解答椭圆中最值问题策略

合集下载

与椭圆有关的最值问题

与椭圆有关的最值问题

角度类问题典型例题
例题2
已知椭圆C的中心在原点,焦点在x轴上,离心率为$frac{sqrt{3}}{2}$,它的一个顶点恰好是抛物线$x^2 = 8sqrt{2}y$的焦点,过点P(4,0)且不垂直于x轴的直线l与C相交于A、B两点,若直线PA与直线PB的斜率 之积为$- frac{5}{16}$,则直线l的方程为____。
距离类问题典型例题
例题1
已知椭圆$frac{x^2}{4} + frac{y^2}{3} = 1$,点P是椭圆上一点,F₁、F₂是椭圆的 两个焦点,则|PF₁|·|PF₂|的最大值为____。
例题2
过椭圆$frac{x^2}{5} + y^2 = 1$的右焦点作一条斜率为2的直线与椭圆交于A、 B两点,O为坐标原点,则弦AB的长为____。
通过解析几个与椭圆有关的最值问题的典型例题,我们掌握了这类问情况
通过本次课程的学习,我深刻理解了椭圆的标准方程和性质,掌握了在约束条件下求解最值问题的方法,对于典型例 题的解析也有了更深入的认识。
学习方法与效率
在学习过程中,我采用了课前预习、课后复习的方法,同时结合了大量的练习来巩固所学知识。这种学习方法使我能 够高效地吸收和掌握知识。
利用平面几何知识,如相似、勾股定 理等,求出最值;
03
与椭圆相关的最值问题类 型
面积类问题
1 2
椭圆内接矩形面积的最大值
给定椭圆,求其内接矩形面积的最大值。
椭圆内接三角形面积的最大值
给定椭圆,求其内接三角形面积的最大值。
3
椭圆与直线围成的图形面积
给定椭圆和直线,求它们围成的图形面积。
距离类问题
需要注意定义域的限 制。
利用一元二次函数的 性质,如顶点、对称 轴等,求出最值;

椭圆中的最值问题

椭圆中的最值问题

椭圆中的最值问题
规律总结:
圆锥曲线最值问题具有综合性强、涉及知识面广而且常含有变量的一类难题,也是教学中的一个难点。

要解决这类问题往往利用函数与方程思想、数形结合思想、转化与化归等数学思想方法,将它转化为解不等式或求函数值域,以及利用函数单调性、各种平面几何中最值的思想来解决。

知识梳理
(1) 设椭圆122
22=+b
y a x 的左右焦点分别为F 1、F 2, P(x 0,y 0)为椭圆内一点,M(x,y)为椭圆上任意一点,则︱MP ︱+︱MF 2︱的最大值为2a+︱PF 1︱,
最小值为2a –︱PF 1︱。

(2) 设椭圆122
22=+b
y a x 的左右焦点分别为F 1、F 2, P(x 0,y 0)为椭圆外一点,M(x,y)为椭圆上任意一点,则︱MP ︱+︱MF 2︱的最大值为2a+︱PF 1︱,
最小值为PF 2。

(3) 椭圆122
22=+b
y a x 上的点M(x,y)到定点A(m,0)或B(0,n)距离的最值问题,可以用两点间距离公式表示︱MA ︱或︱MB ︱,通过动点在椭圆
上消去y 或x,转化为二次函数求最值,注意自变量的取值范围。

