人教版九年级上册第1--2单元期中阶段复习:知识点+同步测试(无答案)
最新人教版九年级数学初三上册期中考试卷第一学期数学期中试卷及答案

九年级数学第一学期期中考试附参考答案一、选择题(本题有10小题,每小题4分,共40分,请选出各题中唯一的正确选项,不选、多选、错选,均不得分) 1.抛物线3212-=x y 的顶点坐标是( ) A .(21,-3) B .(-3,0) C .(0,-3) D .(0,3) 2.在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为( ) A .116B .18C .14D .123.如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( )A .6B .5C .4D .34.半径为2cm 的⊙O 中有长为的弦AB ,则弦AB 所对的圆周角度数为 ( )A .600B .900C . 600或1200D .450或9005.已知⊙O 的半径为5厘米,A 为线段OP 的中点,当OP=6厘米时,点A 与⊙O 的位置关系是( ) A .点A 在⊙O 内 B .点A 在⊙O 上 C6.如图,已知AB 是△ABC 外接圆的直径,∠A =35°,则∠B 的度数是() A .35°B .45°C .55°D . 65°7.若扇形的半径为6,圆心角为120°,则此扇形的弧长是( ) A .3π B .4π C .5π D .6π8.设A (﹣2,1y ),B (1,2y ),C (2,3y )是抛物线2(1)3y x =-++上的三点, 则123,,y y y 的大小关系为( )A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>9.已知二次函数2y ax bx c =++的图象如图,其对称轴1x =-,给出下列结果①24b ac >;(第6题)(第3题) AB(第10题)NM②0abc >;③20a b +=;④15c a >-,则正确的结论个数是( ) A . 1 B .2 C .3 D .410.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN=30°,点B 为劣弧AN 的中点.点P 是直径MN 上一动点,则PA+PB 的最小值为( ) A . B . 1 C .2 D .2二、填空题(本题有6小题,每小题5分,共30分)11.抛物线2243y x x =-++的开口向_____,顶点坐标是________ .12.有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车,则两人同坐2号车的概率为 . 13.将抛物线3)3(22+-=x y 向右平移2个单位后,再向下平移5个单位,所得抛物线的顶点坐标为_________ .14.在半径为5cm 的圆内有两条互相平行的弦,一条弦长为8cm ,另一条弦长为6cm ,则两弦之间的距离为 _________ cm .15.参加一次同学聚会,每两人都握一次手,所有人共握了45次,若设共有x 人参加同学聚会。
2022学年九年级化学人教版上册第二单元课题1--3同步能力测试题无答案

《2.1空气》一.选择题(共10小题)1.早期化学家为了认识空气的本质,将一些物质放在密闭容器中进行实验,结果发现:每次都有约 51的空气不知去向。
当时化学家把这51的空气称为“有用空气”,这种有用空气指( )A.氮气B.氧气C.二氧化碳D.稀有气体2.空气的成分按体积计算大约为21%的是( )A .氮气B .氧气C .二氧化碳D .稀有气体3. 下列物质属于纯净物的是A. 啤酒B. 食醋C. 鸡汤D. 蔗糖4.下列关于空气的说法中,错误的是( )A .空气中含有氮气、氧气等多种气体B .空气是一种十分重要的天然资源C .若大量有害物质进入空气中,仅靠大自然的自净能力,大气还能保持洁净D .按体积分数计,空气中约含氮气78%、氧气21%5.推动污染减排、建设环境友好型社会是全社会共同的责任。
下列物质中,属于大气污染物,必须减少排放的是( )A .一氧化碳B .二氧化碳C .氮气D .水蒸气6. 在治理城市空气污染中所采取的措施不正确的是( )A .焚烧落叶B .增加绿地面积C .减少用煤作燃料D .汽车改用清洁燃料7.下列物质与空气混合,接触到明火,有发生爆炸危险的是( )①氢气 ②汽油蒸气 ③面粉尘 ④棉尘 ⑤天然气A.仅①B.①②⑤C.①②③⑤D.①②③④⑤8. 如图是用红磷燃烧法测定空气里氧气含量的装置图,有关此实验的结论与分析错误的是( )A.此实验证明:氧气约占空气体积的1/5B.此实验证明:反应后集气瓶内剩余的气体,既不易溶于水,也不支持燃烧C.该实验中的红磷还可以用硫来代替D.若该实验没有达到预期目的,可能的原因是装置气密性不好9.用如图所示装置来测定空气中氧气的含量。
对该实验认识不正确的()A.红磷的量不足会影响实验结论B.装置不漏气是实验成功的重要因素之一C.将红磷改为碳也能得到正确的实验结论D.打开止水夹,集气瓶内气体压强的减少会导致水面的上升10.下列关于空气中各组成成分的说法正确的是()A.稀有气体没有任何使用价值 B. O2能支持燃烧,可以做燃料C. CO2是导致酸雨的主要原因D. N2可作为生成氮肥的原料二.填空题(共6小题)11.二百多年前,法国化学家拉瓦锡通过实验得出了空气是由________和_______组成的,其中_______约占空气总体积的1/5,_________约占空气总体积的4/5。
部编人教版历史九年级上册单元测试卷 (1-21课)综合测试卷(word 无答案)

部编人教版历史九年级上册单元测试卷(1-21课)测试卷一、选择题,将正确的答案填写在表格里。
(40分)1、“水是生命之源。
”孕育古代埃及文明的河流是()A.黄河、长江B.尼罗河C.赞比西河D.多瑙河2、两河流域的苏美尔人很早就发明了文字,他们发明了()A、象形文字B、楔形文字C、印章文字D、甲骨文3、16世纪拥有一支强大的海军舰队,横行于地中海和大西洋,自称“无敌舰队”的国家是( )A. 葡萄牙B. 西班牙C. 英国D. 荷兰4.希腊小的城邦公民甚至不过几百人,最大的城邦斯巴达,领土也只有8400平方千米。
由此看来古希腊城邦的突出特点是()A.君主专制B.互相攻伐C.“小国寡民”D.商品经济发达5、它颁布于公元前450年左右,刻写在青铜板上,使量刑定罪有了文字依据,“它”指()A.《汉谟拉比法典》B.《十二铜表法》C.陶片放逐法D.种姓制度6、这是一部再现古希腊社会图景的不朽世界文学名作,也是了解早期希腊社会的主要文献。
它是()A.《汉谟拉比法典》B.《十二铜表法》C.《荷马史诗》D.儒略历7、标志着马克思主义诞生的诞生的是()A.《罗马法典》B.《十二铜表法》C.《共产党宣言》发表D.《资本论》出版8、最能体现庄园主权威的“庄园法庭”是庄园的统治机构,主持法庭的是()A.领主B.管家C.领主或管家D.教士9、12世纪,被认为是欧洲中世纪教育“最美好的花朵”的是() A.城市的兴起B.庄园的出现C.大学的兴起D.行会的出现10、拜占庭文化是欧洲中古文化的明珠,是人类文化宝库的重要组成部分,它在西方文化发展史上起了承上启下、继往开来的作用。
主要表现在()①保护古典希腊罗马文化遗产免遭灭亡②市民文化丰富③吸收了东方文明成果④君士坦丁堡的陷落A.①②B.③④C.①③D.②④11、7世纪中期,日本孝德天皇颁布改新诏书,进行改革,史称“大化改新”。
这次改革仿效的是()A.希腊共和制度B.中国明清制度C.唐朝典章制度D.罗马元首制度12、按时间先后顺序排列穆罕默德在宗教和政治活动中的大事()①基本统一阿拉伯半岛②阿拉伯国家的雏形诞生③出走麦地那④开始在麦加传播伊斯兰教A.①②③④B.④①②③C.④③②①D.①④③②13、下列不属于手工工场特点的是()A.出现了雇佣劳动,工场主是生产的组织者和管理者B.工人多分工合作C.与手工作坊相比生产规模大、产量高D.反映了封建等级关系14、莎士比亚被喻为“人类文学奥林匹斯山上的宙斯”,2016年是他逝逝世400周年,世界各地都举行戏剧演出等活动,隆重纪念这位文化巨人。
人教版九年级上册数学课堂作业同步期中复习:一元二次方程应用题(四)

人教版九年级上册数学课堂作业同步期中复习:一元二次方程应用题(四)31.从5月份开始,水蜜桃和夏橙两种水果开始上市,根据市场调查,水蜜桃售价为20元/千克,夏橙售价为15元/千克.(1)某水果商城抓住商机,开始销售这两种水果.若第一周水蜜桃的平均销量比夏橙的平均销量多100千克,要使该水果商城第一周销售这两周水果的总销售额不低于9000元,则第一周至少销售水蜜桃多少千克?(2)若该水果商城第一周按照(1)中水蜜桃和夏橙的最低销量销售这两种水果,并决定第二周继续销售这两种水果.第二周水蜜桃售价降低了,销量比第一周增加了2a%,夏橙的售价保持不变,销量比第一周增加了a%.结果两种水果第二周的总销售额比第一周增加了,求a的值.32.巴蜀中学在厦天到来之际,很多学生需要更换夏季校服,欲购买校服T恤.男生的T恤每件价格50元,女生的T恤每件价格45元,第一批共购买600件.(1)第一批购买的校服的总费用不超过28000元,求女生T恤最少购买多少件?(2)箅二批购买校服,男女生购买校服的件数比为3:2,价格保持第一批的价格不变;第三批购买男生的价格在第一批购买的价格上每件减少了元,女生的价格比第一批购买的价格上每件增加了元,男生T恤的数量比第二批增加了m%,女生T恤的数量比第二批减少了m%,第二批与第三批购买校服的总费用相同,求m的值.33.手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷•某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.(1)一月份该公司投入市场的自行车至少有多少辆?(2)二月份的损坏率为20%•进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为,三月底可使用的自行车达到7752辆,求a的值.34.中秋节前夕,某公司的李会计受公司委派去超市购买若干盒美心月饼,超市给出了该种月饼不同购买数量的价格优惠,如图,折线ABCD表示购买这种月饼每盒的价格y(元)与盒数x(盒)之间的函数关系.(1)当购买这种月饼盒数不超过10盒时,一盒月饼的价格为 元;(2)求出当10<x<25时,y与x之间的函数关系式;(3)当时李会计支付了3600元购买这种月饼,那么李会计买了多少盒这种月饼?35.“谁言寸草心,报得三春晖”,每年5月的第二个星期日为母亲节,某礼品商城经营A、B两种母亲节礼盒,礼盒A售价为每份200元,礼盒B售价为每份150元.(1)已知礼盒A的进价为120元,礼盒B的进价为100元,该礼品盒商城五月份第一周准备购进两种礼盒共200份,若将两种礼盒全部销售,要使总利润不低于13600元,求最多购进礼盒B多少份?(2)为了获得更多利润,根据销售情况和市场分析,该礼品商城第二周决定将礼盒A的售价下调%,礼盒B的售价保持不变,结果与(1)中获得最低利润时的销售量相比,礼盒A的销售量增加了2a%,而礼盒B的销售量增加了a%,最终第二周的销售额比第一周的销售额增加了a%,求a的值.36.4月份,重庆市果桑(俗称桑泡儿)将进入采摘期,预计持续1个月左右,届时全市25个成规模的果桑采摘园将陆续开园迎客,某区有一果园占地250亩,育有56个品种的果桑,其中台湾超长果桑因果形奇特、口感佳而大面积种植,售价30/斤,其它各个品种售价均为20元/斤(1)清明节当天,该果园一共售出500斤果桑,其中售出其它品种的果桑总重量不超过售出台湾超长果桑重量的3倍,问至少售出台湾超长果桑多少斤?