⽣塑性变形陶瓷材料⼀般没有塑性变形,发⽣脆性断裂应⼒:单位⾯积上所受内⼒。
ζ=F/A由于材料的⾯积在外⼒作⽤下,可能有变化,A 就有变化,有名义应⼒和实际(真实)应⼒ P4. 应变:描述物质内部各质点之间的相对位移名义位移的应变:实际应变和L0有关,可以通过公式推导获得由于材料的不同⽅向的应变,因此考虑可以采⽤和应⼒分解的办法来解决,具体看教材第6-7页虎克定律:σ=E ε⽐例系数E 成为弹性模量(Elastic Modulus ),⼜称弹性刚度相关概念:应⼒应变虎克定律弹性模量001L L L L L ?=-=ε三种应变类型的弹性模量杨⽒模量E ;剪切模量G ;体积模量B 弹性模量:原⼦间结合强度的标志之⼀两类原⼦间结合⼒与原⼦间距关系曲线弹性模量实际与曲线上受⼒点的曲线斜率成正⽐结合键、原⼦之间的距离、外⼒作⽤也将改变弹性模量的值温度升⾼,原⼦之间距离变⼤,弹性模量下降弹性模量的本质特征;弹性模量的影响因素;晶粒、异相、⽓孔、杂质等,弹性模量的计算公式及⽅法;把材料看成材料的串联或者并联,我们可以得到其上限模量和下限模量,如下⾯的公式表⽰:(P13)复合材料弹性模量及应⼒的计算。
陶瓷材料弹性常数和⽓孔率关系多⽓孔陶瓷材料可以看成⼆相材料,其中⼀相的刚度为0 陶瓷材料的弹性模量随⽓孔率变化的表达式是:b 是与制备⼯艺有关常数.当泊松⽐0.3,f1和f2分别是1.9和0.9,和教材上p13公式1.21⼀样粘弹性:⼀些⾮晶体,有时甚⾄多晶体在⽐较⼩的应⼒时同时表现出粘性和弹性。
材料物理性能复习重点

1.热容:热容是使材料温度升高1K所需的热量。
公式为C=ΔQ/ΔT=dQ/dT (J/K);它反映材料从周围环境中吸收热量的能力,与材料的质量、组成、过程、温度有关。
在加热过程中过程不同分为定容热容和定压热容。
2.比热容:质量为1kg的物质在没有相变和化学反应的条件下升高1K所需的热量称为比热容每个物质中有两种比热容,其中c p>c v,c v不能直接测得。
3.摩尔热容:1mol的物质在没有相变或化学反应条件下升高1K所需的能量称为摩尔热容,用Cm表示,单位为J/(mol·K)4.热容的微观物理本质:材料的各种性能(包括热容)的物理本质均与晶格热振动有关。
5.热容的实验规律:1.对于金属:2.对于无机材料(了解)1.符合德拜热容理论,但是德拜温度不同,它取决于键的强度、材料的弹性模量、熔点等。
2.对于绝大多数氧化物,碳化物,摩尔热容都是从低温时一个最低值增到到1273K左右近似于3R,温度进一步升高,摩尔热容基本没有任何变化。
3.相变时会发生摩尔热容的突变4.固体材料单位体积热容与气孔率有关,多孔材料质量越小,热容越小。
因此提高轻质隔热砖的温度所需要的热量远低于致密度的耐火砖所需的热量。
6.经典理论传统理论不能解决低温下Cv的变化,低温下热容随温度的下降而降低而下降,当温度接近0K时热容趋向于07.量子理论1.爱因斯坦模型三个假设:1.谐振子能量量子化2.每个原子是一个独立的谐振子3.所有原子都以相同的频率振动。
爱因斯坦温度:爱因斯坦模型在T >> θE 时,Cv,m=3R,与实验相符合,在低温下,T当T << θE时Cv,m比实验更快趋于0,在T趋于0时,Cv,m也趋于零。
爱因斯坦模型不足之处在于:爱因斯坦模型假定原子振动不相关,且以相同频率振动,而实际晶体中,各原子的振动不是彼此独立地以同样的频率振动,而是原子间有耦合作用,点阵波的频率也有差异。
温度低尤为明显2.德拜模型德拜在爱因斯坦的基础上,考虑了晶体间的相互作用力,原子间的作用力遵从胡克定律,固体热容应是原子的各种频率振动贡献的总和。
材料物理性能总复习

k[12(
T D
)3
D T
0
( )3d( ) 3 D
kT
kT
T
D
]
ekT 1 e T 1
德拜温度:
D
m k(1) ຫໍສະໝຸດ 温时,T D Cv 3R(2) 低温时,T D
Cv
12 =
5
4R
(
T D
)3
(3)T 0K时,Cv 0,与实验符合。
