材料物理性能思考题
材料物理性能部分课后习题

材料物理性能部分课后习题课后习题第⼀章1.德拜热容的成功之处是什么?答:德拜热容的成功之处是在低温下,德拜热容理论很好的描述了晶体热容,CV.M∝T的三次⽅2.何为德拜温度?有什么物理意义?答:HD=hνMAX/k 德拜温度是反映晶体点阵内原⼦间结合⼒的⼀个物理量德拜温度反映了原⼦间结合⼒,德拜温度越⾼,原⼦间结合⼒越强3.试⽤双原⼦模型说明固体热膨胀的物理本质答:如图,U1(T1)、U2(T2)、U3(T3)为不同温度时的能量,当原⼦热振动通过平衡位置r0时,全部能量转化为动能,偏离平衡位置时,动能⼜逐渐转化为势能;到达振幅最⼤值时动能降为零,势能打到最⼤。
由势能曲线的不对称可以看到,随温度升⾼,势能由U1(T1)、U2(T2)向U3(T3)变化,振幅增加,振动中⼼就由r0',r0''向r0'''右移,导致双原⼦间距增⼤,产⽣热膨胀第⼆章1.300K1×10-6Ω·m4000K时电阻率增加5%由于晶格缺陷和杂质引起的电阻率。
解:按题意:p(300k) = 10∧-6 则: p(400k) = (10∧-6)* (1+0.05) ----(1)在400K温度下马西森法则成⽴,则: p(400k) = p(镍400k) + p(杂400k) ----(2) ⼜: p(镍400k) = p(镍300k) * [1+ α* 100] ----(3) 其中参数: α为镍的温度系数约= 0.007 ; p(镍300k)(室温) = 7*10∧-6 Ω.cm) 将(1)和(3)代⼊(2)可算出杂质引起的电阻率p(杂400k)。
2.为什么⾦属的电阻因温度升⾼⽽增⼤,⽽半导体的电阻却因温度的升⾼⽽减⼩?对⾦属材料,尽管温度对有效电⼦数和电⼦平均速率⼏乎没有影响,然⽽温度升⾼会使离⼦振动加剧,热振动振幅加⼤,原⼦的⽆序度增加,周期势场的涨落也加⼤。
材料物理导论-思考题3

第二章 材料的热学1. 讨论为什么高温下非密排结构晶体是稳定相,而低温时,密排结构晶体却为稳定相?1.高温下原子活动能力较强,为了满足高温下原子平衡跳动的需要,原子间距要大,所以为非密排结构;低温时,原子活动性弱,原子间距小,在最低能态的条件下,原子尽量以密排方式。
2. 如图,比较铜和铁的热传导系数随温度的变化情况,讨论为什么铜在1084℃、铁在912℃会出现跳跃?2.铜在1084℃、铁在912℃会出现相变,晶体结构有变化。
铜的热传导系数出现跳跃是因为在此温度下铜由固态变成了液态,发生了相变,由于吸热使得单位时间内通过单位垂直面积的热量骤减,故热传导系数骤减;而铁在912℃由α-Fe 转变成γ-Fe ,晶体结构发生改变,热传导系数骤增,出现跳跃。
3. 进一步讨论晶体结构是如何影响热膨胀系数的?举例说明。
3、物体的体积或长度随着温度的升高而增大的现象称为热膨胀(thermal expansion )用先膨胀系数、体膨胀系数表示。
线(体)膨胀系数指温度升高1K 时,物体的长度(体积)的相对增加。
由于晶体结构类型变化伴随着材料比体积发生引起线膨胀系数发生不连续变化。
例如,有序—无序转变时,伴随着膨胀系数的变化,在膨胀曲线上出现拐折,其中Au —Cu50%(质量分数)的有序合金加热至300℃时,有序机构开始破坏,450℃完全变为无序结构。
在这个温度区间,膨胀系数增加很快,在450℃处,膨胀曲线上出现明显的拐折,拐折点对应于有序—无序转变温度。
从曲线可以看出,有序结构具有较小的膨胀系数,这是CuFe 温度,℃/热传导系数 ℃/mm 0.40.2题2图 热传导系数与温度关系由于有序结构使合金原子间结合力增强的结果。
4. 根据题4图,如果变化相同的 T ,说明哪种材料的热膨胀系数更大,哪种材料的熔点更高,为什么?4、B 的热膨胀系数更大,A 的熔点更高。
材料的热膨胀与点阵中质点的位能有关,而质点的位能是由质点间的结合力特性所决定。
材料物理性能测试思考题答案

有用【2 】电子数:不是所有的自由电子都能参与导电,在外电场的感化下,只有能量接近费密能的少部分电子,方有可能被激发到空能级上去而参与导电.这种真正参加导电的自由电子数被称为有用电子数.K状况:一般与纯金属一样,冷加工使固溶体电阻升高,退火则降低.但对某些成分中含有过渡族金属的合金,尽管金相剖析和X射线剖析的成果以为其组织仍是单相的,但在回火中发明合金电阻有反常升高,而在冷加工时发明合金的电阻明显降低,这种合金组织消失的反常状况称为K状况.X射线剖析发明,组元原子在晶体中不平均散布,使原子间距的大小明显波动,所以也把K状况称为“不平均固溶体”.能带:晶体中大量的原子聚集在一路,并且原子之间距离很近,致使离原子核较远的壳层产生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的类似壳层上去,也可能从相邻原子活动到更远的原子壳层上去,从而使本来处于统一能量状况的电子产生渺小的能量差异,与此相对应的能级扩大为能带.禁带:许可被电子占领的能带称为许可带,许可带之间的规模是不许可电子占领的,此规模称为禁带.价带:原子中最外层的电子称为价电子,与价电子能级相对应的能带称为价带.导带:价带以上能量最低的许可带称为导带.金属材料的根本电阻:幻想金属的电阻只与电子散射和声子散射两种机制有关,可以算作为根本电阻,根本电阻在绝对零度时为零.残余电阻(残剩电阻):电子在杂质和缺点上的散射产生在出缺点的晶体中,绝对零度下金属呈现残剩电阻.这个电阻反应了金属纯度和不完全性.相对电阻率:ρ (300K)/ρ (4.2K)是权衡金属纯度的重要指标.残剩电阻率ρ’:金属在绝对零度时的电阻率.