(2)为了提高台湾超长果桑的知名度,商家对台湾超长果桑进行广告宣传,4月14日售出其它品种的果桑总重量是售出台湾超长果桑重量的2倍.4月15日起果园推出优惠政策,台湾超长果桑每斤降价a%,其余品种果桑价格保持不变,当日售后统计台湾超长果桑销售数量在前一日的基础之上增加了2a%,其余果桑销售数量在前一日基础之上减少了a%,若当日总销售额与前一日总销售额持平,求a的值.37.如图所示,学校准备在教学楼后面搭建一简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为18m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.38.某地2014年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2016年投入资金2880万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?39.长沙市市政绿化工程中有一块面积为160m2的矩形空地,已知该矩形空地的长比宽多6m.(1)请算出该矩形空地的长与宽;(2)规划要求在矩形空地的中间留有两条互相垂直且宽度均为1m的人行甬道(其中两条人行甬道分别平行于矩形空地的长和宽),其余部分种上草.如果人行甬道的造价为260元/m2,种草区域的造价为220元/m2,那么这项工程的总造价为多少元?40.2016年5月29日,中超十一轮,重庆力帆将主场迎战河北华夏幸福,重庆“铁血巴渝”球迷协会将继续组织铁杆球迷到现场为重庆力帆加油助威.“铁血巴渝”球迷协会计划购买甲、乙两种球票共500张,并且甲票的数量不少于乙票的3倍.(1)求“铁血巴渝”球迷协会至少购买多少张甲票;(2)“铁血巴渝”球迷协会从售票处得知,售票处将给予球迷协会一定的优惠,本场比赛球票以统一价格(m+20)元出售给该协会,因此协会决定购买的票数将在原计划的基础上增加(m+10)%,购票后总共用去56000元,求m的值.参考答案31.解:(1)设第一周夏橙销售量为x千克.则水蜜桃销售量为(x+100)千克,根据题意得:20(x+100)+15x≥9000,解得:x≥200,∴x+100≥300.答:第一周至少销售水蜜桃300千克.(2)根据题意得:20(1﹣a%)×300(1+2a%)+15×200(1+a%)=9000(1+ a%),令t=a%,原方程整理为5t2﹣t=0,解得:t1=,t2=0,∴a1=20,a2=0(舍去).答:a的值为20.32.解:(1)设购买女生T恤x件,则购买男生T恤(600﹣x)件,根据题意得:45x+50(600﹣x)≤28000,解得:x≥400.答:女生T恤最少购买400件.(2)设第二批购进女生T恤2y件,则购进男生T恤3y件,根据题意得:45×2y+50×3y=(45+m)×2y(1﹣m%)+(50﹣m)×3y (1+m%),整理得:m2﹣50m=0,解得:m1=0(舍去),m2=50.答:m的值为50.33.解:(1)设一月份该公司投入市场的自行车x辆,x﹣(7500﹣1200)≥10%x,解得,x≥7000,答:一月份该公司投入市场的自行车至少有7000辆;(2)由题意可得,[7500×(1﹣20%)+1200(1+4a%)](1﹣a%)=7752,化简,得a2﹣250a+4600=0,解得:a1=230,a2=20,∵a%<20%,解得,a<80,∴a=20,答:a的值是20.34.解:(1)∵当0≤x≤10时,y=240.故答案为:240.(2)当10<x<25时,设y=kx+b(其中k、b为常数且k≠0),将B(10,240)、C(25,150)代入y=kx+b中,得:,解得:,∴当10<x<25时,y=﹣6x+300.(3)∵3600÷240=15(盒),3600÷150=24(盒),∴收费标准在BC段.根据题意得:(﹣6x+300)x=3600,解得:x1=20,x2=30(不合题意,舍去).答:李会计买了20盒这种月饼.35.解:(1)设购进礼盒Bx份,则购进礼盒A(200﹣x)份,根据题意得:(200﹣120)(200﹣x)+(150﹣100)x≥13600,解得:x≤80.答:最多购进礼盒B80份.(2)根据题意得:200(1﹣a%)(200﹣80)(1+2a%)+150×80(1+a%)=[200×(200﹣80)+150×80]×(1+a%),令m=a%,则原方程整理得:5m2﹣2m=0,解得:m1=0,m2=,∴a1=0(不合题意,舍去),a2=40.答:a的值为40.36.解:(1)设售出台湾超长果桑x斤,则其它品种售出(500﹣x)斤,根据题意得:500﹣x≤3x,解得:x≥125.答:至少售出台湾超长果桑125斤.(2)设4月14日售出的台湾超长果桑y斤,则售出其它品种果桑2y斤,根据题意得:30(1﹣a%)y(1+2a%)+20×2y(1﹣a%)=30y+20×2y,令a%为m,则原方程整理得:4m2﹣m=0,解得:m1=0,m2=,∴a1=0(不合题意,舍去),a2=25.答:a的值为25.37.解:(1)设AB=x,则BC=38﹣2x;根据题意列方程的,x(38﹣2x)=180,解得x1=10,x2=9;当x=10,38﹣2x=18(米),当x=9,38﹣2x=20(米),而墙长18m,不合题意舍去,答:若围成的面积为180m2,自行车车棚的长和宽分别为18米,10米;(2)根据题意列方程的,x(38﹣2x)=200,整理得出:x2﹣19x+100=0;△=b2﹣4ac=361﹣400=﹣39<0,故此方程没有实数根,答:因此如果墙长18m,满足条件的花园面积不能达到200m2.38.解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意得:1280(1+x)2=2880解得:x1=,x2=﹣(不合题意,应舍去),答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意得:1000×8×400+(a﹣1000)×5×400≥5000000解得:a≥1900答:今年该地至少有1900户享受到优先搬迁租房奖励.39.解:(1)设该矩形空地的长为x m,则宽为(x﹣6)m,由题意可得:x(x﹣6)=160.化简得:x2﹣6x﹣160=0,解得x1=16,x2=﹣10(不合题意,舍去)当x=16时,x﹣6=16﹣6=10(m).答:该矩形空地的长为16 m,宽为10 m;(2)由题意可得:(16﹣1)(10﹣1)=135(m2),160﹣135=25(m2),135×220+25×260=29700+6500=36200(元),答:这项工程的总造价为36200元.40.解:(1)设:购买甲票x张,则购买乙票(500﹣x)张.由条件得:x≥3(500﹣x)∴x≥375,故:“铁血巴渝”球迷协会至少购买375张甲票.(2)由条件得:500[1+(m+10)%](m+20)=56000∴m2+130m﹣9000=0∴m1=50,m2=﹣180<0(舍)故:m的值为50.。
(人教版)初中数学九年级上册 期中测试试卷01及答案

期中测试一、选择题(12小题,每小题3分,共36分)1.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()AB C D2.方程(3)(2)0x x +-=的根是( )A .13x =-,22x =B .13x =,22x =C .13x =,22x =-D .13x =-,22x =-3.若某等腰三角形的底边长和腰长是方程2680x x -+=的两实数根,则这个三角形的周长为( )A .8B .1C .8或10D .不能确定4.将二次函数223y x x =-+化为2()y x h k =-+的形式,结果为( )A .2(1)4y x =++B .2(1)4y x =-+C .2(1)2y x =++D .2(1)2y x =-+5.如图所示,四边形ABCD 是正方形,ADE △绕点A 旋转90°后到达ABF △的位置,连接EF ,则AEF △的形状最确切的是()A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形6.某商品原价200元,连续两次降价%a 后售价为148元,以下所列方程正确的是( )A .2200(1%)148a +=B .2200(12%)148a --C .()22%001148a +=D .2200(1%)148a -=7.如图所示,已知抛物线2y x bx c =++的对称轴为2x =,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为()A .(2,3)B .(3,2)C .(3,3)D .(4,3)8.抛物线2245y x x =---经过平移得到22y x =-,平移方法是( )A .向左平移1个单位长度,再向下平移3个单位长度B .向左平移1个单位长度,再向上平移3个单位长度C .向右平移1个单位长度,再向下平移3个单位长度D .向右平移1个单位长度,再向上平移3个单位长度9.若关于x 的方程260x x m -+=有两个同号不相等的实数根,则m 的取值范围是( )A .9m <B .0m >C .09m <<D .09m <≤10.同学们都曾玩过万花筒,它是由三块等宽等长的玻璃片围成的,下图是看到的万花筒的一个图案形均是全等的等边三角形,其中菱形AEFC 可以看成是把菱形ABCD 以点A 为旋转中心()A .顺时针旋转60°得到的B .顺时针旋转120°得到的C .逆时针旋转60°得到的D .逆时针旋转120°得到的11.二次函数2(0)y ax bx c a =++¹与一次函数y ax c =+在同一平面直角坐标系内的大致图象是()A B C D12.抛物线277y kx x =--和x 轴有交点,则k 的取值范围是()A .74k -…B .74k -…,且0k ¹C .74k ->D .74k ->,且0k ¹二、填空题(6小题,每小题3分,共18分)13.设一元二次方程2830x x -+=的两个实数根分别为1x 和2x ,则12x x +=__________.14.已知m 是方程220x x --=的一个根,则代数式2m m -=__________.15.若抛物线2y ax bx c =++的顶点是A(2,1),且经过点B(1,0),则抛物线的解析式为__________.16.若关于x 的一元二次方程260x x n -+=的一个解为11x =,则另一个解2x =__________.17.如图所示,在等边ABC △中,6AB =,D 是BC 上一点,且3BC BD =,ABD △绕点A 旋转后得到ACE △,则CE 的长度为__________.18.如图所示,把ABC △绕点C 顺时针旋转35°,得到''A B C △,''A B 交AC 于点D ,若'90A DC Ð=°,则A Ð=__________.三、解答题(8小题,共66分)19.(9分)解下列方程.(1)24120x x --=;(2)24(2)36x -=;(3)2270x x +-=.20.(6分)已知二次函数25y ax x c =-+的图象如图所示。
【人教版】数学九年级上册《期中测试卷》含答案

(2)列出 与 的几组对应值如下表:
…
1
…
…
1.3
2.2
2.7
3.0
2.8
25
1.5
0.9
…
(注:补全表格,保留1位小数点)
(3)如图,请在平面直角坐标系中描出以补全后表格中各对对应值为坐标的点,画出该函数图象;
A.x=1,y=2B.x=﹣2,y=1C.x=2,y=1D.x=﹣3,y=1
【答案】C
【解析】
【分析】
将各项中的x与y代入程序计算,即可得到结果.