18
19
材料的热膨胀
物体的体积或长度随温度的升高而增大 的现象称为热膨胀。
30
反射
反射系数R与折射率n正相关,n大,R大:
R ( n -1 )2 n 1
大多数金属的反射系数在0.9~0.95之间,Ag具很高的反射系数:在其它材 料衬底上镀上金属薄层可用作反光镜
31
介质对光的吸收
朗伯特定律
I I ex 0
与材料的密度、辐射波长以及导带与价带之 间的能隙有关。
不同材料, 差别很大。
•σs=Fs/A0
单位:MPa
式中, A0:圆形试样的原始横截面积,单位mm2。
塑性
• 塑性 :材料在外力作用下产生永久变形而不 破坏的性能。
• 表证材料的塑性指标是:伸长率δ和断面收缩 率ψ;
•
1)使材料具有良好的成形性;
•
2)受到外力变形时,有强化作用。
硬度
• 硬度:金属材料表面抵抗局部变形的能力
zx C61x C62 y C63z C64 xy C65 yz C66 zx
应此变即分广量义间虎的克比定例律系,数式,中称Cij为(刚i度,常j=数1,。2,…,6)是应力分量与
• 由此可见,广义虎克定律中刚度常数和柔 顺系数各为36个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章材料的热学性能热容:热容是分子或原子热运动的能量随温度而变化的物理量,其定义是物体温度升高1K所需要增加的能量。
不同温度下,物体的热容不一定相同,所以在温度T时物体的热容为:物理意义:吸收的热量用来使点阵振动能量升高,改变点阵运动状态,或者还有可能产生对外做功;或加剧电子运动。
晶态固体热容的经验定律:一是元素的热容定律—杜隆-珀替定律:恒压下元素的原子热容为25J/(K•mol);二是化合物的热容定律—奈曼-柯普定律:化合物分子热容等于构成此化合物各元素原子热容之和。
热差分析:是在程序控制温度下,将被测材料与参比物在相同条件下加热或冷却,测量试样与参比物之间温差(ΔT)随温度(T)时间(t)的变化关系。
参比物要求:应为热惰性物质,即在整个测试的温度范围内它本身不发生分解、相变、破坏,也不与被测物质产生化学反应同时参比物的比热容,热传导系数等应尽量与试样接近。
第三章材料的光学性能四、选择吸收:同一物质对各种波长的光吸收程度不一样,有的波长的光吸收系数可以非常大,而对另一波长的吸收系数又可以非常小。
均匀吸收:介质在可见光范围对各种波长的吸收程度相同。
金属材料、半导体、电介质产生吸收峰的原因(1)金属对光能吸收很强烈,这是因为金属的价电子处于未满带,吸收光子后即呈激发态,用不着跃迁到导带即能发生碰撞而发热。
(2)半导体的禁带比较窄,吸收可见光的能量就足以跃迁。
(3)电介质的禁带宽,可见光的能量不足以使它跃迁,所以可见光区没有吸收峰。
紫外光区能量高于禁带宽度,可以使电介质发生跃迁,从而出现吸收峰。
电介质在红外区也有一个吸收峰,这是因为离子的弹性振动与光子辐射发生谐振消耗能量所致。
第六章材料的磁学性能一、固有磁矩产生的原因原子固有磁矩由电子的轨道磁矩和电子的自旋磁矩构成,电子绕原子核运动,产生轨道磁矩;电子的自旋也产生自旋磁矩。
当电子层的各个轨道电子都排满时,其电子磁矩相互抵消,这个电子层的磁矩总和为零。
原子中如果有未被填满的电子壳层,其电子的自旋磁矩未被抵消(方向相反的电子自旋磁矩可以互相抵消),原子就具有“永久磁矩”。
二、抗磁性与顺磁性抗磁性:轨道运动的电子在外磁场作用下产生附加的且与外磁场反向的磁矩。
产生原因:外加磁场作用下电子绕核运动所感应的附加磁矩造成的。
顺磁性:材科的顺磁性来源于原子的固有磁矩。
产生原因:因为存在未填满的电子层,原子存在固有磁矩,当加上外磁场时,为了降低静磁能,原子磁矩要转向外磁场方向,结果使总磁矩不为零而表现出磁性。
三、强顺磁性:过渡族金属在高温都属于顺磁体,这些金属的顺磁性主要是由于3d, 4d, 5d电子壳层未填满,而d和f态电子未抵消的磁矩形成晶体离子构架的固有磁矩,因此产生强烈的顺磁性。