实用中常把液氦温度(4.2K)下的电阻率视为残剩电阻率.相对电导率:工程顶用相对电导率( IACS%) 表征导体材料的导电机能.把国际标准软纯铜(在室温20 ℃下电阻率ρ=0 .017 24Ω·mm2/ m)的电导率作为100% , 其他导体材料的电导率与之比拟的百分数即为该导体材料的相对电导率.马基申定章(马西森定章):ρ=ρ’+ρ(T)在一级近似下,不同散射机制对电阻率的进献可以加法乞降.ρ’:决议于化学缺点和物理缺点而与温度无关的残剩电阻率.ρ(T):取决于晶格热振动的电阻率(声子电阻率),反应了电子对热振动原子的碰撞.晶格热振动:点阵中的质点(原子.离子)环绕其均衡地位邻近的渺小振动.格波:晶格振动以弹性波的情势在晶格中传播,这种波称为格波,它是多频率振动的组合波.热容:物体温度升高1K时所须要的热量(J/K)表征物体在变温进程中与外界热量交流特点的物理量,直接与物资内部原子和电子无规矩热活动相接洽.比定压热容:压力不变时求出的比热容.比定容热容:体积不变时求出的比热容.热导率:表征物资热传导才能的物理量为热导率.热阻率:界说热导率的倒数为热阻率ω,它可以分化为两部分,晶格热振动形成的热阻(ωp)和杂质缺点形成的热阻(ω0).导温系数或热集中率:它表示在单位温度梯度下.单位时光内经由过程单位横截面积的热量.热导率的单位:W/(m·K)热剖析:经由过程热效应来研讨物资内部物理和化学进程的试验技巧.道理是金属材料产生相变时,伴随热函的突变.反常膨胀:对于铁磁性金属和合金如铁.钴.镍及其某些合金,在正常的膨胀曲线上消失附加的膨胀峰,这些变化称为反常膨胀.个中镍和钴的热膨胀峰向上为正,称为正反常;而铁和铁镍合金具有负反常的膨胀特点.交流能:交流能E ex =-2A σ1σ2cos φ A —交流积分常数.当A >0,φ=0时,E ex 最小,自旋磁矩自觉分列统一偏向,即产生自觉磁化.当A <0,φ=180°时,E ex 也最小,自旋磁矩呈反向平行分列,即产生反铁磁性.交流能是近邻原子间静电互相感化能,各向同性,比其它各项磁自由能大102~104数目级.它使强磁性物资相邻原子磁矩有序分列,即自觉磁化.磁滞损耗:铁磁体在交变磁场感化下,磁场交变一周,B-H 曲线所描写的曲线称磁滞回线.磁滞回线所围成的面积为铁磁体所消费的能量,称为磁滞损耗,平日以热的情势而释放.磁滞损耗Q HdB =⎰ 技巧磁化:技巧磁化的本质是外加磁场对磁畴的感化进程即外加磁场把各个磁畴的磁矩偏向转到外磁场偏向(和)或近似外磁场偏向的进程.技巧磁化的两种实现方法是的磁畴壁迁徙和磁矩的迁移转变.请画出纯金属无相变时电阻率—温度关系曲线,它们分为几个阶段,各阶段电阻产生的机制是什么?为什么高温下电阻率与温度成正比?1—ρ电-声∝T( T > 2/ 3ΘD ) ;2—ρ电-声∝T 5 ( T< <ΘD );3—ρ电-电∝T 2 ( T ≈2K ) 分为三个阶段:(1)温度T > (2/ 3)ΘD 阶段, 电阻率正比于温度,即ρ(T) =αT .电阻产生的机制是电子—声子(离子)散射.(2)温度T< <ΘD 阶段,电阻率与温度成五次方关系, 即ρ∝T 5.电阻产生的机制是电子—声子(离子)散射,(3)在极低温度(T ≈2K)阶段,电阻率与温度成2 次方关系, 即ρ∝T 2 , 电阻产生的机制是电子—电子之间的散射.根据公式***2*2212ρμ==m v m v n e L n e ,1μ=L (称为散射系数).对金属来说,温度升高离子热振动的振幅愈大,电子就愈易受到散射,故可以以为μ与温度成正比,则ρ也就与温度成正比(因为式子中其他的量均与温度无关),这就是高温下电阻率与温度成正比的原因.用电阻法研讨金属冷加工时为什么要在低温?根据马西森定律, 冷加工金属的电阻率可写成ρ= ρ′+ρM式中:ρM 表示与温度有关的退火金属电阻率;ρ′是残剩电阻率.试验证实,ρ′与温度无关,换言之,dρ/ dT 与冷加工程度无关.总电阻率ρ愈小,ρ′/ ρ比值愈大,所以ρ′/ ρ的比值随温度降低而增高.显然,低温时用电阻法研讨金属冷加工更为适合. 从导体.半导体.绝缘体材料能带构造剖析其导电机能不同的原因.导体:价带与导带重叠,无禁带.或价带未被电子填满,这种价带本身即为导带.这两种情形下价电子都是自由的, 就像金属具有大量的如许的自由电子,所以具有很强的导电才能.半导体和绝缘体:满价带和空导带之间具有禁带.半导体:禁带宽度小,在热.光等外界前提感化下,价带中的部分电子有可能获得足够的能量而超出禁带到达其上面的空带,形成导带.并且价带中消失了电子留下的空穴.导带中的电子和价带中的空穴在电场的感化下沿相反的偏向定向移动,产生电流.导带中的电子导电和价带中的空穴导电同时消失的导电方法称为本征导电,其特点是参加导带的电子和空穴浓度相等,这种半导体称为本征半导体.绝缘体:禁带宽度很大,电子很难超出禁带到达其上面的空带,外电场的感化下几乎不产生电流.金属材料电阻产生的本质.当电子波经由过程一个幻想晶体点阵时(0K) , 它将不受散射;只有在晶体点阵完全性遭到损坏的地方, 电子波才受到散射(不相关散射) , 这就是金属产生电阻的根本原因.因为温度引起的离子活动(热振动) 振幅的变化(平日用振幅的均方值表示),以及晶体中异类原子.位错.点缺点等都邑使幻想晶体点阵的周期性遭到损坏.如许,电子波在这些地方产生散射而产生电阻,降低导电性.为什么金属材料的导电性随温度的升高而降低,而非金属材料的导电性随温度的升高而升高?对于金属材料:温度升高,晶格热振动加剧,声子电阻率升高,而残剩电阻率不变,故金属材料的导电性随温度的升高而降低.对于非金属材料:温度升高,材料的电子或载流子活动才能加强,数目也增长,传递电荷的才能加强,导电性加强. 