21.在6.26国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高禁毒意识,举办了”关爱生命,拒绝毒品”的知识竞赛.某校初一、初二年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分折,成绩如下:
初一:
68
88
100
100
79
94
89
85
100
88
100
90
98
97
77
94
96
100
C.既不是轴对称图形又不是中心对称图形,不符合题意;
D.是轴对称图形,而不是中心对称图形,不符合题意
故选:A
【点睛】本题考查了轴对称图形和中心对称图形的定义,理解轴对称图形和中心对称图形的定义,并熟练应用是解题的关键.
2.计算 的结果是()
A. B. C. D.
【答案】C
【解析】
【分析】
“积的乘方,先把每一个因式分别乘方,再把所得的幂相乘”根据积的乘方的性质进行计算即可的解.
2024人教版九年级英语上册期中by的用法专题复习练习题
2024人教版九年级英语上册期中by的用法专题复习练习题语法精讲1)在此结构中,by是介词,意为“通过,使用”2)常用来回答how引导的问句。
---How will you catch up with others in your class? ---By studying harder.(一)易混辨析:1. by的用法:以..方式、方法,表示传达、传递的方式或媒介+doingI improve my English by reading a lot.2. through +抽象n. ,表示方式,方法,“从,凭借,通过”,强调经历了某个过程,具有较强的中介性。
(through表示通...方式时,可与by 互换,但through 后面常+n.)e.g. He got the job through a friend.He made progress through efforts.他通过努力取得进步。
(经历过程)hear sth. through sb.通过某人听说某事(中介性)look through a telescope用望远镜看(目光从一端进,从另一端穿出)3.in +语言/材料/颜色/衣着/声调in+语言in English 用英语speak in a soft voice /in a loud voice 轻声地/大声地讲in red 穿红色的衣服4.with 的用法:表示借助某种具体的手段,工具或身体部位等。
1 ) with +冠词/限定词+工具(cn.) We like to write with a pen/my pen.2 )with+cn复We can listen to music with ears.5.on 的用法:on +the+电器/媒介/网络on the radio/on the Internet(二)by的其他用法1. by+地点,表示位置,在...旁边e.g. I’m sitting by the pool and drinking orange juice.2. by+交通工具,表示交通出行方式,乘,坐...(交通工具) by bus/bike/train3. by+时间,表示在...之前,不迟于...,截止到...e.g. Mom told him to come back home by 10:00.4. by+ doing, 通过某种方式by writing a letter5. by+付款方式,用...付款,We can pay it by Wechat.我们可用用微信付款6. by+百分比,以...的幅度increase by 10% 增长了10%7.动词+by, 表示经过,路过walk/pass by走过、经过8.被动语态+by+动作的执行者被...怎么样9.by表示由...所做The music by Mozart is famous all over the world.10.by表示方法,手段,翻译为”根据,凭借,以...” Don’t judge a book by its cover.(三)by的固定搭配by the way顺便说一下by accident/chance 偶然地by mistake错误地by the end of截止到...时间by oneself独自地,亲自地by hand =hand-made手工地word by word逐字地one by one一个接着一个step by step逐步地bit by bit=little by little 一点点地by the time到...为止drop by顺便拜访by all means千方百计by no means绝不是by turns轮流,依次by nature 天生地by sea乘船/ by the sea在海边by heart牢记,熟记基础训练一、单项选择1.—________ do you learn English words?—________ making word cards.A.How, To B.How, By C.What, For D.What, By2.—Helen, is your new skirt made _______ cotton?—Yes, it is. And it was made _______ hand. My mother made it for me.A.from; in B.of; by C.from; at D.of; at3.—What else should I pay attention to ________ energetic?—I think you can get energy ________ enough sleep.A.to become; by B.to become; throughC.becoming; by D.becoming; through4.The radio was invented ________ Guglielmo Marconi ________ 1895.A.with;in B.by;at C.from;on D.by;in5.________ the money, he helped a lot of homeless people build houses.A.Spend B.In C.With D.Use6.The stone is used _________ a table _________ us.A.as; by B.by; as C.as; as7.Next week I will go to Mount Emei ________ plane. But my parents would like to go there ________ a train.A.on; by B.by; on C.by; in D.in; by8.Roy usually goes to school ________ bus, but today he goes to school ________ his father’s car.A.by; by B.by; on C.on; in D.by; in9.I want to send Mary a card. She can________ it in a few days________ post.A.receive; for B.receives; with C.receive; by D.receives; to10.—You could call him ________ .—I don’t want to talk about it ________ the phone.A.up; in B.up; on C.on; on D.up; by11.He climbed up the ladder ________ the wall and went into the classroom ________ the open window.A.through; against B.against; through C.along; by D.by; across 12.—Do you know Huawei Mate 60 pro?—Yes, it’s very nice! We are proud ________ it because it’s made ________ Chinese.A.in; in B.of; of C.of; by13.—There are so many books on the shelf. Which one do you like best?—The Old Man and the Sea ________ Hemingway.A.wrote by B.written by C.written14.The telephone is ________ the window.A.with B.in C.by D.to15.—________ does your father go to work?—He goes to work ________ his car.A.How; by B.What; on C.How; in D.What; drive二、完成句子16.你可以通过多听英文歌曲来提高你的英语成绩。
人教版九年级数学上册中考专题复习题含答案全套
人教版九年级数学上册中考专题复习题1.类比归纳专题:配方法的应用2.类比归纳专题:一元二次方程的解法3.易错易混专题:一元二次方程中的易错问题4.考点综合专题:一元二次方程与其他知识的综合5.解题技巧专题:抛物线中与系数a,b,c有关的问题6.易错易混专题:二次函数的最值或函数值的范围7.难点探究专题:抛物线与几何图形的综合(选做)8.抛物线中的压轴题9.易错专题:抛物线的变换10.解题技巧专题:巧用旋转进行计算11.旋转变化中的压轴题12.类比归纳专题:圆中利用转化思想求角度13.类比归纳专题:切线证明的常用方法14.解题技巧专题:圆中辅助线的作法15.解题技巧专题:圆中求阴影部分的面积16.考点综合专题:圆与其他知识的综合17.圆中的最值问题18.抛物线与圆的综合19.易错专题:概率与放回、不放回问题类比归纳专题:配方法的应用——体会利用配方法解决特定问题◆类型一 配方法解方程1.一元二次方程x 2-2x -1=0的解是( )A .x 1=x 2=1B .x 1=1+2,x 2=-1- 2C .x 1=1+2,x 2=1- 2D .x 1=-1+2,x 2=-1- 22.用配方法解下列方程时,配方有错误的是( )A .x 2-2x -99=0化为(x -1)2=100B .x 2+8x +9=0化为(x +4)2=25C .2t 2-7t -4=0化为⎝⎛⎭⎫t -742=8116 D .3x 2-4x -2=0化为⎝⎛⎭⎫x -232=1093.利用配方法解下列方程:(1)(2016·淄博中考)x 2+4x -1=0;(2)(x +4)(x +2)=2;(3)4x 2-8x -1=0;(4)3x 2+4x -1=0.◆类型二 配方法求最值或证明 4.代数式x 2-4x +5的最小值是( ) A .-1 B .1 C .2 D .55.下列关于多项式-2x 2+8x +5的说法正确的是( )A .有最大值13B .有最小值-3C .有最大值37D .有最小值1 6.(2016-2017·夏津县月考)求证:代数式3x 2-6x +9的值恒为正数.7.若M =10a 2+2b 2-7a +6,N =a 2+2b 2+5a +1,试说明无论a ,b 为何值,总有M >N .◆类型三 完全平方式中的配方 8.如果多项式x 2-2mx +1是完全平方式,则m 的值为( )A .-1B .1C .±1D .±29.若方程25x 2-(k -1)x +1=0的左边可以写成一个完全平方式,则k 的值为( )A .-9或11B .-7或8C .-8或9D .-6或7◆类型四 利用配方构成非负数求值 10.已知m 2+n 2+2m -6n +10=0,则m +n 的值为( )A .3B .-1C .2D .-211.已知x 2+y 2-4x +6y +13=0,求(x +y )2016的值.答案:类比归纳专题:一元二次方程的解法——学会选择最优的解法◆类型一 一元二次方程的一般解法方法点拨: 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;当方程二次项系数为1,且一次项系数为偶数时,可用配方法;若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;如果方程不能用直接开平方法和因式分解法求解,则用公式法.1.用合适的方法解下列方程:(1)⎝⎛⎭⎫x -522-14=0;(2)x 2-6x +7=0;(3)x 2-22x +18=0;(4)3x (2x +1)=4x +2.