(4) 若椭圆122
22=+b
y a x 上的点到非坐标轴上的定点的距离求最值时,可通过椭圆的参数方程,统一变量转化为三角函数求最值。

(5) 椭圆上的点到定直线l 距离的最值问题,可转化为与l 平行的直线m 与
椭圆相切的问题,利用判别式求出直线m 方程,再利用平行线间的距
离公式求出最值。

椭圆中的面积最值解析

椭圆中的面积最值解析

椭圆中的面积最值
一、解答题
1.已知椭圆Γ:22
221x y a b
+=的右焦点为()1,0,且经过点()0,1A ,设O 为原点,直线l :
y kx t =+(1t ≠±)与椭圆Γ交于两个不同点P 、Q ,(1)求椭圆Γ的方程;
(2)若AP AQ ⊥,求APQ △面积的最大值,并求此时直线l 的方程.设直线AP 方程为1y mx =+由22
122
y mx x y =+⎧⎨+=⎩,消去y 并整理得
2.已知椭圆()22:10E a b a b
+=>>0y -=过E 的上顶点A 和左焦点1F .
(1)求E 的方程;
(2)设直线l 与椭圆E 相切,又与圆22:4O x y +=交于M ,N 两点(O 为坐标原点),求OMN 面积的最大值,并求出此时直线l 的方程.
3.已知椭圆C :2
21(0)x y a b a b
+=>>过点A (2,且C (1)求C 的方程;
(2)设直线l 交C 于不同于点A 的M ,N 两点,直线AM ,AN 的倾斜角分别为α,β,若
cos 1cos α
β
=-,求AMN 面积的最大值.
84

()()1122,,,x y N x y ,易知直线l 的斜率不为2214my t y =++=得()
22222m y mty t +++()()(2222244288m t m t t =-+-=--221222
28
22
mt t y y m m -=-=++,,。

高考数学考点:椭圆的最值问题

高考数学考点:椭圆的最值问题

高考数学考点:椭圆的最值问题一、已知椭圆的方程,求线段或线段和的最值例1. 已知椭圆上的一动点P和一定点,试求线段|PA|的最小值。

剖析:如图1所示,P为椭圆上的点,则点P的坐标有一定的范畴限制,因此,求线段|PA|的最小值时要对a举行讨论。

解:设点P(x,y)是椭圆上的一点,则由两点公式可知当,即时,x取,当,即时,x取,当,即时,,点评:这里字母a是常量,但是不知道它的具体值,因此要加以讨论,许多同砚会忽视这一环境。

例2. 已知椭圆的左焦点为F,椭圆内有一个定点A(4,1),P为椭圆上的恣意一点,试求的最大值。

剖析:如图2所示,设右焦点为C,式子|PF|+|PA|涉及到了焦半径|PF|,所以可利用椭圆的定义,将转化为,然后应用三角形中双方之和大于第三边这本性质求得最大值。

解:设椭圆的右焦点为C则(当点P在线段AC的延长线上时取“=”),所以说明:由上述求解历程可知,椭圆上任一点P到椭圆内一定点A及一焦点F的隔断之和存在最大值,这个最大值就即是长轴长加上这个定点到另一焦点的隔断。

二. 利用椭圆的定义或几多性质求最值(取值范畴)例3. 已知椭圆的长轴的两端点分别是A、B,若椭圆上有一点P,使得∠APB=120°,求椭圆的离心率e的取值范畴。

剖析:要求离心率e的取值范畴,根据条件建立等式,再根据椭圆上点的坐标的范畴建立不等式求解。

解:由题设知设点,则有化简得由椭圆的几多性质知利用得,解得点评:当点P在椭圆上运动时,∠APB的巨细也随之变化,且当点P在向短轴端点靠近时,∠APB逐渐增长,当点P为椭圆短轴端点时,∠APB抵达最大。