金属材料受力后电阻率的变化.(1)拉力在弹性规模内单向拉伸或扭转应力能进步金属的ρ,并有(2)压力对大多半金属来说,在受压力情形下电阻率降低.0(1)p ρρϕ=+ϕ—压力系数,为负.几乎所有纯元素随温度变化电阻压力系数几乎不变.正常金属元素:电阻率随压力增大而降低;(铁.钴.镍.钯.铂.铱.铜.银.金.锆.铪等)反常金属元素:碱金属.碱土金属.稀土金属和第V 族的半金属,它们有正的电阻压力系数,但随压力升高必定值后系数变号,研讨表明,这种反常现象和压力感化下的相变有关.高压力还能导致物资的金属化,引起导电类型的变化,并且有助于从绝缘体—半导体—金属—超导体的某种改变.固溶.冷加工对金属材料电阻率的影响及原因.形成固溶体时,导电机能降低.即使是在低导电性的金属中溶入高导电性的金属溶质也是如斯,但电阻随成分持续变化而无突变.对于持续固溶体,当组元A 溶入组元B 时,电阻由B 组元的电阻值逐渐增大至极大值后再逐渐减小到A 组元的电阻值.原因:(1)引起晶体点阵畸变,增长了电子的散射,原子半径差越大,固溶体的电阻也越大;0(1)γρρασ=+(2)杂质对幻想晶体的局部损坏;(3)合金化引起能带构造变化,移动费米面(0K时电子最高能级)并改变了电子能态的密度和有用导电电子数;(4)合金化影响弹性常数,使点阵振动的声子谱改变.一般,冷加工引起电阻率增大.室温下测得经相当大的冷加工变形后纯金属(如铁.铜.银.铝)的电阻率, 比未经变形的总共只增长2%~6%.只有金属钨.钼破例, 当冷变形量很大时, 钨电阻可增长30%~60% , 钼增长15%~20%.一般单相固溶体经冷加工后, 电阻可增长10%~20%.而有序固溶体电阻增长100% , 甚至更高.也有相反的情形, 如Ni-Cr,Ni-Cu-Zn,Fe-Cr-Al 等中形成K状况, 则冷加工变形将使合金电阻率降低.原因:冷加工引起金属晶格畸变,增长电子散射几率;同时也会引起金属晶体原子联合键的改变,导致原子间距变化.固溶体的有序化对其电阻率有何影响?为什么?固溶体产生有序时,其电阻率明显降低.固溶体产生有序化时对导电性的影响:(1)使点阵纪律性加强,削减了对电子的散射而使电阻率降低(2)使组元间的互相化学感化加强,使有用电子数削减,从而引起电阻率的升高.上述两种相反的感化中,第一种感化占主导地位,是以有序化一般表现为电阻率降低.有序化程度越高,电阻率就越低.将下列物资按热导率大小排序,并解释来由:(1)铬(2)银(3)Ni-Cr合金(4)石英(5)铁(2)银>(5)铁>(3) Ni-Cr合金>(1)铬>(4)石英银在五种物资中导电机能最佳,铁次之.合金热导率平日小于纯金属.铬的性质比较接近半导体.石英是绝缘体.导电率:(2)银>(5)铁>(3) Ni-Cr合金>(1)铬>(4)石英.根据魏德曼—弗兰兹定律,热导率与电导率之间消失如下关系:/LTλσ=.所以,(2)银>(5)铁>(3) Ni-Cr合金>(1)铬>(4)石英.为什么说材料热学机能的物理本质都与晶格热振动有关?固体材料的各类热学机能就其物理本质而言,均与构成材料的质点(原子.离子)热振动有关.固体材料由晶体或非晶体构成,点阵中的质点(原子.离子)老是环绕其均衡地位作渺小振动,这种振动称为晶格热振动.材估中质点之间的振动消失的关系和感化.材料内能的本质.热容的物理本质.C p与C v的物理意义是什么?可否经由过程试验测量?C p与C v哪个大,为什么?若温度升高时物体的体积不变,物体接收的热量只用来知足温度升高物体内能的增长,此种前提下的热容称为定容热容(C v).若温度升高时物体的压力不变,物体接收的热量除了用来知足温度升高物体内能的增长外,还对外做功,此种前提下的热容称为定压热容(C p).对于金属,C v不能直接经由过程试验测量,需由试验测得C p,再换算得到C v.C p大于C v,这是因为定压比热容中含有体积膨胀功,2mα-=VP VV Tc cK.故在雷同质量的前提下,Cp更大.材料热容随温度的变化纪律.Ⅰ区:T:0~5K,C v∝TⅡ区: c v∝T3,T达到时,C v=3R.Ⅲ区: c v>3R,增长部分主如果自由电子热容的进献.热容经验定律的内容及其与现实相符的情形.若晶体有N个原子,则有3N个自由度.金属原子的热振动既具有动能,又具有位能,两者不断地互相转换,且平均动能与平均位能统计地相等(每个振动自由度平均动能和平均位能都为1/2kT) .所以一摩尔金属的总内能应为U m=3NkT=3RT.金属的定容摩尔热容为:热容经验定律杜隆-珀替定律(Dulong-Petit rule)的内容是所有金属的摩尔热容是一个与温度无关的常数,其数值接近于3R.与现实相符的情形是:(1)以为热容与温度无关,与事实不符.(2)以为所有元素热容雷同,构成化合物时,分子热容等于各原子热容之和,与事实不完全相符.(3)低温时.轻元素与事实差别很大.(4)除轻元素外,大部分元素与固体物资在非低温时,与事实十分接近.与现实不相符的原因:假设与前提问题,原子(各类元素.任何温度)平均动能.位能相等,模子过于简化.把原子的振动能量看作是持续的,不相符能量不持续性的量子化前提.热容爱因斯坦模子.德拜模子的前说起其与事实相符情形,不完全相符的原因.爱因斯坦模子(1)前提:晶格中每个原子(离子)都在其格点作振动,各个原子的振动是自力而互不依附,每个原子都具有雷同的四周情形,因而其振动频率v都是雷同的,原子振动的能量是不持续的.量子化的.可把原子的振动看作是谐振子的振动.(2)事实相符情形:在高温时热容和杜隆—珀替定律一致,并和热容曲线相符得较好.值一般在100~300K规模.