四、磁化曲线、磁滞回线剩余磁感应强度:Br(剩余磁化强度Mr)矫顽力:Hc饱和磁感应强度:Bs(饱和磁化强度Ms五、磁畴:在铁磁材料中存在着许多自发磁化的小区域,我们把磁化方向一致的小区域,称为磁畴。
结构:磁畴结构包括磁畴的形状、尺寸、畴壁的类型与厚度,同一磁性材料如果磁畴结构不同,则其磁化行为不同。
从能量观点来看,磁畴结构受到交换能、各向异性能、磁弹性能、畴壁能及退磁能的影响。
稳定的磁畴结构,应使其能量总和最小。
由于晶体表面形成磁极的结果,这种组态退磁能最大。
从能量的观点,把晶体分为两个或四个平行反向的自发磁化区域可以大大降低退磁能。
当磁体被分为n个区域(即n个磁畴)时,退磁能降到原来的1/n。
但由于两个相邻磁畴间畴壁的存在又增加了畴壁能,因此自发磁化区域的划分并不是可以无限地小,而是以畴壁能及退磁能之和为最小,分畴停止。
六、产生自发磁化的原因在没有外磁场的情况下,材料所发生的磁化称为自发磁化。
(1)从能量的角度:铁磁性物质自发磁化是由于电子间的相互作用产生的。
当两个原子相接近时,电子云相互重叠,由于3d层和4s层的电子能量相差不大,因此它们的电子可以相互交换位置,迫使相邻原子自旋磁矩产生有序排列。
因交换作用所产生的附加能量成为交换能,用E ex表示。
交换能的正负取决于A和,当A为正值(A>0)时,时,E ex为负最大值,即相邻自旋磁矩同向平行排列时能量最低,即自发磁化;(当A为负值(A<0). =180`,E ex为负最大值,即相邻自旋磁矩反向平行排列时能量最低,即产生反磁性。
)(2)交换能积分常数A与原子之间的距离a和未填满电子壳层半径r之比有如下关系:当a/r>3时,A>0,有自发磁化倾向。
(当a/r<3时,A<0,这时自旋磁矩反向平行排列时能量最低)七、超交换:通过夹在磁性离子间的氧离子形成的间接交换作用,称为超交换作用。
九、磁滞伸缩效应:当铁磁体在磁场中被磁化时,由于原子磁矩有序排列,电子间的相互作用,导致原子间距的自发调整过程而使其尺寸和形状发生改变。
十、铁磁的技术磁化的过程技术磁化是指在外磁场作用下铁磁体从完全退磁状态磁化至饱和状态的内部变化过程。
铁磁物质的磁化可以分为三个阶段:起始磁化阶段、急剧磁化阶段及缓慢磁化至饱和阶段。
在起始磁化阶段,在外加磁场的作用下,能态低的锐角畴扩大,能态高的钝角畴缩小,是铁磁体宏观上表现出微弱的磁化,该过程是可逆的。
在急剧磁化阶段,钝角畴瞬时转向与磁场成锐角的易磁化方向,发生巴克豪森跳跃,不可逆的。
当所有的原子磁矩都转向与磁场成锐角的易磁化方向后,晶体成为单畴。
如果再增强磁场,磁矩将逐渐转向外磁场H 的方向。
当外磁场使磁畴的磁化强度矢量与外磁场方向一致(或基本上一致)时,磁化达到饱和,称为磁饱和状态,此过程是可逆的。
十一、单畴颗粒的磁化特点:单畴颗粒中不存在畴壁,因而在技术磁化时不会有壁移过程,而只能依靠畴的转动。
具有低的磁导率和高的矫顽力。
十二、磁畴迁移的杂质理论和内应力理论技术磁化过程中,磁畴壁移动存在阻力,因此需要由外磁场做功。
阻力来自两个方面:一是由磁体磁化时产生的退磁能。
二是由晶体内部的缺陷、应力及组织所造成的不均匀性。
(1)内应力理论:实际晶体中不可避免存在位错、空位、间晾原子及溶质原子,这些晶体缺陷都会产生内应力,磁化过程中铁磁体的磁致伸缩效应也会造成内应力。
铁磁体中内应力的分布状态决定了畴壁迁移的阻力。
(2)杂质理论:从能量角度考虑,在无外磁场作用时,畴壁如果位于杂质处,畴壁就要被杂质穿孔而减少畴壁总面积,因此畴壁能低。
如果施加磁场使畴壁移动离开这个位置,畴壁的面积就要增大,导致畴壁能量的增高,给畴壁迁移造成阻力。
十三、提高剩磁Mr措施:①使材料的易磁化方向与外磁场方向一致;②进行磁场热处理。
十四、影响铁磁性的因素影响铁磁性的因素主要有两方面:一是外部环境因素,如温度和应力等;二是材料内部因素,如成分、组织和结构等。
1.温度的影响:随温度升高,饱和磁化强度Ms下降。