因此,只要长轴关于短轴端点的张角大于或即是120°,椭圆上就存在一点P,使∠ABP=120°。

练一练:直线总有大众点,试求m的取值范畴。

答案:。

椭圆中的最值和取值范围问题课件

椭圆中的最值和取值范围问题课件

(三)合作探究,强化运用意识
(1)解:由题意,可设直线 AB 的方程为 x=﹣ky+n,代入椭圆方程

可得(k2+2)y2﹣2kny+n2﹣2=0, 设 A(x1,y1),B(x2,y2). 由题意,△=4k2n2﹣4(k2+2)(n2﹣2)=8(k2﹣n2+2)>0,
由韦达定理得
设线段 AB 的中点 P(x0,y0),
解:︱MP︱+︱MF2︱=︱MP︱+2a-︱MF1︱ 连接 PF1 延长 PF1 交椭圆于点 M1,延长 F1P 交椭圆于点 M2 由三角形三边关系知–︱PF1︱ ︱MP︱-︱MF1︱ ︱PF1︱ 当且仅当 M 与 M1 重合时取右等号、M 与 M2 重合时取左等号。 因为 2a=10, ︱PF1︱=2 所以(︱MP︱+︱MF2︱)max=12, (︱MP︱+︱MF2︱)min=8
(一)知识回顾,聚焦核心考点
2.椭圆的标准方程 和简单几何性质
|x|≤a,|y|≤b (±a,0),(0,±b)
|y|≤a,|x|≤b (0,±a),(±b,0)
x=0,y=0 (0,0)
(一)知识回顾,聚焦核心考点
3.弦长公式
设斜率为 k(k≠0)的直线 l 与圆锥曲线 C 的两个交点为 A(x1,y1),B(x2,y2),则
1、 椭圆中的最值问题类型较多, 距离、离心率、弦长、面积,斜率等等, 解法灵活多变, 有函数法、不等式法、定义法、几何法、三角代换 法,设而不求法,等,但总体上主要有两种角度: 一是几何角度,即利用曲线的定义、几何性质以及平面几何中的定 理、性质等进行求解; 二是代数角度,即把几何条件转化为代数表达,然后利用方程法,函
丰富学生思维活动,提升数学核心素养

椭圆中的最值问题专项

椭圆中的最值问题专项

椭圆中的最值问题专项摘要本文主要介绍椭圆中的最值问题,包括椭圆的定义、性质、最值问题以及求解方法等内容。

本文将从几何和代数两个角度出发,深入浅出地阐述椭圆中的最值问题,为读者解决相关问题提供参考。

引言椭圆是一种经典的基本图形,具有许多独特的性质和应用。

其中,椭圆中的最值问题是经常出现的问题之一,对于许多研究者而言也是一个难点。

因此,讨论椭圆中的最值问题对于理解椭圆的性质和应用具有重要意义。

椭圆的定义和性质在笛卡尔坐标系中,椭圆可以表示为$\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$。

其中,$(h,k)$表示椭圆中心的坐标,$a$和$b$分别表示椭圆的长半轴和短半轴。

椭圆的性质主要有以下几点:- 椭圆在$x$轴和$y$轴上的交点分别称为$foci$。

它们的距离为$2c$,满足$c^2=a^2-b^2$。

- 椭圆的离心率可以表示为$e=\frac{c}{a}$。

当离心率小于$1$时,椭圆为实心椭圆;当离心率等于$1$时,椭圆为抛物线;当离心率大于$1$时,椭圆为双曲线。

- 椭圆的周长可以表示为$C=4aE(e)$,其中$E$为椭圆的第二类完全椭圆积分。

- 椭圆的面积可以表示为$S=\pi ab$。

椭圆中的最值问题在椭圆中,最值问题主要包括最大值和最小值问题。

常见的有以下几种类型:- 给定椭圆方程,求解在椭圆上的最大、最小值;- 给定椭圆上一点,求解在以该点为圆心的圆内的最大、最小值;- 给定椭圆上弦的长度,求解在这条弦上的最大、最小值。

求解方法常见的求解方法包括几何方法和代数方法。

- 几何方法:可以通过椭圆的对称性等几何特点,来求解最值问题。

例如,当椭圆的离心率为$1$,也就是椭圆退化成抛物线时,最值问题可以用焦点和准线的几何意义求解。

- 代数方法:可以通过二次函数的求极值以及拉格朗日乘数法等代数方法,来求解最值问题。

例如,对于给定椭圆方程求解最值问题时,可以先对椭圆方程进行化简,再用导数法求极值。

椭圆中一个最值问题的求解方法


<1 ,有 ( 彻) = a ( 值 ) 时 0 b 定 ,此
时 定点 P在椭 圆 +y 外 ( 百 Z: 包括 该椭 圆上和椭
口 D‘ Z
圆 +y Z

l 区域 ) 外 ;
当0 < < ÷时, ) = b A 一 ) 有( 一 ae ( ,此 [1
时定点 P在椭 圆 2 2 X +2
法、放缩法、凑配法等 .
法 二 ‘ n 一2+ = . 。 2 百 l n
~ 1> 一2 > 2n

证 明 法一 ① 当 胛 时 ,左 边 =2 /边 =2 =1 ,: i ,
> 。

② 假 设 当 即 k 时 , 不 等 式 成 立 , 即 =
>0 , U.