◆*类型二 一元二次方程的特殊解法 一、十字相乘法方法点拨:例如:解方程:x 2+3x -4=0.第1种拆法:4x -x =3x (正确), 第2种拆法:2x -2x =0(错误), 所以x 2+3x -4=(x +4)(x -1)=0,即x +4=0或x -1=0,所以x 1=-4,x 2=1. 2.解一元二次方程x 2+2x -3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程____________.3.用十字相乘法解下列一元二次方程: (1)x 2-5x -6=0; (2)x 2+9x -36=0.二、换元法方法点拨:在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.4.若实数a ,b 满足(4a +4b )(4a +4b -2)-8=0,则a +b =_______.5.解方程:(x 2+5x +1)(x 2+5x +7)=7.1.解:(1)移项,得⎝⎛⎭⎫x -522=14, 两边开平方,得x -52=±14, 即x -52=12或x -52=-12,∴x 1=3,x 2=2;(2)移项,得x 2-6x =-7,配方,得x 2-6x +9=-7+9,即(x -3)2=2, 两边开平方,得x -3=±2, ∴x 1=3+2,x 2=3-2;(3)原方程可化为8x 2-42x +1=0. ∵a =8,b =-42,c =1,∴b 2-4ac =(-42)2-4×8×1=0, ∴x =-(-42)±02×8=24,∴x 1=x 2=24; |(4)原方程可变形为(2x +1)(3x -2) =0,∴2x +1=0或3x -2=0, ∴x 1=-12,x 2=23.2. x -1=0或x +3=0.3.解:(1)原方程可变形为(x -6)(x +1) =0,∴x -6=0或x +1=0, ∴x 1=6,x 2=-1;(2)原方程可变形为(x +12)(x -3) =0,∴x +12=0或x -3=0, ∴x 1=-12,x 2=3. 4.-12或15.解:设x 2+5x +1=t ,则原方程化为t (t +6)=7,∴t 2+6t -7=0,解得t =1或-7.当t =1时,x 2+5x +1=1,x 2+5x =0, x (x +5)=0,∴x =0或x +5=0,∴x 1=0,x 2=-5; 当t =-7时,x 2+5x +1=-7,x 2+5x +8=0,∴b 2-4ac =52-4×1×8<0,此时方程 无实数根.∴原方程的解为x 1=0,x 2=-5.易错易混专题:一元二次方程中的易错问题◆类型一 利用方程或其解的定义求待定系数时,忽略“a ≠0”1.(2016-2017·江都区期中)若关于x的方程(a +3)x |a |-1-3x +2=0是一元二次方程,则a 的值为______.【易错1】2.关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0,则a 的值是( )A .-1B .1C .1或-1D .-1或0 3.已知关于x 的一元二次方程(m -1)x 2+5x +m 2-3m +2=0的常数项为0.(1)求m 的值; (2)求方程的解.◆类型二 利用判别式求字母取值范围时,忽略“a ≠0”及“a 中的a ≥0”4.(2016-2017·抚州期中)若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有解,那么m 的取值范围是( )A .m >34B .m ≥34C .m >34且m ≠2D .m ≥34且m ≠25.已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k的取值范围是________.6.若m 是非负整数,且关于x 的方程(m -1)x 2-2x +1=0有两个实数根,求m 的值及其对应方程的根.◆类型三 利用根与系数关系求值时,忽略“Δ≥0”7.(2016·朝阳中考)关于x 的一元二次方程x 2+kx +k +1=0的两根分别为x 1,x 2,且x 21+x 22=1,则k 的值为_______.【易错2】 8.已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m 的值.【易错2】◆类型四 与三角形结合时忘记取舍 9.已知三角形两边长分别为2和9,第三边的长为一元二次方程x 2-14x +48=0的根,则这个三角形的周长为( )A .11B .17C .17或19D .1910.在等腰△ABC 中,三边分别为a ,b ,c ,其中a =5,若关于x 的方程x 2+(b +2)x +6-b =0有两个相等的实数根,求△ABC 的周长.考点综合专题:一元二次方程与其他知识的综合◆类型一一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是________.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为_________.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x+k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与一次函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x -m=0无实数根,则一次函数y=(m+1)x +m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是______.◆类型三一元二次方程与二次根式的综合12.(达州中考)方程(m-2)x2-3-mx +14=0有两个实数根,则m的取值范围为()A.m>52B.m≤52且m≠2C.m≥3 D.m≤3且m≠213.(包头中考)已知关于x的一元二次方程x2+k-1x-1=0有两个不相等的实数根,则k的取值范围是______.答案:12.B 13.解题技巧专题:抛物线中与系数a,b,c有关的问题◆类型一由某一函数的图象确定其他函数图象的位置1.二次函数y=-x2+ax-b的图象如图所示,则一次函数y=ax+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限第1题图第2题图2.已知一次函数y=-kx+k的图象如图所示,则二次函数y=-kx2-2x+k的图象大致是()3.已知函数y=(x-a)(x-b)(其中a>b)的图象如图所示,则函数y=ax+b的图象可能正确的是()第3题图第4题图4.如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c的图象可能是()◆类型二由抛物线的位置确定代数式的符号或未知数的值5.(2016·新疆中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是【方法10】()A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小第5题图第7题图6.(2016·黄石中考)以x为自变量的二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,则实数b的取值范围是【方法10】()A.b≥54B.b≥1或b≤-1C.b≥2 D.1≤b≤27.(2016·孝感中考)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.其中正确结论的个数是()A.1个B.2个C.3个D.4个8.(2016·天水中考)如图,二次函数y =ax2+bx+c(a≠0)的图象与x轴交于A,B 两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②b2-4ac4a>0;③ac-b+1=0;④OA·OB =-ca .其中正确结论的序号是____________.答案:易错易混专题:二次函数的最值或函数值的范围——类比各形式,突破给定范围求最值◆类型一 没有限定自变量的范围求最值 1.函数y =-(x +1)2+5的最大值为_______. 2.已知二次函数y =3x 2-12x +13,则函数值y 的最小值是【方法11】( )A .3B .2C .1D .-13.已知函数y =x(2-3x),当x 为何值时,函数有最大值还是最小值?并求出最值.◆类型二 限定自变量的取值范围求最值4.(2016-2017·双台子区校级月考)函数y =x 2+2x -3(-2≤x ≤2)的最大值和最小值分别是( )A .4和-3B .-3和-4C .5和-4D .-1和-45.二次函数y =-12x 2+32x +2的图象如图所示,当-1≤x ≤0时,该函数的最大值是【方法11】( )A .3.125B .4C .2D .06.已知0≤x ≤32,则函数y =x 2+x +1( ) A .有最小值34,但无最大值B .有最小值34,有最大值1C .有最小值1,有最大值194D .无最小值,也无最大值◆类型三 限定自变量的取值范围求函数值的范围7.从y =2x 2-3的图象上可以看出,当-1≤x ≤2时,y 的取值范围是( )A .-1≤y ≤5B .-5≤y ≤5C .-3≤y ≤5D .-2≤y ≤18.已知二次函数y =-x 2+2x +3,当x ≥2时,y 的取值范围是( )A .y ≥3B .y ≤3C .y >3D .y <39.二次函数y =x 2-x +m(m 为常数)的图象如图所示,当x =a 时,y <0;那么当x =a -1时,函数值CA .y <0B .0<y <mC .y >mD .y =m◆类型四 已知函数的最值,求自变量的取值范围或待定系数的值10.当二次函数y =x 2+4x +9取最小值时,x 的值为( )A .-2B .1C .2D .911.已知二次函数y =ax 2+4x +a -1的最小值为2,则a 的值为( )A.3 B.-1C.4 D.4或-112.已知y=-x(x+3-a)+1是关于x 的二次函数,当x的取值范围在1≤x≤5时,y在x=1时取得最大值,则实数a的取值范围是()A.a=9 B.a=5 C.a≤9 D.a≤513.在△ABC中,∠A,∠B所对的边分别为a,b,∠C=70°.若二次函数y=(a+b)x2+(a+b)x-(a-b)的最小值为-a2,则∠A=_______度.14.★已知函数y=-4x2+4ax-4a-a2,若函数在0≤x≤1上的最大值是-5,求a的值.答案:难点探究专题:抛物线与几何图形的综合(选做)——代几结合,突破面积及点的存在性问题◆类型一二次函数与三角形的综合一、全等三角形的存在性问题1.如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;(2)若抛物线与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由.二、线段(或周长)的最值问题及等腰三角形的存在性问题2.(2016·凉山州中考)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P 的坐标;(3)点M也是直线l上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M的坐标.◆类型二二次函数与平行四边形的综合3.如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,A点在B点左侧.若点E在x轴上,点P 在抛物线上,且以A,C,E,P为顶点的四边形是平行四边形,则符合条件的点P有()A.1个B.2个C.3个D.4个4.如图,抛物线y=12x2+x-32与x轴相交于A,B两点,顶点为P.(1)求点A,B的坐标;(2)在抛物线上是否存在点E,使△ABP 的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A,B,P,F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标.◆类型三 二次函数与矩形、菱形、正方形的综合5.如图,在平面直角坐标系中,点A 在抛物线y =x 2-2x +2上运动.过点A 作AC ⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为________.第5题图 第6题图6.如图,抛物线y =ax 2-x -32与x 轴正半轴交于点A(3,0).以OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF.则a =,点E 的坐标是_________________.7. (2016·新疆中考)如图,对称轴为直线x =72的抛物线经过点A(6,0)和B(0,-4). (1)求抛物线的解析式及顶点坐标; (2)设点E(x ,y)是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;(3)当(2)中的平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形.8.(2016·百色中考)正方形OABC 的边长为4,对角线相交于点P ,抛物线l 经过O ,P ,A 三点,点E 是正方形内的抛物线l 上的动点.(1)建立适当的平面直角坐标系,①直接写出O ,P ,A 三点的坐标; ②求抛物线l 的解析式;(2)求△OAE 与△OCE 面积之和的最大值.答案:拔高专题抛物线中的压轴题一、基本模型构建常见模型思考在边长为1的正方形网格中有A, B, C三点,画出以A,B,C为其三个顶点的平行四边形ABCD。