(3)不完全相符的原因:在低温时,热容与温度之间的关系中消失指数项,不相符试验的C v=T3 关系,即跟着温度的降低,爱因斯坦热容理论值比试验值要更快地降低而趋近于零.原因在于把原子的振动算作是孤立的,并疏忽了振子振动频率的差别.德拜模子(1)前提:在爱因斯坦量子热容理论基本上加以完美的.以为:晶体中各原子间消失着弹性的斥力和吸力,这种力使原子热振动互相受连累而达到相邻原子间调和地振动.波长较长,属于声频波规模(相当于弹性振动波).因为弹性波波长弘远于晶格常数,可近似地把晶体视为持续介质,把弹性波的振动也可近似地视为持续的,其振动频率可持续散布在零到v m之间.(2)事实相符情形:在高温下原子都几乎以最大频率振动,因而使热容接近于一个常数.此时德拜热容理论与经典热容理论.爱因斯坦热容理论一致.在低温时,金属温度升高所接收的热量主如果用来加强晶格的振动,即使得具有高频振动的振子数急剧地增多,C v与T3 成正比.当T=0K时,C v=0.这也完全相符试验纪律.(3)不完全相符的原因:在很接近0K的温度规模,德拜热容理论与试验纪律消失着误差.原因在于德拜理论只斟酌了晶格振动对热容的进献,而未斟酌自由电子对热容的进献.在极低的温度下,因为晶格振动的能量已趋近于零,自由电子的动能便不可被疏忽,它成为对热容的重要进献者.材料热容与温度关系的经验公式.剖析材料热膨胀特点的工程意义.会使釉层脱材料热膨胀系数随温度的变化情形.材料热膨胀的机理.格律乃森定律的内容及原因.格律乃森(Gr üneisen)从晶格振动理论导出金属体膨胀系数与热容间消失的关系式: V r C KV β=式中:γ是格律乃森常数,是表示原子非线性振动的物理量,一般物资γ在1 .5 - 2 .5 间变化;K 是体积模量; V 是体积;C V 是等容热容.从热容理论知, 低温下C V 随温度T 3 变化, 则膨胀系数在低温下也按T 3 纪律变化, 即膨胀系数和热容随温度变化的特点根本一致.体膨胀系数与定容热容成正比,它们有类似的温度依附关系,在低温下随温度升高急剧增大,而到高温则趋势平缓. 固溶和冷加工对材料的λ(热导率)有何影响?为什么?程减小,热哪些身分会影响材料的热导率?若何影响?(1)对于纯金属,影响其电导率身分有:温度.晶粒大小.晶向.杂质.具体地来说:根据导热机制可以推论高电导率的金属就有高的热导率. ①热导率与温度关系:在低温时, 热导率随温度升高而不断增大,并达到最大值.随后,热导率在一小段温度规模内根本保持不变;当温度升高到某一温度后,热导率开端急剧降低,并在熔点处达到最低值.但像铋和锑这类金属融化时, 它们的热导率增长一倍,这可能是过渡至液态时,共价键合削弱,而金属键合加强的成果.在德拜温度以上略成直线关系,0(1)r T λλα=+.在德拜温度以下,某些金属的热导率遵守格留涅申定律而变化,-3T λα=铁磁性金属或合金的热导率与温度曲线在居里点时有转折.②晶粒大小的影响:一般情形是晶粒粗大,热导率高;晶粒愈细,热导率愈低.③立方晶系的热导率与晶向无关.非立方晶系晶体热导率表现出各向异性.④所含杂质强烈影响热导率.当参加少量杂质时,组元的热导率降低很激烈,但跟着浓度的增长对热导率的影响要小得多.(2)对于合金两种金属构成持续无序固溶体时, 溶质组元浓度愈高, 热导率降低愈多, 并且热导率最小值接近原子浓度50%处.当组元为铁及过渡族金属时,热导率最小值比50%处有较大的偏离.当为有序固溶体时,热导率进步,最大值对应于有序固溶体化学组分.(3)对于无机非金属材料比较而言, 金属材料热导率的影响身分比较单一,而无机非金属材料就庞杂一点.是以,金属材料热导率的影响身分对无机非金属材料都同样的有感化,只是因为陶瓷材料相构造庞杂一点,包括玻璃相和必定孔隙率.①化学构成的影响:对于无机非金属材料来说,材料构造的相对原子质量愈小,密度愈小,弹性模量愈大, 德拜温度愈高, 则热导率愈大, 所以轻元素的固体和联合能大的固体热导率较大,固溶体的情形与金属固溶体的变化趋势类似,和金属固溶体类似,杂质浓度很低时, 杂质降低热导率效应十分明显;杂质浓度增高时,杂质效应削弱,在低温下杂质效应将会更明显. ②晶体构造的影响:晶体构造愈庞杂,晶格振动的非线性程度愈大,其散射程度愈大,是以声子平均自由程较小,所以热导率便低了.③晶粒大小和各向异性的影响:与对金属的热导率影响雷同.同样化学构成的多晶体的热导率总比单晶小.④非晶体的热导率:非晶体的热导率在所有温度下都比晶体小.玻璃是无机的非晶体材料,其热导率变化有其特别性. ⑤疏散相的影响:常见复相陶瓷的典范微不雅构造是疏散相平均地疏散在持续相中.热导率可以按下式盘算:式中:κc .κd 分离为持续相和疏散相的热导率;φd 为疏散相的体积分数.⑥气孔率的影响:无机材料常含有气孔,气孔对热导率的影响较庞杂.假如温度不是很高,且气孔率不大,尺寸很小,散布又平均,可以以为此时的气孔是复相陶瓷的疏散相, 此时热导率可以按上式处理.只是因为与固相比拟,其热导率很小,可以近似以为零, 且κc /κd 很大,此时κ≈κs ( 1-φ气孔).式中:κs 为陶瓷固相热导率;φ气孔为气孔的体积分数.斟酌气孔的辐射传热时,按下式盘算:式中:P 为气孔面积分数;PL 是气孔的长度分数;ε为辐射面的热发射率;G 是几何因子;纵向长条气孔G=1,横向圆柱形气孔G =π/4, 球形气孔G = 2/ 3;d 是气孔最大尺寸.(5)对于本征半导体在本征半导体中,导带中电子和价带中的空穴随温度升高而增长,这导致热导率随温度升高而升高.可以采取哪些措施进步材料的磁导率?其理论根据是什么?(1)清除材估中的杂质;(2)把晶粒培养到足够大并呈等轴状;(3)形成再结晶织构;(4)采用磁场中退火.