( ]妄( ]3 7 ・( ]+≥ i + …  ̄-。 + 22, 3l 4 5
二步 证 明 中要 应 用归纳 假设 作为 已知条件 ,灵活运 用各 种证 明方 法与 技巧 ,如 分析 法 、比较法 、综合
邓军民
题 目 已知 数 夕 { 的通 项 公 式为 a 2 一 , Jl IC} n n 1
证()1 明 1+… // 十
不 等 式成立 .
厨 .
代 入 + :1 整理 得
面积 有最大值 F 1 ( 2 ( ) 此时直 线 √ 一 与圆

s y 一 6兄 ay 旯 a : e O 2√ t 十 6t 0 0, c n n
又 设 A x , , , B x , 2 ,则 (I Y) (z Y )
+ < 去 )相切,P Y = , 0 < ) ( 为切点) ;
1 )


时,(

高中数学:巧用定义求椭圆中的四类最值问题新课标人教A版选修1-1

求椭圆中四类最值问题一、的最值若A为椭圆内一定点(异于焦点),P是C上的一个动点,F是C的一个焦点,e是C的离心率,求的最小值。

例1. 已知椭圆内有一点A(2,1),F是椭圆C的左焦点,P为椭圆C上的动点,求的最小值。

分析:注意到式中的数值“”恰为,则可由椭圆的第二定义知等于椭圆上的点P到左准线的距离。

这种方法在本期《椭圆中减少运算量的主要方法》一文中已经介绍过,这里不再重复,答案为。

二、的最值若A为椭圆C内一定点(异于焦点),P为C上的一个动点,F是C 的一个焦点,求的最值。

例2. 已知椭圆内有一点A(2,1),F为椭圆的左焦点,P 是椭圆上动点,求的最大值与最小值。

解:如图1,设椭圆的右焦点为,可知其坐标为(3,0)图1由椭圆的第一定义得:可知,当P为的延长线与椭圆的交点时,最大,最大值为,当P为的延长线与椭圆的交点时,最小,最小值为。

故的最大值为,最小值为。

三、的最值若A为椭圆C外一定点,为C的一条准线,P为C上的一个动点,P 到的距离为d,求的最小值。

例3. 已知椭圆外一点A(5,6),为椭圆的左准线,P为椭圆上动点,点P到的距离为d,求的最小值。

解:如图2,设F为椭圆的左焦点,可知其坐标为图2根据椭圆的第二定义有:,即可知当P、F、A三点共线且P在线段AF上时,最小,最小值。

故的最小值为10。

四、椭圆上定长动弦中点到准线距离的最值例4. 定长为的线段AB的两个端点分别在椭圆上移动,求AB的中点M到椭圆右准线的最短距离。

解:设F为椭圆的右焦点,如图3,作于A”,BB”⊥于B”,MM”⊥于M”图3则当且仅当AB过焦点F时等号成立。

故M到椭圆右准线的最短距离为。

评注:是椭圆的通径长,是椭圆焦点弦长的最小值,是AB 能过焦点的充要条件。

巧用椭圆定义求解最值问题

巧用椭圆定义求解最值问题椭圆是中学数学中至关重要的内容,教学中经常会遇到这样的问题,即在圆锥曲线上探寻一点,使之到某一定点及到焦点(或可转化为到准线)的距离之和(或差)具有最大值(或最小值),这也是历届高考的热点.解决这些问题,若是通过设立动点的坐标,建立目标函数来处理,则会因运算量大而最终无功而返。