人教版九年级数学上册期中试卷(Word版 含解析)
人教版九年级数学上册期中试卷(Word 版 含解析)一、初三数学 一元二次方程易错题压轴题(难)1.我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答: (1)每千克茶叶应降价多少元?(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?【答案】(1)每千克茶叶应降价30元或80元;(2)该店应按原售价的8折出售. 【解析】 【分析】(1)设每千克茶叶应降价x 元,利用销售量×每件利润=41600元列出方程求解即可; (2)为了让利于顾客因此应下降价80元,求出此时的销售单价即可确定几折. 【详解】(1)设每千克茶叶应降价x 元.根据题意,得: (400﹣x ﹣240)(200+10x×40)=41600. 化简,得:x 2﹣10x +240=0. 解得:x 1=30,x 2=80.答:每千克茶叶应降价30元或80元.(2)由(1)可知每千克茶叶可降价30元或80元.因为要尽可能让利于顾客,所以每千克茶叶某应降价80元.此时,售价为:400﹣80=320(元),320100%80%400⨯=. 答:该店应按原售价的8折出售. 【点睛】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.2.计算题(1)先化简,再求值:21x x -÷(1+211x -),其中x=2017.(2)已知方程x 2﹣2x+m ﹣3=0有两个相等的实数根,求m 的值. 【答案】(1)2018;(2)m=4 【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21xx-÷(1+211x-)=22211 11 x xx x-+÷--=()() 2211 1x xxx x+-⋅-=x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x2﹣2x+m﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.3.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息见下表:(1)每台A型空气净化器和B型空气净化器的销售利润分别是多少?(2)该公司计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该公司销售完这100台空气净化器后的总利润最大,请你设计相应的进货方案;(3)已知A型空气净化器的净化能力为300 m3/小时,B型空气净化器的净化能力为200 m3/小时.某长方体室内活动场地的总面积为200 m2,室内墙高3 m.该场地负责人计划购买5台空气净化器每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,至少要购买A型空气净化器多少台?【答案】(1)每台A型空气净化器的利润为200元,每台B型空气净化器的利润为100元;(2)为使该公司销售完这100台空气净化器后的总利润最大,应购进A型空气净化器33台,购进B型空气净化器67台;(3)至少要购买A型空气净化器2台.【解析】解:(1)设每台A型空气净化器的利润为x元,每台B型空气净化器的利润为y元,根据题意得:5102000,200, {{ 1052500.100. x y xx y y+==+==解得答:每台A型空气净化器的利润为200元,每台B型空气净化器的利润为100元. (2)设购买A型空气净化器m台,则购买B型空气净化器(100﹣m)台,∵B型空气净化器的进货量不少于A型空气净化器的2倍,∴100-m≥2m,解得:m≤100. 3设销售完这100台空气净化器后的总利润为W元.根据题意,得W=200m+100(100﹣m)=100m+10000.∵要使W最大,m需最大,∴当m=33时,总利润最大,最大利润为W:100×33+10000=13300(元).此时100﹣m=67.答:为使该公司销售完这100台空气净化器后的总利润最大,应购进A型空气净化器33台,购进B型空气净化器67台.(3)设应购买A型空气净化器a台,则购买B型空气净化器(5﹣a)台,根据题意得:12[300a+200(5-a)]≥200×3.解得:a≥2.∴至少要购买A型空气净化器2台.4.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P2﹣1,2);②P(﹣32,154)【解析】试题分析:(1)将B、C的坐标代入已知的抛物线的解析式,由对称轴为1x=-即可得到抛物线的解析式;(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;②ΔOBC ΔAPD ABCP C =PDO S SS S ++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c ba++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得x=21-(舍去)或x=21--,∴点P (21--,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形 =12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P(32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.5.已知关于x 的方程230x x a ++=①的两个实数根的倒数和等于3,且关于x 的方程2(1)320k x x a -+-=②有实数根,又k 为正整数,求代数式2216k k k -+-的值.【答案】0. 【解析】 【分析】由于关于x 的方程x 2+3x +a =0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a 的方程求出a ,又由于关于x 的方程(k -1)x 2+3x -2a =0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k 为正整数,利用判别式可以求出k ,最后代入所求代数式计算即可求解. 【详解】解:设方程①的两个实数根分别为x 1、x 2则12123940x x x x a a +-⎧⎪⎨⎪-≥⎩=== , 由条件,知12121211x x x x x x ++==3, 即33a -=,且94a ≤, 故a =-1,则方程②为(k -1)x 2+3x +2=0,Ⅰ.当k -1=0时,k =1,x =23-,则22106k k k -=+-.Ⅱ.当k -1≠0时,∆=9-8(k -1)=17-6-8k ≥0,则178k ≤, 又k 是正整数,且k ≠1,则k =2,但使2216k k k -+-无意义.综上,代数式2216k k k -+-的值为0【点睛】本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程,二、初三数学 二次函数易错题压轴题(难)6.如图1,抛物线2:C y x =经过变换可得到抛物线()1111:C y a x x b =-,1C 与x 轴的正半轴交于点1A ,且其对称轴分别交抛物线C 、1C 于点1B 、1D ,此时四边形111D OB A 恰为正方形;按上述类似方法,如图2,抛物线()1111:C y a x x b =-经过变换可得到抛物线()2222:C y a x x b =-,2C 与x 轴的正半轴交于点2A ,且对称轴分别交抛物线1C 、2C 于点2B 、2D ,此时四边形222OB A D 也恰为正方形;按上述类似方法,如图3,可得到抛物线()3333:C y a x x b =-与正方形333OB A D ,请探究以下问题: (1)填空:1a = ,1b = ; (2)求出2C 与3C 的解析式;(3)按上述类似方法,可得到抛物线():n n n n C y a x x b =-与正方形n n n OB A D (1n ≥). ①请用含n 的代数式直接表示出n C 的解析式;②当x 取任意不为0的实数时,试比较2018y 与2019y 的函数值的大小关系,并说明理由.【答案】(1)11a =,12b =;(2)22132y x x =-,23126y x x =-;(3)①()2212123n n y x x n -=-≥⨯,②20182019y y >. 【解析】 【分析】(1)求与x 轴交点A 1坐标,根据正方形对角线性质表示出B 1的坐标,代入对应的解析式即可求出对应的b 1的值,写出D 1的坐标,代入y 1的解析式中可求得a 1的值; (2)求与x 轴交点A 2坐标,根据正方形对角线性质表示出B 2的坐标,代入对应的解析式即可求出对应的b 2的值,写出D 2的坐标,代入y 2的解析式中可求得a 2的值,写出抛物线C 2的解析式;再利用相同的方法求抛物线C 3的解析式;(3)①根据图形变换后二次项系数不变得出a n =a 1=1,由B 1坐标(1,1)、B 2坐标(3,3)、B 3坐标(7,7)得B n 坐标(2n -1,2n -1),则b n =2(2n -1)=2n +1-2(n ≥1),写出抛物线C n 解析式.②根据规律得到抛物线C 2015和抛物线C 2016的解析式,用求差法比较出y 2015与y 2016的函数值的大小. 【详解】解:(1)y 1=0时,a 1x (x -b 1)=0, x 1=0,x 2=b 1, ∴A 1(b 1,0),由正方形OB 1A 1D 1得:OA 1=B 1D 1=b 1, ∴B 1(12b ,12b ),D 1(12b ,12b-),∵B 1在抛物线c 上,则12b =(12b )2, 解得:b 1=0(不符合题意),b 1=2, ∴D 1(1,-1),把D 1(1,-1)代入y 1=a 1x (x -b 1)中得:-1=-a 1, ∴a 1=1, 故答案为1,2;(2)当20y =时,有()220a x x b -=, 解得2x b =或0x =,()22,0A b ∴. 由正方形222OB A D ,得2222B D OA b ==,222,22b b B ⎛⎫∴ ⎪⎝⎭,222,22b b D ⎛⎫- ⎪⎝⎭. 2B 在抛物线1C 上,2222222b b b ⎛⎫∴=- ⎪⎝⎭. 解得24b =或20b =(不合舍去),()22,2D ∴-2D 在抛物线2C 上,()22224a ∴-=-.解得212a =. 2C ∴的解析式是()2142y x x =-,即22122y x x =-. 同理,当30y =时,有()330a x x b -=, 解得3x b =,或0x =.()33,0A b ∴.由正方形333OB A D ,得3333B D OA b ==,333,22b b B ⎛⎫∴ ⎪⎝⎭,333,22bb D ⎛⎫- ⎪⎝⎭.3B 在抛物线2C 上,2333122222b b b⎛⎫∴=-⋅ ⎪⎝⎭. 解得312b =或30b =(不合舍去),()36,6D ∴-3D 在抛物线3C 上,()366612a ∴-=-.解得316a =. 3C ∴的解析式是()31126y x x =-,即23126y x x =-. (3)解:①n C 的解析式是()2212123n n y x x n -=-≥⨯. ②由①可得2201820161223y x x =-⨯,2201920171223y x x =-⨯. 