(1)的理论根据是如当杂质固溶在材估中会造成点阵扭曲,当杂质呈搀杂物消失时则使畴壁穿孔,这都邑给畴壁迁徙造成阻力,导致磁导率降低,矫顽力上升.(2)的理论根据是晶粒足够大,使得晶界削减,畴壁迁徙变得加倍轻易.(3)的理论根据是再结晶织构具有偏向性,在该偏向的磁导率会明显增大.(4)的理论根据是在沿轴向的磁场中迟缓冷却时,磁畴将在室温磁化时沿应伸长(在正磁致伸缩情形下)的偏向预先伸长,如许经由磁场中退火的样品,其磁致伸缩将不妨害磁化,样品的磁化将变得加倍轻易,从而在该偏向会有高的磁导率.铁磁性物资中的互相感化能有哪些?各有什么特色?个中哪种能量最大?铁磁性物资中的互相感化能有:磁晶各向异机能.磁弹机能.交流感化能.退磁能.磁晶各向异机能是指沿不同晶轴偏向的能量差.其特色是在易磁化轴上,磁晶各向异机能最小.物体在磁化时要伸长(或压缩),假如受到限制,不能伸长(或缩短),则在物体内部产生压应力(或拉应力),物体内部将产生的磁弹机能.其特色是物体内部缺点.杂质等都可能增长其磁弹机能.交流感化能是指近邻原子间静电互相感化能,其特色是各向同性,比其它各项磁自由能大102~104数目级.它使强磁性物资相邻原子磁矩有序分列,即自觉磁化.而其它各项磁自由能退磁能是指退磁场与铁磁体的互相感化能.其特色是退磁能与材料的退磁因子N,磁化强度M的平方成正比.N值.M2越大,退磁能越大.总的来说,磁晶各向异机能.磁弹机能.退磁能不改变其自觉磁化的本质,而仅改变其磁畴构造.个中,交流感化能的能量最大.物资抗磁性产生的本源是什么?为什么任何物资在磁场中都产生抗磁性?理论研讨证实, 抗磁性起源于电子轨道活动, 故可以说任何物资在外磁场感化下均应有抗磁性效应.但只有原子的电子壳层完全填满了电子的物资, 抗磁性才能表现出来, 不然抗磁性就被别的磁性掩饰了.无外H的时刻:电子壳层已填满的原子总磁矩为0.有外H感化时:即使总磁矩为0的原子,也会产生磁矩.不管循轨活动的偏向是绕H轴向顺时针照样逆时针,电子的循轨活动在外H感化下都邑产生抗磁矩,即产生的附加磁矩老是与外H偏向相反,这就是物资产生抗磁性的原因.物资顺磁性产生的本源是什么?物资的顺磁性是若何产生的?物资顺磁性产生的本源是:原子(离子)的固有磁矩.无外H的时刻:因为热活动的影响,固有磁矩的取向为无序的,宏不雅上无磁性.外H感化下:固有磁矩与H感化,有较高的静磁能,为降低静磁能,固有磁矩改变与H的夹角,趋于排向外H偏向,表现为正向磁化.在常平和H不是很高的情形下,M与H成正比,磁化要战胜热活动的干扰,磁矩难以有序分列,故顺磁化进行十分艰苦,磁化率较小.。
材料物理思考题(参考答案)5.26.21.31

材料物理思考题1、表面张力的定义。
答:在两相(特别是气-液)界面上,由于分子引力不均衡而产生指向液体方向并与表面相切的力称为表面张力。
2、简述影响聚合物表面张力的因素,举例说明减少聚合物表面张力的方法。
答:(1)温度的影响。
温度升高,表面张力下降。
(2)化学结构。
表面张力大小主要取决于聚合物分子中的链节单元结构。
通常,非极性聚合物较极性聚合物的表面张力值低。
(3)分子量及其分布。
聚合物中分子量小的部分会使其表面张力减小,尤其使它们有浓集于聚合物表面的趋势,从而引起表面张力下降。
(4)高分子物态转变的影响。
当聚合物从玻璃态转变为橡胶态时表面张力呈现连续性变化,结晶-熔融转变过程中表面张力呈不连续性变化。
随表面结晶度的提高,表面张力也不断增大。
(5)在共聚物中,表面能低的共聚组分具有吸附于表面的倾向。
(6)共混。
共混物的表面张力随其相容性的减小而增加。
(7)添加剂。
低表面能添加剂具有降低聚合物表面张力的作用。
举例:可以通过适当升高温度减少聚合物表面张力;将聚合物熔体控制在不同成核活性表面冷却,控制表面结晶度较低可得到较低表面张力的聚合物。
3、解释聚合物表面组成、形态与内部不同的原因。
答:固体表面上的原子或分子与液体一样,受力也是不均匀的,而且不像液体表面分子可以移动,通常它们是定位的。
固体表面是不均匀的,而同种晶体由于制备、加工不同,会具有不同的表面性质。
正由于固体表面原子受力不对称和表面结构不均匀性,它可以吸附气体或液体分子,使表面自由能下降,导致不同的部位吸附和催化的活性不同,聚合物表面组成、形态与内部不同4、两相共混体系分散相粒子的粒径主要是由什么因素决定的。
答:(1)聚合物两相体系的熔体密度(特别是粘度比值)以及熔体弹性;(2)聚合物两相体系的界面能或表面张力;(3)聚合物两相体系的组分含量配比以及物料的初始状态;(4)流动场的形式(剪切流动,拉伸流动)和强度(如剪切速率);(5)共混时间(具体的共混时间的共混物料在混合设备各个区段的停留时间);5、什么是粉体活性。
材料物理习题和思考题

材料物理习题和思考题材料物理习题和思考题第⼀章材料的电⼦理论1、重要名词:⾃由电⼦近似波函数的归⼀化条件波恩-卡曼边界条件允许波长 K 空间状态密度费⽶能电⼦的费⽶-狄拉克统计分布布洛赫定理近⾃由电⼦近似能带允带禁带紧束缚近似布拉格定律布⾥渊区等能⾯费⽶⾯费⽶球电⼦密度泛函2、说明⾃由电⼦近似的基本假设。
在该假设下,⾃由电⼦在⼀维⾦属晶体中如何分布?电⼦的波长、能量各如何分布?3、何谓K 空间? K 空间中的(2,2,2)和(1,1,3)两点那个代表的能级能量⾼?4、何谓状态密度?状态密度与电⼦能量是何种关系?5、⽤公式1k exp 1F +??=T E-E f(E)解释左图的⾃由电⼦在0K 和T K时的能量分布,并说明T 改变时该能量分布如何变化。