2.应力的影响:当应力方向与金属的磁致伸缩为同向时,应力对磁化起促进作用,反之起阻碍作用。
3.形变和晶粒细化的影响:磁导率μm,随形变量的增加而下降,而矫顽力Hc则相反。
剩余磁感应强度Br,在临界变形度下(约5%-8%)急剧下降,而在临界变形度以上则随形变量的增加而增加。
晶粒细化对磁性的影响和塑性变形的作用相似,晶粒越细,则矫顽力和磁滞损耗越大,而磁导率越小。
形变影响原因:在临界变形度以下,只有少量晶粒发生了塑性变形,整个晶体的应力状态比较简单,沿铁丝轴向应力状态有利于磁畴在去磁后的反向可逆转动而使Br降低;在临界变形度以下,晶体中大部分晶粒参与形变,应力状态复杂,内应力增加明显,不利于磁畴在去磁后的反向可逆转动,因而使Br随形变量的增加而增加。
冷塑性变形不影响饱和磁化强度。
十五、铁磁金属化合物的磁性特点:1.铁磁金属与顺磁或抗磁金属所组成的化合物和中间相都是顺磁性的;2. 铁磁金属与非金属所组成的化合物Fe3 O4 ,FeSi2, FeS等均呈亚铁磁性,即两相邻原子的自旋磁矩反平行排列,而又没有完全抵消。
而Fe3C和Fe4N则为弱铁磁性。
名词解释:1.最大磁能积:是指磁铁Bm与Hm的乘积,磁能积随B而变化的关系曲线称为磁能曲线,其中一点对应的Bd 和Hd的乘积有最大值。
2.磁滞损耗:是铁磁体等在反复磁化过程中因磁滞现象而消耗的能量。
3.如果磁性材料在外加磁场中被均匀磁化,内部由其自身产生的退磁场Hd将和材料的磁化强度M成正比,即可以表示成如下形式:Hd=-NM式中,N是比例系数,称为退磁因子,其数值和材料的几何形状有关。
负号表示在材料内部Hd和M两者的方向相反。
4.磁各向异性是指物质的磁性随方向而变的现象。
5.磁畴理论是用量子理论从微观上说明铁磁质的磁化机理。
所谓磁畴,是指铁磁体材料在自发磁化的过程中为降低静磁能而产生分化的方向各异的小型磁化区域,每个区域内部包含大量原子,这些原子的磁矩都像一个个小磁铁那样整齐排列,但相邻的不同区域之间原子磁矩排列的方向不同。
各个磁畴之间的交界面称为磁畴壁。
6.穆斯堡尔效应(Mössbauer effect),即原子核辐射的无反冲共振吸收。
7.核磁共振是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。
8.同质异能位移又称r射线能量的化学移。
它是由穆斯堡尔核的核电荷分布与核周围的电子(s电子)之间静电作用引起的。
9.塞曼效应(Zeeman effect),在原子、分子物理学和化学中的光谱分析里是指原子的光谱线在外磁场中出现分裂的现象。
(塞曼效应的产生是原子磁矩与外加磁场作用的结果)10.原子核的塞曼效应:此系原子核磁矩在外磁场作用下所引起的核能级分裂现象。
11.N型半导体:也称为电子型半导体。
N型半导体即自由电子浓度远大于空穴浓度的杂质半导体。
12.P型半导体:也称为空穴型半导体。
P型半导体即空穴浓度远大于自由电子浓度的杂质半导体。
13.类氢体系:满带电子吸收能量小于禁带Eg的光子后,激发到一个激子能级,并与一个空穴束缚在一起,形成类氢体系——激子。
14.空穴导电:N型半导体的多数载流子是电子,P型半导体的多数载流子是空穴。
当大量自由电子在这些空穴定向运动时,就等效为正的质子沿电子反向流动,从而形成电流,即为空穴导电。
15.费米能级:就一个由费米子组成的微观体系而言,每个费米子都处在各自的量子能态上。
16.禁带:是指晶体中相邻两能带间的能量范围。
17.价带:或称价电带,通常是指半导体或绝缘体中,在绝对零度下能被电子占满的最高能带。
18.导带:是由自由电子形成的能量空间。
即固体结构内自由运动的电子所具有的能量范围。
19.迁移率:是指单位电场强度下所产生的载流子平均漂移速度。
它的单位是厘米2/(伏·秒)。
20.霍尔效应:当电流垂直于外磁场通过导体时,载流子发生偏转,垂直于电流和磁场的方向会产生一附加电场,从而在导体的两端产生电势差,这一现象就是霍尔效应,(这个电势差也被称为霍尔电势差。