当0x ≠时,220182019201620171110233y y x >⎛⎫-=-⎪⎝⎭, 20182019y y ∴>.【点睛】本题是二次函数与方程、正方形的综合应用,将函数知识与方程、正方形有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用正方形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.就此题而言:①求出抛物线与x 轴交点坐标⇔把y =0代入计算,把函数问题转化为方程问题;②利用正方形对角线相等且垂直平分表示出对应B 1、B 2、B 3、B n 的坐标;③根据规律之间得到解析式是关键.7.如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF 折叠,使点A 落在CD 边上点E 处,如图②;(Ⅱ)在第一次折叠的基础上,过点C 再次折叠,使得点B 落在边CD 上点B′处,如图③,两次折痕交于点O ;(Ⅲ)展开纸片,分别连接OB 、OE 、OC 、FD ,如图④. (探究)(1)证明:OBC ≌OED ;(2)若AB =8,设BC 为x ,OB 2为y ,是否存在x 使得y 有最小值,若存在求出x 的值并求出y 的最小值,若不存在,请说明理由.【答案】(1)见解析;(2)x=4,16 【解析】 【分析】(1)连接EF ,根据矩形和正方形的判定与性质以及折叠的性质,运用SAS 证明OBC ≌OED 即可;(2)连接EF、BE,再证明△OBE是直角三角形,然后再根据勾股定理得到y与x的函数关系式,最后根据二次函数的性质求最值即可.【详解】(1)证明:连接EF.∵四边形ABCD是矩形,∴AD=BC,∠ABC=∠BCD=∠ADE=∠DAF=90°由折叠得∠DEF=∠DAF,AD=DE∴∠DEF=90°又∵∠ADE=∠DAF=90°,∴四边形ADEF是矩形又∵AD=DE,∴四边形ADEF是正方形∴AD=EF=DE,∠FDE=45°∵AD=BC,∴BC=DE由折叠得∠BCO=∠DCO=45°∴∠BCO=∠DCO=∠FDE.∴OC=OD.在△OBC与△OED中,BC DEBCO FDEOC OD=⎧⎪∠=∠⎨⎪=⎩,,,∴△OBC≌△OED(SAS);(2)连接EF、BE.∵四边形ABCD是矩形,∴CD=AB=8.由(1)知,BC=DE∵BC=x,∴DE=x∴CE=8-x由(1)知△OBC≌△OED∴OB=OE,∠OED=∠OBC.∵∠OED +∠OEC =180°, ∴∠OBC +∠OEC =180°.在四边形OBCE 中,∠BCE =90°,∠BCE +∠OBC +∠OEC +∠BOE =360°, ∴∠BOE =90°.在Rt △OBE 中,OB 2+OE 2=BE 2.在Rt △BCE 中,BC 2+EC 2=BE 2.∴OB 2+OE 2=BC 2+CE 2. ∵OB 2=y ,∴y +y =x 2+(8-x)2. ∴y =x 2-8x +32∴当x=4时,y 有最小值是16.【点睛】本题是四边形综合题,主要考查了矩形和正方形的判定与性质、折叠的性质、全等三角形的判定、勾股定理以及运用二次函数求最值等知识点,灵活应用所学知识是解答本题的关键.8.如图,过原点的抛物线y=﹣12x 2+bx+c 与x 轴交于点A (4,0),B 为抛物线的顶点,连接OB ,点P 是线段OA 上的一个动点,过点P 作PC ⊥OB ,垂足为点C . (1)求抛物线的解析式,并确定顶点B 的坐标;(2)设点P 的横坐标为m ,将△POC 绕着点P 按顺利针方向旋转90°,得△PO′C′,当点O′和点C′分别落在抛物线上时,求相应的m 的值;(3)当(2)中的点C′落在抛物线上时,将抛物线向左或向右平移n (0<n <2)个单位,点B 、C′平移后对应的点分别记为B′、C″,是否存在n ,使得四边形OB′C″A 的周长最短?若存在,请直接写出n 的值和抛物线平移的方向,若不存在,请说明理由.【答案】(1)2122y x x =-+,点B (2,2);(2)m=2或209m =;(3)存在;n=27时,抛物线向左平移. 【解析】 【分析】(1)将点A 和点O 的坐标代入解析式,利用待定系数法即可求得二次函数的解析式,然后利用配方法可求得点B 的坐标;(2)由点A 、点B 、点C 的坐标以及旋转的性质可知△△PDC 为等腰直角三角形,从而可得到点O′坐标为:(m ,m ),点C′坐标为:(32m ,2m),然后根据点在抛物线上,列出关于m 的方程,从而可解得m 的值;(3)如图,将AC′沿C′B 平移,使得C′与B 重合,点A 落在A′处,以过点B 的直线y=2为对称轴,作A′的对称点A″,连接OA″,由线段的性质可知当B′为OA″与直线y=2的交点时,四边形OB′C″A 的周长最短,先求得点B′的坐标,根据点B 移动的方向和距离从而可得出点抛物线移动的方向和距离. 【详解】解:(1)把原点O (0,0),和点A (4,0)代入y=12-x 2+bx+c . 得040c b b c =⎧⎨-++=⎩,∴02c b =⎧⎨=⎩.∴22112(2)222y x x x =-+=--+. ∴点B 的坐标为(2,2).(2)∵点B 坐标为(2,2). ∴∠BOA=45°.∴△PDC 为等腰直角三角形. 如图,过C′作C′D ⊥O′P 于D .∵O′P=OP=m . ∴C′D=12O′P=12m . ∴点O′坐标为:(m ,m ),点C′坐标为:(32m ,2m ).当点O′在y=12-x 2+2x 上. 则−12m 2+2m =m .解得:12m =,20m =(舍去). ∴m=2. 当点C′在y=12-x 2+2x 上, 则12-×(32m )2+2×32m =12m ,解得:1209m =,20m =(舍去). ∴m=209(3)存在n=27,抛物线向左平移.当m=209时,点C′的坐标为(103,109).如图,将AC′沿C′B 平移,使得C′与B 重合,点A 落在A′处.以过点B 的直线y=2为对称轴,作A′的对称点A″,连接OA″. 当B′为OA″与直线y=2的交点时,四边形OB′C″A 的周长最短. ∵BA′∥AC′,且BA′=AC′,点A (4,0),点C′(103,109),点B (2,2). ∴点A′(83,89). ∴点A″的坐标为(83,289). 设直线OA″的解析式为y=kx ,将点A″代入得:82839k =, 解得:k=76. ∴直线OA″的解析式为y=76x . 将y=2代入得:76x=2, 解得:x=127,∴点B′得坐标为(127,2). ∴n=212277-=. ∴存在n=27,抛物线向左平移.【点睛】本题主要考查的是二次函数、旋转的性质、平移的性质、路径最短等知识点,由旋转的性质和平移的性质求得点点O′坐标为:(m ,m ),点C′坐标为:(32m ,2m)以及点B′的坐标是解题的关键.9.如图1,抛物线21:C y x b =+交y 轴于()0,1A .(1)直接写出抛物线1C 的解析式______________.(2)如图1,x 轴上两动点,M N 满足:m n X X n -==.若,B C (B 在C 左侧)为线段MN 上的两个动点,且满足:B 点和C 点关于直线:1l x =对称.过B 作BB x '⊥轴交1C 于B ',过C 作CC x '⊥轴交1C 于C ',连接B C ''.求B C ''的最大值(用含n 的代数式表示).(3)如图2,将抛物线1C 向下平移78个单位长度得到抛物线2C .2C 对称轴左侧的抛物线上有一点M ,其横坐标为m .以OM 为直径作K ,记⊙K 的最高点为Q .若Q 在直线2y x =-上,求m 的值.【答案】(1)21y x =+;(2)251|n -;(3)14m =-或12m =- 【解析】 【分析】(1)将()0,1A 带入抛物线1C 解析式,求得b 的值,即可得到抛物线1C 的解析式; (2)设(),0B q ,则()2,0C q -,求()2B C ''并进行化简,由1n q -≤<且12,qn <-得21n q -<,则当()2maxB C ''⎡⎤⎢⎥⎣⎦时,取min 2q q n ==-,带入()2B C '',即可求得()maxB C '';(3)依题意将抛物线1C 向下平移78个单位长度得到抛物线2C ,求得2C 解析式,根据解析式特点设21,8M m m ⎛⎫+ ⎪⎝⎭,得到222218OM m m ⎛⎫=++ ⎪⎝⎭,由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭,设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭,化简得到22211084k m k m ⎛⎫++-= ⎪⎝⎭,由Q 点在2y x =-上,得2Q k x m =-=-,继而得到231048m m -+=,解得14m =-或12m =-. 【详解】解:(1)将()0,1A 带入抛物线21:C y x b =+,得b=1,则21:1C y x =+,(2)设(),0B q ,则()2,0C q -, ∴()22222(2)(2)B C q q q q ''⎡⎤=--+--⎣⎦2204020q q =-+()2201q =-,∵1n q -≤<且12,q n <-21n q -<∴,∴()2maxB C ''⎡⎤⎢⎥⎣⎦时,min 2q q n ==-, 即()22220(21)20(1)B Cn n ''=--=-,∴()max1|B C n ''=-,(3)根据题意,将抛物线1C 向下平移78个单位长度得到抛物线2C ,∴221:8C y x =+, ∴21,8M m m ⎛⎫+⎪⎝⎭, ∴222218OM m m ⎛⎫=++ ⎪⎝⎭,∴由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭, 设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭, ∴222111428OM k m ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦, 化简上式得:22211084k m k m ⎛⎫++-= ⎪⎝⎭, ∵Q 点在2y x =-上,则2Q k x m =-=-, ∴k m =-为上述方程的一个解, ∴分析可知1()04k m k m ⎛⎫+-= ⎪⎝⎭, 21148m m m -=+∴,∴231048m m -+=, 解得:114m =-,212m =-(经检验114m =-,212m =-是方程231048m m -+=的解),故14m =-或12m =-. 【点睛】本题主要考查二次函数的图像及性质、图像平移的性质、及二次函数与一元二次方程的综合应用、最值求法等知识.解题关键是熟练掌握二次函数的性质,充分利用数形结合的思想.10.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值相等;当0x <时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x ≥⎧=⎨-<⎩. (1)已知点()5,10A -在一次函数5y ax =-的相关函数的图像上,求a 的值; (2)已知二次函数2142y x x =-+-. ①当点3,2B m ⎛⎫ ⎪⎝⎭在这个函数的相关函数的图像上时,求m 的值; ②当33x -≤≤时,求函数2142y x x =-+-的相关函数的最大值和最小值. (3)在平面直角坐标系中,点M 、N 的坐标分别为1,12⎛⎫-⎪⎝⎭、9,12⎛⎫⎪⎝⎭,连结MN .直接写出线段MN 与二次函数24y x x n =-++的相关函数的图像有两个公共点时n 的取值范围.【答案】(1)1;(2)①22- ;②max 432y =,min 12y =-;(3)31n -<≤-,514n <≤【解析】 【分析】(1)先求出5y ax =-的相关函数,然后代入求解,即可得到答案;(2)先求出二次函数的相关函数,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可; ②当-3≤x <0时,y=x 2-4x+12,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x 2+4x-12,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值; (3)首先确定出二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围. 