6、说明的物理意义,并简要说明为什么在讨论左图的电⼦能量分布时不考虑和的区别?F E 0F E F E 7、近⾃由电⼦假设和⾃由电⼦假设中电⼦所处的势场有何区别?前者的主要假设是什么?8、画出⾃由电⼦近似和近⾃由电⼦近似下的E-K 曲线,并说明他们的区别,解释能带的概念。
9、从左图说明能带产⽣的原因。
10、什么是布⾥渊区?给出⼀维K 空间前三个布⾥渊区的范围,注意其特点。
将⼀维布⾥渊区的特点推⼴到⼆维、三维的情形,他们的第⼀、第⼆、第n 布⾥渊区有何种关系?11、解释左下图的⼆维晶体布⾥渊区的等能线,并说明能隙和能量交叠出现的原因。
12、画图说明⾃由电⼦近似和近⾃由电⼦近似下的状态密度的异同。
13、画图说明导体、半导体、绝缘体能带结构的异同。
14、简要说明⽤现代电⼦理论进⾏合⾦设计的主要思想。
15、简要说明电⼦密度泛函⽅法的主要思想。
第⼆章材料的晶态结构与缺陷1、重要名词:晶体,⾮晶态,准晶体,点阵(晶格),晶胞,点阵常数(晶格常数,晶格参数),晶系,布拉菲点阵,晶向指数,晶⾯指数,⾯⼼⽴⽅,体⼼⽴⽅,密排六⽅,同素异构现象,合⾦,固溶体,间隙式固溶体,置换式固溶体,中间相,正常价化合物,电⼦化合物,间隙相和间隙化合物,拓扑密堆相,超结构(超点阵,有序固溶体),径向分布函数,位置⽮径分布函数,陶瓷,特种陶瓷,硅氧四⾯体,岛状结构,组群状结构,链状结构,层状结构,架状结构,低维材料,吸附,物理吸附,化学吸附,解吸,凝结,临界晶核,稳定晶核,多晶体,外延⽣长,同质外延,异质外延,错配度,晶体缺陷,化学缺陷,点阵缺陷,点缺陷,线缺陷,⾯缺陷,空位和间隙原⼦,空位形成能,辐照损伤,位错,柏⽒⽮量,刃型位错,螺型位错,混合型位错,晶界,⼩⾓度晶界,⼤⾓度晶界,过冷液体模型,⼩岛模型,重合位置点阵模型,重合位置密度,孪晶,孪晶界,共格界⾯,⾮共格界⾯,外表⾯,清洁表⾯,实际表⾯,表⾯弛豫,表⾯重构,相界,2、晶体为何有各向异性?3、在晶胞中画出下列晶⾯和晶向:[111],[110], [111], [011], [120];(111), (110), (225), (101), (210)4、在图上标出下列晶向和晶⾯的指数5、计算⾯⼼⽴⽅和体⼼⽴⽅结构的致密度,画出其任意原⼦的配位原⼦,⽐较两种结构的区别。
上海大学材料结构性能与应用思考题

材料物理结构与性能思考题1.画图说明:“1+1>2”复合效应和“0+0>0”的复合效应?答:1+1>2这个效应意味着两种不同常规物质的组成/复合可导致其复合材料性能的显著增强,远远大于原常规物质的性能。
其性能得到了数量级上的提高,使材料“旧貌换新颜”。
0+0>0指两种不同常规物质的组合/复合可导致全新的、原常规物质所不具有的性能,使材料的某种性能“无中生有”。
产生“1+1>2”复合效应的途径合理选择组成物质及设计组成方式;利用组成物质之间的相互作用(如界面);纳米尺度的结构组成。
如金属的弥散强化、陶瓷的弥散增韧产生“0+0>0”复合效应的途径利用耦合作用;纳米尺度结构组成;周期结构组成;这些机制可能单独起作用、或并存。
如通过耦合作用产生巨磁电效应。
2.举例说明原子的结合几种方式?答:原子的结合方式主要有以下几种:离子结合(离子键);共价结合(共价键);分子结合(范德瓦耳斯结合);金属结合(金属键)。
(此外还有一种称为氢键的,其性质结业化学键和范德瓦耳斯力之间。
)离子结合:例如Na和Cl反应,Na的3s轨道电子跑到Cl的3p轨道上,使两元素的最外层轨道都成为填满状态。
由于Na失去一个电子形成Na+具有氖的电子结构,Cl得到一个电子形成Cl-,具有氩的电子结构,Na+和Cl-因带有异性电荷而互相吸引,这种结合方式即称为离子结合,键合类型称为离子键。
共价结合:例如,两个氢原子共享它们之间的两个电子,形成氢分子;两个氯原子共享它们之间的两个电子,形成氯分子。
分子结合:大部分有机化合物的晶体及CO2、H2、O2等在低温下形成的晶体都是分子晶体,金属结合:元素周期表中I 、II、III族元素的原子如Cu、Na等在满壳层外有一个或几个价电子,当大量的原子相互接近并聚集为固体时,其中大部分或全部原子会丢失价电子,并为全体所共有,这些公有化的电子叫做自由电子,它们在正离子之间自由运动,形成所谓电子云,正离子和电子云之间的库仑作用力使全部离子结合起来,同时又为Pauli斥力所平衡,这种结合即为金属结合,键合类型称为金属键。
材物性能思考题

热容C: 在没有相变和化学反应的条件下,材料温度升高1K时所吸收的热量1、Cp与Cv哪个大,为什么?对于固体材料,低温时有CP ≈CV,高温时二者差别就大了。
定压加热时,物体除升温外,还会对外做功,所以温度每提高1K需要吸收更多的能量,即CP > CV。
2、晶格热容的爱因斯坦模型采用了什么简化假设?该模型的成功与不足之处及其原因?假设:晶体中所有原子都以相同的角频率w E振动且各个振动相互独立成功:T→0时CV→0,这与实验一致。
不足:在T→0时该式按指数快速下降,实验结果却缓慢得多。
原因:爱因斯坦模型把具有频率差别的振动过于简化地认为具有相同的角频率 wE,而忽略了低温时低频振动对总能量的贡献。
3、晶格热容的德拜模型采用了什么简化假设?该模型的成功与不足之处及其原因?假设:晶体是各向同性的连续介质,晶格振动具有从0至ωmax的频率分布成功:低温时CV与T3成正比,这与绝缘材料的实验结果相符不足:一般温度下,电子热容比离子振动的热容小得多,所以只考虑后者就足够了。
但在温度很高和很低的情况下,自由电子对热容的贡献不可忽视。