若能根据题目的实际条件,紧扣曲线定义,结合曲线的几何性质,能起到简化运算利用圆锥曲线的定义进行求解就能起到化难为易、事半功倍的效果.因此,在平常的教学中,可以通过解题训练,提高学生问题解决的能力.例1 已知F1、F2分别是椭圆的左、右焦点,M(0,4),N(1,0),P是椭圆上的动点,(1)求的最大值和最小值,(2)求的最大值和最小值.解:(1)因为在三角形PMF1中,;又因为,P、M、F1可以共线,所以,即所求最大值为;因图3为,,所以因为在三角形PMF2中,;又因为,P、M、F2可以共线,,所以,即所求最小值为 .(2)因为,,所以,又,所以,因此 .即所求最大值为,最小值为 .评注:例1涉及椭圆上一动点与两定点(其中一个为焦点)距离之和(差)的最值问题.此类问题的求解通常可分两种类型:(1)先利用定义,将动点到一个焦点的距离与其到另一个焦点的距离进行转化,然后利用几何最值法最终解决(如例2(1)中差的最小值和例2(2)中和的最大值和最小值);(2)在求和的最小值或差的最值时,有时可不经定义转化,直接使用几何最值法(如例2(1)中差的最大值).具体属于哪一类型,应视定点在椭圆内、外的给定情况而定.例2 如图3,点P在曲线C1:上,点A在曲线C2:上,点B在曲线C3:上,则的最小值是 .解由于P,A,B三点均为自由动点,所以先将P点“固定”(暂时看做定点),则当点A在圆C2上运动时,易知;同理,所以 .注意到两圆的圆心C2,C3,恰为椭圆C1的左、右焦点,由椭圆第一定义知:(不论点P如何运动),所以的最小值是18.评注例2涉及到椭圆上的动点与两个定圆上的动点距离之和的最小值问题,通过将椭圆上的动点与圆上的动点问题转化为其与圆心的距离减半径,可以将问题转化成椭圆上的动点与两个定点(即圆心,也就是椭圆的两个焦点)距离之和的最小值问题,从而应用椭圆的定义得出最小值.。

高考数学复习点拨:例析椭圆中的三种最值问题

例析椭圆中的三种最值问题与椭圆有关的最值问题均具有较强的综合性,涉及到数学知识的多种知识点,诸如:几何、三角、函数等,同时与椭圆的定义、方程联系紧密,思维能力要求比较高.下面对与椭圆的最值有关的问题作简单的探究: 一、利用定义转化为几何问题处理最值:例1、已知1F 是椭圆22195x y +=的左焦点,P 是椭圆上的动点,()1,1A 为定点,则1PA PF +的最小值是( )A、9 B、6 C、3+ D 、6解析:连接2F A 并延长交椭圆P '是椭圆上一动点,连接12,,PF PF PA ∵1212PF PA AF PF PF ++≥+,而121212PF PF P F P F P F P A AF ''''+=+=++, ∴1212PF PA AF P FP A AF ''++≥++,∴111226PF PA P FP A P F P F AF ''''+≥+=+-=(当P 与P '重合时取“=”号) 故答案:选B 。

二、利用椭圆的标准方程三角换元求最值:例2、已知点P 是椭圆221169x y +=上任意一点,则点P 到直线70x y +-=的距离最大值为解析:由椭圆的方程221169x y +=,则可设4cos 3sin x y θθ=⎧⎨=⎩(θ为参数) 设点()4cos ,3sin P θθ,则点P到直线的距离为d ==当()sin 1θϕ+=-,距离d的最大值为max d == 点评:本题利用里椭圆的标准方程的结构形式,把椭圆的最值问题,转化为三角函数的最值问题,利用三角函数的性质求解。

三、利用函数的最值探究方法:例3、设椭圆的中心是坐标原点,长轴在x 轴上,离心率2e =,已知点30,2P ⎛⎫⎪⎝⎭到这个,求这个椭圆的方程,并求椭圆上到点P 坐标。

解析:设椭圆的方程为()222210x y a b a b+=>>,由2e =,即2c a =,又222a b c =+ ∴2a b =,故椭圆的方程是()2222104x y b b b+=>。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档