【详解】解:(1)根据题意,一次函数5y ax =-的相关函数为5,(0)5,(0)ax x y ax x -≥⎧=⎨-+<⎩, ∴把点()5,10A -代入5y ax =-+,则(5)510a -⨯-+=,∴1a =;(2)根据题意,二次函数21 42y x x=-+-的相关函数为2214,(0)214,(0)2x x xyx x x⎧-+-≥⎪⎪=⎨⎪-+<⎪⎩,①当m<0时,将B(m,32)代入y=x2-4x+12得m2-4m+1322=,解得:m=2+5(舍去)或m=25-.当m≥0时,将B(m,32)代入y=-x2+4x-12得:-m2+4m-12=32,解得:m=2+2或m=22-.综上所述:m=25-或m=22+或m=22-.②当-3≤x<0时,y=x2-4x+12,抛物线的对称轴为x=2,此时y随x的增大而减小,∴当3x=-时,有最大值,即2143(3)4(3)22y=--⨯-+=,∴此时y的最大值为432.当0≤x≤3时,函数y=-x2+4x12-,抛物线的对称轴为x=2,当x=0有最小值,最小值为12-,当x=2时,有最大值,最大值y=72.综上所述,当-3≤x≤3时,函数y=-x2+4x12-的相关函数的最大值为432,最小值为12-;(3)如图1所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有1个公共点.∴当x=2时,y=1,即-4+8+n=1,解得n=-3.如图2所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2-4x-n与y轴交点纵坐标为1,∴-n=1,解得:n=-1.∴当-3<n≤-1时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=-x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2-4x-n经过点M(12,1),∴14+2-n=1,解得:n=54.∴1<n≤54时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是-3<n≤-1或1<n≤54.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=-x2+4x+n的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n的值是解题的关键.三、初三数学旋转易错题压轴题(难)11.在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.(1) 如图1,若点E,F分别落在边AB,AC上,求证:PC=PE;(2) 如图2,把图1中的△AEF绕着点A顺时针旋转,当点E落在边CA的延长线上时,探索PC与PE的数量关系,并说明理由.(3) 如图3,把图2中的△AEF绕着点A顺时针旋转,点F落在边AB上.其他条件不变,问题(2)中的结论是否发生变化?如果不变,请加以证明;如果变化,请说明理由.【答案】(1)见解析;(2)PC=PE,理由见解析;(3)成立,理由见解析【解析】【分析】(1)利用直角三角形斜边的中线等于斜边的一半,即可;(2)先判断△CBP≌△HPF,再利用直角三角形斜边的中线等于斜边的一半;(3)先判断△DAF≌△EAF,再判断△DAP≌△EAP,然后用比例式即可;【详解】解:(1)证明:如图:∵∠ACB=∠AEF=90°,∴△FCB和△BEF都为直角三角形.∵点P是BF的中点,∴CP=12BF,EP=12BF,∴PC=PE.(2)PC=PE理由如下:如图2,延长CP,EF交于点H,∵∠ACB=∠AEF=90°,∴EH//CB,∴∠CBP=∠PFH,∠H=∠BCP,∵点P是BF的中点,∴PF=PB,∴△CBP≌△HFP(AAS),∴PC=PH,∵∠AEF=90°,∴在Rt△CEH中,EP=12CH,∴PC=PE.(3)(2)中的结论,仍然成立,即PC=PE,理由如下:如图3,过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,∵∠DAF=∠EAF,∠FDA=∠FEA=90°,在△DAF和△EAF中,DAF,,,EAFFDA FEAAF AF∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAF≌△EAF(AAS),∴AD=AE,在△DAP≌△EAP中,,,,AD AEDAP EAPAP AP=⎧⎪∠=∠⎨⎪=⎩∴△DAP≌△EAP (SAS),∴PD=PF,∵FD⊥AC,BC⊥AC,PM⊥AC,∴FD//BC//PM,∴DM FPMC PB=,∵点P是BF的中点,∴DM=MC,又∵PM⊥AC,∴PC=PD,又∵PD=PE,∴PC=PE.【点睛】此题是几何变换综合题,主要考查了直角三角形斜边的中线等于斜边一半,全等三角形的性质和判定,相似三角形的性质和判定,作出辅助线是解本题的关键也是难点.12.在△ABC中,∠C=90°,AC=BC=6.(1)如图1,若将线段AB绕点B逆时针旋转90°得到线段BD,连接AD,则△ABD的面积为.(2)如图2,点P为CA延长线上一个动点,连接BP,以P为直角顶点,BP为直角边作等腰直角△BPQ,连接AQ,求证:AB⊥AQ;(3)如图3,点E,F为线段BC上两点,且∠CAF=∠EAF=∠BAE,点M是线段AF上一个动点,点N是线段AC上一个动点,是否存在点M,N,使CM+NM的值最小,若存在,求出最小值:若不存在,说明理由.【答案】(1)36;(2)详见解析;(3)存在,最小值为3.【解析】【分析】(1)根据旋转的性质得到△ABD是等腰直角三角形,求得AD=2BC=12,根据三角形的面积公式即可得到结论;(2)如图2,过Q作QH⊥CA交CA的延长线于H,根据等腰直角三角形的性质,得到PQ =PB,∠BPQ=90°,根据全等三角形的性质得到PH=BC,QH=CP,求得CP=AH,得到∠HAQ=45°,于是得到∠BAQ=180°﹣45°﹣45°=90°,即可得到结论;(3)根据已知条件得到∠CAF=∠EAF=∠BAE=15°,求得∠EAC=30°,如图3,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,则此时,CM+NM的值最小,且最小值=DN,求得AD=AC=6,根据直角三角形的性质即可得到结论.【详解】解:(1)∵将线段AB绕点B逆时针旋转90°得到线段BD,∴△ABD是等腰直角三角形,∵∠ACB=90°,∴BC⊥AD,∴AD=2BC=12,∴△ABD的面积=12AD•BC=1212×6=36,故答案为:36;(2)如图,过Q作QH⊥CA交CA的延长线于H,∴∠H=∠C=90°,∵△BPQ是等腰直角三角形,∴PQ=PB,∠BPQ=90°,∴∠HPQ+∠BPC=∠QPH+∠PQH=90°,∴∠PQH=∠BPC,∴△PQH≌△BPC(AAS),∴PH=BC,QH=CP,∵AC=BC,∴PH=AC,∴CP=AH,∴QH=AH,∴∠HAQ=45°,∵∠BAC=45°,∴∠BAQ=180°﹣45°﹣45°=90°,∴AB⊥AQ;(3)如图,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,∵∠CAF=∠EAF=∠BAE,∠BAC=45°,∴∠CAF=∠EAF=∠BAE=15°,∴∠EAC=30°,则此时,CM+NM的值最小,且最小值=DN,∵点C和点D关于AF对称,∴AD=AC=6,∵∠AND=90°,∴DN=12AD=12⨯6=3,∴CM+NM最小值为3.【点睛】本题是几何变换综合题,考查了全等三角形的判定与性质,旋转的性质,等腰直角三角形的性质,含30°角的直角三角形的性质,正确的作出作辅助线构造全等三角形是解题的关键.13.如图一,矩形ABCD中,AB=m,BC=n,将此矩形绕点B顺时针方向旋转θ(0°<θ<90°)得到矩形A1BC1D1,点A1在边CD上.(1)若m=2,n=1,求在旋转过程中,点D到点D1所经过路径的长度;(2)将矩形A1BC1D1继续绕点B顺时针方向旋转得到矩形A2BC2D2,点D2在BC的延长线上,设边A2B与CD交于点E,若161A EEC=-,求nm的值.(3)如图二,在(2)的条件下,直线AB上有一点P,BP=2,点E是直线DC上一动点,在BE左侧作矩形BEFG且始终保持BE nBG m=,设AB=33,试探究点E移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.【答案】(15;(23;(3)存在,63【解析】【分析】(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.解直角三角形,求出∠ABA1,得到旋转角即可解决问题;(2)由△BCE∽△BA2D2,推出222A DCE nCB A B m==,可得CE=2nm,由161A EEC=推出16A CEC=A126nm,推出BH=A126nm,然后由勾股定理建立方程,解方程即可解决问题;(3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;先证明△FDG ∽△FME ,得到3FG F FM FE D ==,再结合已知条件和解直角三角形求出PM 和FM 的长度,即可得到PF 的最小值.【详解】解:(1)作A 1H ⊥AB 于H ,连接BD ,BD 1,则四边形ADA 1H 是矩形.∴AD=HA 1=n=1,在Rt △A 1HB 中,∵BA 1=BA=m=2, ∴BA 1=2HA 1,∴∠ABA 1=30°,∴旋转角为30°, ∵22125+=∴D 到点D 1所经过路径的长度=30551806π⋅=; (2)∵△BCE ∽△BA 2D 2, ∴222A D CE n CB A B m==, ∴2n CE m=, ∵161EA EC =, ∴16A C EC= ∴A 126n m, ∴BH=A 12226n m n m -=, ∴42226n m n m-=⋅, ∴m 4﹣m 2n 2=6n 4,∴242416n n m m-=•, ∴3n m =(负根已舍去). (3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;由(2)可知,3BE n BG m ==, ∵四边形BEFG 是矩形, ∴3FG FE = ∵∠DFG+∠GFM=∠GFM+∠MFE=90°,∴∠DFG=∠MFE ,∵DF ⊥PF ,即∠DFM=90°,∴∠FDM+∠GDM=∠FDM+∠DFM=∠FDM+90°,∴∠FDG=∠FME ,∴△FDG ∽△FME , ∴3FG F FM FE D ==, ∵∠DFM=90°,tan 3FD FMD FM ∠==, ∴∠FDM=60°,∠FMD=30°,∴3FM DM =; 在矩形ABCD 中,有3AD AB = 3333=,则3AD =, ∵MN ⊥AB ,∴四边形ANMD 是矩形,∴MN=AD=3, ∵∠NPM=∠DMF=30°,∴PM=2MN=6,∴NP=33AB =,∴DM=AN=BP=2,∴3323FM DM ==⨯=, ∴63PF PM MF =+=+;【点睛】本题考查点的运动轨迹,旋转变换、解直角三角形、弧长公式、矩形的性质、相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于压轴题,中考常考题型.正确作出辅助线,正确确定动点的位置,注意利用数形结合的思想进行解题.14.(特例发现)如图1,在△ABC 中,AG ⊥BC 于点G ,以A 为直角顶点,分别以AB ,AC 为直角边,向△ABC 外作等腰Rt △ABE 和等腰Rt △ACF ,过点E 、F 作射线GA 的垂线,垂足分别为P 、Q .求证:EP=FQ .(延伸拓展)如图2,在△ABC 中,AG ⊥BC 于点G ,以A 为直角顶点,分别以AB ,AC 为直角边,向△ABC 外作Rt △ABE 和Rt △ACF ,射线GA 交EF 于点H .若AB=kAE ,AC=kAF ,请思考HE 与HF 之间的数量关系,并直接写出你的结论.(深入探究)如图3,在△ABC 中,G 是BC 边上任意一点,以A 为顶点,向△ABC 外作任意△ABE 和△ACF ,射线GA 交EF 于点H .若∠EAB=∠AGB ,∠FAC=∠AGC ,AB=kAE ,AC=kAF ,上一问的结论还成立吗?并证明你的结论.(应用推广)在上一问的条件下,设大小恒定的角∠IHJ 分别与△AEF 的两边AE 、AF 分别交于点M 、N ,若△ABC 为腰长等于4的等腰三角形,其中∠BAC=120°,且∠IHJ=∠AGB=θ=60°,k=2;求证:当∠IHJ 在旋转过程中,△EMH 、△HMN 和△FNH 均相似,并直接写出线段MN 的最小值(请在答题卡的备用图中补全作图).【答案】(1)证明参见解析;(2)HE=HF ;(3)成立,证明参见解析;(4)证明参见解析,MN 最小值为1.