德拜模型下德拜温度与T和材料特性无关,实际上德拜模型如需要在任何温度下与实际吻合,要求德拜温度是温度的函数,而且与材料性质相关,由德拜模型确立的频率分布函数与实际的频率分布函数存在较大的差异4、在极低温度和极高温下,金属材料的热容和半导体或者绝缘体材料的热容有区别吗?原因是什么?金属材料:在温度很高和很低的情况下,自由电子和离子振动对热容的贡献都要考虑。
无机非金属材料(与Debye热容理论相符): 低温时C V∝T3,高温时C V ≈ 25 J/ K·mol ,无机材料的热容与材料的结构关系不大。
5、什么是一级相变和二级相变,它们分别对热容有什么影响?一级相变:相变在某一温度点上完成,除体积突变外,还同时吸收和放出潜热的相变。
金属的三态转变、同素异构转变、合金的共晶和包晶转变及固态的共析转变等都是一级相变。
材料物理性能的第一章思考题20110925

《材料物理性能》思考题第一章热学性能1.1 概述1、材料的热学性能包括、、和等。
2、什么是格波?3、若三维晶体由N个晶胞组成,每个晶胞中含有S个原子,则晶体中格波数为个,格波支数为个。
4、受热晶体的温度升高,实质是晶体中热激发出的声子的增加。
5、举例说明某一材料热学性能的具体应用。
1.2 热容1、什么是比热容和摩尔热容(区分:定压摩尔热容和定容摩尔热容)?3、固体热容的经验定律和经典理论只适用于高温,对低温不适用!4、由德拜模型可知,温度很低时,固体的定容摩尔热容与温度的三次方成正比(德拜T3定律)。
5、金属热容由热容和热容两部分组成。
6、自由电子对热容的贡献在极高温和极低温度下不可忽视,在常温时与晶格振动热容相比微不足道!7、一级相变对热容的影响特征是什么?8、影响无机材料热容的因素有哪些?9、对于隔热材料,需使用低热容(如轻质多孔)隔热砖,便于炉体迅速升温,同时降低热量损耗。
10、什么是热分析法?DTA、DSA和TG分别是哪三种热分析方法的简称?举例说明热分析方法的应用。
1.3 热膨胀1、什么是线或体膨胀系数?2、固体材料的热膨胀本质,归结为点阵结构中随温度升高而增大。
3、材料的热膨胀来自原子的非简谐振动。
4、材料热膨胀的物理本质可用曲线或曲线来解释。
5、熔点较高的金属具有较低的膨胀系数。
6、结构对称性较低的单晶体,其膨胀系数具有各向异性,不同的晶向有不同的线膨胀系数。
一般来说,弹性模量高的方向将有较小的膨胀系数,反之亦然。
(如石墨:平行于C轴方向的热膨胀系数大于垂直于C轴方向的热膨胀系数。
)7、举例说明一级相变对材料膨胀性能的影响。
8、钢的不同组织比容从大到小的顺序为:马氏体、渗碳体、铁素体、珠光体、奥氏体。
9、通常陶瓷制品表面釉层与坯体热膨胀系数的大小关系如何?为什么?1.4 热传导1、什么是热导率?2、固体材料热传导主要有、和三种微观机制。
3、对于声子热导而言,热阻来源于声子扩散过程中的各种(如声子的碰撞、点缺陷的散射、晶界的散射和位错的散射等)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料物理性能思考题
第一章:材料电学性能
1如何评价材料的导电能力?如何界定超导、导体、半导体和绝缘体材料?
2 经典导电理论的主要内容是什么?它如何解释欧姆定律?它有哪些局限性?
3 自由电子近似下的量子导电理论如何看待自由电子的能量和运动行为?
4 根据自由电子近似下的量子导电理论解释:准连续能级、能级的简并状态、
简并度、能态密度、k空间、等幅平面波和能级密度函数。
5 自由电子近似下的等能面为什么是球面?倒易空间的倒易节点数与不含自旋
的能态数是何关系?为什么自由电子的波矢量是一个倒易矢量?
6 自由电子在允许能级的分布遵循何种分布规律?何为费米面和费米能级?何
为有效电子?价电子与有效电子有何关系?如何根据价电子浓度确定原子的费米半径?
7 自由电子的平均能量与温度有何种关系?温度如何影响费米能级?根据自由
电子近似下的量子导电理论,试分析温度如何影响材料的导电性。
8 自由电子近似下的量子导电理论与经典导电理论在欧姆定律的微观解释方面
有何异同点?
9 何为能带理论?它与近自由电子近似和紧束缚近似下的量子导电理论有何关
系?
10 孤立原子相互靠近时,为什么会发生能级分裂和形成能带?禁带的形成规律
是什么?何为材料的能带结构?
11 在布里渊区的界面附近,费米面和能级密度函数有何变化规律?哪些条件下
会发生禁带重叠或禁带消失现象?试分析禁带的产生原因。
12 在能带理论中,自由电子的能量和运动行为与自由电子近似下有何不同?
13 自由电子的能态或能量与其运动速度和加速度有何关系?何为电子的有效质
量?其物理本质是什么?
14 试分析、阐述导体、半导体(本征、掺杂)和绝缘体的能带结构特点。
15 能带论对欧姆定律的微观解释与自由电子近似下的量子导电理论有何异同
点?
16 解释原胞、基矢、基元和布里渊区的含义
17 试指出影响材料导电性的内外因素和影响规律,并分析其原因。
18 材料电阻的测试方法由哪几种?各有何特点?
19 简述用电阻法测绘固溶度曲线的原理和方法。
第二章:材料热学性能
1 简述材料热容的定义,为什么说材料的等容热容Cv的物理本质是材料内能随
温度的变化率时常需附加无相变、无化学反应和无非体积功的条件?Cv和Cp 的本质差别是什么?对实际材料进行热分析时,若有相变发生,为什么其Cp 中还能反映相变的热效应?
2 微观上如何认识材料内能的构成?
3 简述杜隆—珀替经典热容理论模型和结果,评价其局限性。
4 解释何为晶格热振动、格波和色散关系?何为简谐近似和非简谐近似?如何
界定连续介质和非连续介质?色散关系式的个数如何确定?色散与非色散介质中格波的相速度和群速度有何差异?
5 解释何为晶格振动模式?格波的波矢数和模式数如何确定?为什么晶体中有
3PN种振动模式(或格波)?