【解析】试题分析:(1)特例发现:易证△AEP ≌△BAG ,△AFQ ≌△CAG ,即可求得EP=AG ,FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.试题解析:(1)特例发现,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,∴FQ=AG,∴PE=FQ;(2)延伸拓展,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(3)深入探究,如图2,在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(4)应用推广,如图3,在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,∴∠EHM=∠FHN.∵∠AEF=∠AFE,∴△HEM∽△HFN,∴,∵EH=FH,∴,且∠MHN=∠HFN=60°,∴△MHN∽△HFN,∴△MHN∽△HFN∽△MEH,在△HMN中,∠MHN=60°,根据三角形中大边对大角,∴要MN最小,只有△HMN是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN∴MN∥EF,∵△AEF为等边三角形,∴MN为△AEF的中位线,∴MN min=EF=×2=1.考点:1.几何变换综合题;2.三角形全等及相似的判定性质.15.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:操作发现(1)某小组做了有一个角是120︒的等腰三角形DAC和等边三角形GEB纸片,=,让两个三角形如图①放置,点C和点G重合,点D,点E在AB的同侧,AC DA DC和GB在同一条直线上,点F为AB的中点,连接DF,EF,则DF和EF的数量关系与位置关系为:________;数学思考(2)在图①的基础上,将GEB绕着C点按顺时针方向旋转90︒,如图②,试判断DF和EF的数量关系和位置关系,并说明理由;类比探索(3)①将GEB绕着点C任意方向旋转,如图③或图④,请问DF和EF的数量关系和位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期中阶段第一单元重点复习一、物理变化与化学变化1、概念:物理变化——没有生成其它物质的变化。
例:石蜡熔化、水结成冰、汽油挥发化学变化——有其它物质生成的变化例:煤燃烧、铁生锈、食物腐败、呼吸2、判断变化依据:是否有其它(新)物质生成。
有则是化学变化,无则是物理变化3、相互关系:常常伴随发生,有化学变化一定有物理变化,有物理变化不一定有化学变化。
4、化学变化伴随现象:放热、吸热、发光、变色、放出气体和生成沉淀。
例题:1.下列选项中的现象主要是由化学变化引起的是( D )。
A.给一杯自来水加热,没沸腾前水中就有很多气泡逸出B.灯泡通电发光C.硫酸铜溶于水中,形成蓝色溶液D.煤油燃烧产生明亮的火焰和黑烟2.下列关于物理变化和化学变化的说法正确的是( C )。
A.化学变化过程中不一定伴随着物理变化B.物理变化过程中一定伴随着化学变化C.化学变化一定有其他物质生成D.物理变化一定没有发光、发热的现象【重要提示】1.化学变化和物理变化的联系:化学变化中一定伴随物理变化,物理变化中不一定伴随化学变化。
2.化学变化常表现为颜色改变、放出气体、生成沉淀等,还伴随能量的变化,常表现为吸热、放热、发光等,但出现类似现象的变化不一定是化学变化。
二、物理性质与化学性质物理性质:物质不需要化学变化就表现出的性质。
包括:颜色、状态、气味、熔点、沸点、密度、硬度、溶解性、挥发性、延展性、导电性、吸水性、吸附性等。
化学性质:物质在化学变化中表现出来的性质。
可燃性、氧化性、还原性、活泼性、稳定性、腐蚀性、毒性、金属活动性等。
它们的区别是:物理性质在静止状态中就能表现出来,而物质的化学性质则要在物质运动状态中才能表现出来例题:1.判断下列性质是物理性质还是化学性质。
(填序号)①酒精易挥发;②汽油可燃;③水可变成冰;④食盐有咸味;⑤空气无色无味;⑥银能导电;⑦金属钠很软;⑧常压下水的沸点为100℃;⑨铁的熔点为1535℃;⑩木头能浮于水上;⑪氧气可以支持燃烧;⑫尿素受热可分解;⑬二氧化碳能使澄清的石灰水变浑浊;⑭以粮食为原料可酿酒;⑮食物在空气中放置时间长了易变质。
物理性质: ___①____③____④_____⑤_____⑤____⑦___⑧_____⑨____⑩________。
化学性质:___②_____⑪_____⑫____⑬______⑭______⑮___________。
2.下列物质的用途中,利用其物理性质的是( A )。
A.干冰用作冷冻剂 B.硫酸用于处理碱性废液C.氧气用于气焊 D.生石灰用作干燥剂【重要提示】1.物理性质和化学性质的区别:是否需要通过化学变化才能表现出来。
2.物理性质可通过感官直接感知或仪器测量出来,如颜色、状态、气味、硬度、熔点、沸点、密度、溶解性、挥发性、导热性、导电性、延展性等;常见的化学性质有可燃性、稳定性、酸性、碱性、受热分解等。
三、运用比较法判断物质的性质和变化判断物质的性质和变化时,可运用比较法从两个角度进行:(1)概念比较法:性质是物质的固有属性,是变化的内因;变化是一个过程,是性质的具体体现。
(2)关键字判断法:物质性质的叙述中一般有“能”“易”“会”等表示具有能力的字眼。
例题:1、下列叙述中,前者属于物质发生的化学变化,后者属于物质的化学性质的是(B )。
A.铁丝在氧气中燃烧;铜在潮湿的空气中生成铜绿B.镁在空气中燃烧;食物在夏天易变质C.碱式碳酸铜受热易分解;汽油燃烧D.石灰石可以与盐酸反应生成二氧化碳气体;蜡烛在空气中燃烧生成二氧化碳和水2.以下叙述中,正确的是(B )。
A.物理变化和化学变化一定同时发生B.发生化学变化时,一定发生物理变化C.物理变化和化学变化中都可能产生新物质D.析出沉淀的变化一定是化学变化3.判断下列变化是物理变化还是化学变化。
①矿石粉碎;②火药爆炸;③轮胎爆炸;④金属生锈;⑤铁熔化;⑥水沸腾;⑦汽油挥发;⑧食物腐败;⑨电灯通电后发光发热;⑩用高粱酿酒;⑪可燃物燃烧;⑫湿衣服晾干;⑬铜抽成铜丝;⑭白糖熬成糖块;⑮泥土压成砖坯;⑯冰化成水;⑰燃放烟花爆竹。
属于物理变化的是_①___③____⑤____⑥______⑦__⑨___⑫___⑬___⑭___⑮__⑯___。
属于化学变化的是_②___④____⑧____⑩____⑪_____⑰____________________。
【重要提示】1.化学变化和物理变化的联系:化学变化中一定伴随物理变化,物理变化中不一定伴随化学变化。
2.化学变化常表现为颜色改变、放出气体、生成沉淀等,还伴随能量的变化,常表现为吸热、放热、发光等,但出现类似现象的变化不一定是化学变化。
四、几种常用仪器的介绍1、(1)试管用于__少量______试剂之间的反应容器,可直接加热。
(2)烧杯用于________或________试剂之间的反应容器。
加热时需要垫石棉网。
(3)量筒用于__量取液体______的体积,常与___滴管_______配套使用。
(4)胶头滴管、滴瓶用于吸取和滴加___少量_____液体。
(5)集气瓶用于__收集____或贮存少量气体,也可作为气体实验的反应容器,不能加热。
(6)试管夹用于夹持试管。
(7)酒精灯用于_加热____。
2、酒精灯的使用:禁止向___燃着的酒精灯____里添加酒精;禁止用酒精灯_点燃__另一盏酒精灯;用完酒精灯后,必须用_灯帽_____盖灭,不可用嘴去吹灭。
3、给试管里的液体加热时要注意:(1)试管外壁应该干燥,试管里的液体不应超过试管容积的__1/3____。
(2)用试管夹夹持试管时,应由试管__下端____套上、取下,夹在试管的__中上部______。
(3)加热时,应先使试管底部__均匀____受热,然后用酒精灯的_外焰____固定加热。
(4)试管口不要对着___有人地方_______。
(5)加热后的试管,不能__立即____接触冷水或用冷水冲洗。
4、玻璃仪器洗净的标准:仪器内壁附着的水既不_聚成水滴_,也不__成股流下__,表明仪器已洗干净。
[例1] 下列各组仪器,能在酒精灯火焰上直接加热的一组是( C )。
A.烧杯、蒸发皿 B.水槽、量筒 C.蒸发皿、试管 D.集气瓶、燃烧匙练习巩固题:一、选择题:1.下列有关仪器用途的说法中不恰当...的是( A )。
A.温度计代替玻璃棒用于搅拌B.烧杯用于较大量试剂的反应容器C.试管用于装配简易气体发生器D.胶头滴管用于吸取或滴加少量液体2.玻璃仪器洗干净的标志是( D )。
A.透明 B.内壁上有少量水珠 C.内壁上的水成股流下D.内壁上附着的水既不聚成水滴,也不成股流下3.陈超同学进行下列化学实验基本操作练习中错误..的是( C )。
A.液体的倾倒B.读取液体体积数C.熄灭酒精灯火焰D.往试管中送入固体粉末4.实验结束后,下列仪器的放置方法正确的是( D )。
A B C D5.下列实验操作中,正确的是( C )。
A B C D6、某学生用量筒量取液体,量筒摆放平稳,且学生面对刻度,他首先俯视凹液面的最低处读数为19mL,倾出一部分液体后,又仰视读数为10mL,则该同学实际倒出液体的体积为( C )A.等于9mLB.大于9mLC.小于9mLD.无法确定7、小红同学用托盘天平称量食盐时,错误的将食盐放在右盘里,砝码放在左盘里,称得食盐质量为15.5g(1g以下用游码)。
若按正确的方法称量,食盐的质量应为( C )A.15gB.15.0gC.14.5gD. 14.0g8.下列实验数据合理的是(A )①用托盘天平称取15.6g 氧化铜粉末②用100mL 量筒量取45.5mL 的稀硫酸③用普通温度计测得某液体的温度为25.62℃④用10mL 量筒量取6.6mL 的某溶液A.①④ B.②④ C.①② D.①②④9.某同学用托盘天平称量食盐时,错误地把食盐放在右托盘里,砝码放在左托盘里,称得食盐的质量为16.5 克,如果按正确的称量,食盐的质量应为(B )A. 16 克 B. 15.5 克 C. 14.5 克 D. 13.5 克10.某学生用量筒量取液体,量筒摆放平稳,他首先仰视液面读数15mL,倾倒出部分液体后,又俯视读数为5mL,则该学生实际倒出的液体体积为( B )A.10mL B.大于10mL C.小于10mL D.无法判断11.给50mL 液体加热,需要使用的仪器是下列中的(C )①试管②烧杯③试管夹④酒精灯⑤蒸发皿⑥石棉网⑦铁架台(带铁圈) ⑧坩埚钳A.①③④ B.②④⑦ C.②④⑥⑦ D.④⑤⑧12.用酒精灯给试管内液体加热时发现试管破裂,可能原因是:①用酒精灯的外焰给试管加热;②加热前没有擦干试管外壁的水;③加热时试管底部触及灯芯;④被加热的液体超过试管容积的1/3 ;⑤加热时没有不时地上下移动试管;⑥没有进行预热,直接加热试管内液体的中下部其中与之相关的是( C )A.①③⑤⑥ B.②④ C.②③⑥ D.③④⑤13.检查如图装置的气密性,当缓慢地拉动活塞时,如果装置气密性良好,可观察到(A )A.长颈漏斗下端管口有气泡冒出 B.锥形瓶内液面上升C.长颈漏斗内液面上升 D.注射器内有液体流入14.汪杰同学用量筒量取液体时,仰视读数为45 mL,倒出部分液体后,俯视读数为35 mL,则倒出液体的体积( A )A.大于10mL B.小于10mL C.等于10mL D.无法确定15.现有下列实验操作:①用量筒量取液体时,左手握量筒,右手握试剂瓶(标签向着手心),使试剂瓶口紧挨量筒口,慢慢将液体倒入量筒内;②滴瓶中的滴管用完要用水冲洗后放回滴瓶中;③实验室有一个无标签的试剂瓶,里面装有白色固体,为了弄清它是哪种物质,可取少量固体品尝味道。
其中( A )A.只有①正确 B.只有②正确 C.只有③正确 D.全部错误16、下列图示所示的装置气密性检查的操作中,表明装置漏气的是( C )二、非选择题:1、下列描述属于物理变化的是__E________,属于化学变化的是_CFG_________,属于物理性质的是___BD______,属于化学性质的是_____A_____。
(填序号)A.铜绿受热时会分解B.纯净的水是无色无味的液体C.镁带在空气中燃烧后变成了氧化镁D.氧气不易溶于水且比空气密度大E.木棒受力折断F.铁生锈G.煤着火燃烧,残余一堆灰烬2、问题:蜡烛刚熄灭时,总会有一缕白烟冒出,它的成分是什么呢?有人提出了以下假设:A.白烟是燃烧时产生的二氧化碳B.白烟是燃烧时生成的水蒸气C.白烟是石蜡蒸气凝成的石蜡固体小颗粒实验:(1)吹灭蜡烛,立即用一只蘸有澄清石灰水的烧杯罩住白烟,其目的是为了验证假设______(填序号),但是这样做并不能得出正确的结论,原因是______________________。