6 对晶格热振动进行正则坐标变换的意义是什么?根据量子力学,线性谐振子
的能量表达式是什么?
7 何为声子?对一个线性谐振子,声子的种类、声子的数量及其数量的增减
各代表什么物理意义?为什么声子数量具有统计平均值?它与温度有何关系
8 解释何为格波模式密度或模式密度函数?简述模式密度函数的求取方法。
9简述与晶格热振动有关的等容热容的求解方法,并分别说明爱因斯坦理论和德拜理论的近似方法和效果特点,你对两种理论的结果有何评价?
10 自由电子对晶体等容热容有何贡献?该热容随温度如何变化?
11实际材料的等压热容通常由哪些部分组成?又受到哪些因素的影响?有什么影响规律?
12一级相变、二级相变如何界定?为什么一级相变、二级相变在相变温度点其热容曲线会出现差异?
13 解释差热分析(DTA)、差示扫描量热分析(DSC);画出45﹟钢由室温加热到
Ac3+30~50℃,保温后再空冷到室温全过程的(DTA)曲线,分析该曲线的形成原因,标出各特征温度点,并说明其发生的相变。
14何谓材料的热膨胀?其物理本质是什么?为什么热膨胀系数能反映原子结合力的大小?为什么简谐振动近似无法说明热膨胀的物理本质?
15 哪些因素能影响材料的热膨胀特性?如何影响?为什么一级相变、二级相变
在相变温度点其热膨胀曲线会出现差异?
16 试画出亚共析、共析、过共析碳钢由室温到奥氏体化温度缓慢加热和冷却过
程的普通和示差光学膨胀曲线,分析曲线的形成原因,标出各特征温度点,并说明其发生的相变和组织转变。
17 简述由热膨胀分析方法测绘过冷奥氏体等温转变曲线的原理和方法,并说明
为什么由膨胀曲线能获得组织转变量曲线?对不完全转变又如何处理?
18 解释温度场、温度梯度、热通量、导热系数、热阻、导温系数。
19材料导热的物理本质是什么?有哪几种导热机制?微观上它们的导热系数有何不同?影响导热的因素有哪些?
第三章:材料的磁性
1复习磁场、磁场强度、磁化强度、磁感应强度(磁通量密度)、磁化率、磁导率等概念及它们的关系。
2简述环电流与磁矩的关系、电子的循轨磁矩与其角动量(动量矩)的关系、电子的自旋磁矩与其自旋角动量的关系;说明主量子数、轨道角量子数、轨道磁量子数(空间量子数)、自旋量子数、自旋磁量子数及其取值范围。
3 孤立原子的总磁矩与其核外电子的循轨磁矩和自旋磁矩是什么关系?
4 解释什么是抗磁性、顺磁性和铁磁性物质。
5 简述物质的顺磁性和抗磁性是如何产生的?它们都受到哪些因素的影响?
6 简述铁磁质磁化曲线和磁滞回线的特点,解释剩余磁感应强度和矫顽力;何
谓磁位能,它与哪些因素有关?如何降低体系的磁位能?
7 解释磁各向异性、易磁化方向和难磁化方向,简述什么是磁各向异性能和磁
化功?它们有何关系?如何降低体系的磁各向异性能?
8 解释磁致伸缩、磁致伸缩系数和磁弹性能。
如何降低体系的磁弹性能?
9 简述形状各向异性、退磁场强度、退磁因子、退磁能和它们的关系?如何降
低体系的退磁能?
10 简述Wiss铁磁性假说的主要内容,说明物质自发磁化形成铁磁质的条件;
为什么交换积分常数A能决定原子磁矩的磁有序结构?原子间距为什么能影响交换积分常数A?居里温度Tc以上,铁磁质为什么转变为顺磁质?
11何谓磁畴?简述铁磁质磁畴结构特点,并指出磁畴结构和磁畴壁结构的决定因素;磁畴壁的本质是什么?有几种类型?
12 何谓铁磁质的技术磁化?其磁化过程中磁畴结构的变化规律是什么?
13 磁畴壁迁移的阻力有哪些?为什么它们能影响磁畴壁迁移?
14 何为动态磁特性?磁场频率和场强幅值对动态下磁滞回线的形状有何种影
响规律?复数磁导率的实部和虚部各有什么物理含义?
15 材料磁性的影响因素有哪些?影响规律是什么?
16 对多相合金,其饱和磁化强度Ms与各组成相的Msi和体积分数Vi有何关系?
该关系有何应用?如何用磁性分析法分析淬火钢中残余奥氏体的相对量?
第五章:材料的弹性与内耗
1何谓材料的弹性?弹性模量的物理意义是什么?哪些因素影响材料的弹性模量?材料的静态弹性模量和动态弹性模量有何差异?
2 何谓理想弹性体?实际弹性体在弹性范围内存在哪些非弹性现象?什么是材料的内耗现象?解释动滞后和静滞后。
3什么是粘、滞弹性的静态响应特性?解释恒应力下的应变弛豫,恒应变下应力弛豫,未弛豫模量u E ,充分弛豫模量R E ,动态模量E ,恒应力下的应变弛豫时间στ和恒应变下应力弛豫时间ετ。
4什么是粘、滞弹性的动态响应特性?图示说明总应变ε中哪部分是与应力同位相的弹性应变1ε'?哪部分是滞后应变ε''中与应力同位相的分量1ε''?哪部
分是滞后应变ε''中滞后应力/2π位相的分量2
ε''?这些应变或应变分量与复模量、动态模量、未弛豫模量、充分弛豫模量、模量亏损和内耗有什么关系?复模量的实部和虚部各有何含义?
5为什么对粘、滞弹性材料应变相对于应力的滞后角能代表其内耗?为什么u R
E E σεττ=等式成立?
6试证明对滞弹性(弛豫型)内耗,其内耗与应变振幅的大小无关、 (ωτ)=1时内耗有最大值,并分析其原因。
7对于由原子扩散(或热激活过程)引起的滞弹性(弛豫型)内耗,其弛豫时间与温度有何关系?该关系为什么能给内耗测试带来方便?何谓内耗弛豫谱?利用内耗试验测定扩散激活焓的原理是什么?
8简述内耗的分类方法,分别指出滞弹性(弛豫型)内耗、阻尼共振型内耗、粘弹性内耗、静滞后型内耗的特征。
并分别举出相应的内耗实例、描述其微观机制。
9 以Snock内耗峰为例,说明什么是应力感生有序。
10 简述内耗有哪些量度和测试方法?说明扭摆仪是如何测定材料内耗的?。