电磁场与电磁波实验报告
电磁场与电磁波实验报告

电磁场与电磁波实验报告电磁场与电磁波实验报告引言:电磁场和电磁波是物理学中非常重要的概念。
电磁场是由电荷产生的一种物理场,它的存在和变化会影响周围空间中的其他电荷。
而电磁波则是电磁场的一种传播形式,它以电磁场的振荡和传播为基础,具有波动性质。
本次实验旨在通过实际操作和测量,深入了解电磁场和电磁波的特性。
实验一:测量电磁场强度在实验一中,我们使用了一个电磁场强度计来测量不同位置的电磁场强度。
首先,我们将电磁场强度计放置在一个固定的位置,记录下此时的电磁场强度。
然后,我们将电磁场强度计移动到其他位置,重复测量过程。
通过这些数据,我们可以得出不同位置的电磁场强度的分布情况。
实验结果显示,电磁场强度随着距离的增加而逐渐减弱。
这符合电磁场的特性,即电荷产生的电磁场在空间中以一定的规律传播,而传播的强度会随着距离的增加而减弱。
这一实验结果验证了电磁场的存在和变化对周围环境的影响。
实验二:测量电磁波频率和波长在实验二中,我们使用了一个频率计和一个波长计来测量电磁波的频率和波长。
首先,我们将频率计和波长计设置好,并将它们与电磁波源连接。
然后,我们观察频率计和波长计的测量结果,并记录下来。
通过这些数据,我们可以得出电磁波的频率和波长的数值。
实验结果显示,不同频率的电磁波具有不同的波长。
频率越高的电磁波,波长越短;频率越低的电磁波,波长越长。
这符合电磁波的特性,即电磁波的振荡频率和波长之间存在一定的关系。
这一实验结果验证了电磁波的波动性质,以及频率和波长之间的关系。
实验三:观察电磁波的干涉和衍射现象在实验三中,我们使用了一块光栅和一个狭缝装置来观察电磁波的干涉和衍射现象。
首先,我们将光栅放置在光源前方,并调整光源的位置和光栅的角度。
然后,我们观察到在光栅后方的屏幕上出现了一系列明暗相间的条纹。
这些条纹是由电磁波的干涉和衍射效应引起的。
实验结果显示,当电磁波通过光栅时,会发生干涉和衍射现象。
干涉现象表现为明暗相间的条纹,而衍射现象表现为条纹的扩散和交替。
电磁波系列实验报告多篇报告.doc

电磁波系列实验报告多篇报告.doc实验一:电磁场的研究实验目的:研究电磁场的特性及其对周围环境的影响。
实验原理:电磁场是由电荷和电流产生的一种物理场。
电磁场可以分为静电场和磁场两种类型。
静电场是由静止电荷产生的,而磁场则是由电流产生的。
实验步骤:1. 在实验室中准备好测量电磁场的仪器,包括电场强度计、磁力计等。
2. 按照一定的顺序,分别测量电场和磁场的强度,并记录下来。
3. 分析实验结果,观察电磁场对周围环境的影响。
实验结果:电磁场的强度与电荷和电流的大小有关。
电场强度与电荷的大小成正比,磁场强度与电流的大小成正比。
在具体实验中,我们发现,电磁场的强度会对周围环境产生影响,比如说,强电磁场会对电子设备等物品产生影响,而强磁场则会对磁性材料产生影响。
实验原理:电磁波是由电场和磁场形成的一种波动现象。
电磁波有很多种类型,包括无线电波、微波、光波等。
2. 分别使用不同的仪器,对不同类型的电磁波进行测量。
实验结果:我们发现,不同类型的电磁波在通信领域有着各自的应用。
无线电波可以用来进行无线通信,比如说广播电台、移动通信等;微波可以用来进行烹饪、医疗等;光波则可以用来进行通信、激光切割等。
这些应用都是基于电磁波的某些特性而实现的,比如说传播距离、频率带宽等。
实验三:电磁场与磁性材料的相互作用实验原理:电磁场与磁性材料之间的相互作用主要通过磁感线来实现。
在磁性材料中,磁感线会呈现出一些特殊的形态,比如说磁极、磁通量等。
而电磁场则可以通过改变磁感线的形态来影响磁性材料的性质。
2. 将磁性材料置于电磁场中,并观察其对电磁场的响应。
3. 分析实验结果,观察电磁场与磁性材料之间的相互作用及其在科技领域的应用。
实验结果:我们发现,电磁场与磁性材料之间的相互作用在科技领域有着广泛的应用,比如说电磁铁、电机、发电机等。
这些设备都是基于电磁场与磁性材料之间的相互作用而实现的,可以用来进行能量转换、物体运动等。
综上所述,电磁波系列实验有着广泛的应用,涉及到通信、能源等多个领域,是我们了解电磁场和磁性材料的特性及其在科技领域的运用的重要途径。
电磁场与电磁波实验报告(一)2024

电磁场与电磁波实验报告(一)引言概述:电磁场与电磁波是近代物理学中的重要概念,对于理解电磁现象和应用电磁技术具有重要意义。
本实验报告旨在通过实验来探究电磁场和电磁波的基本特性,并深入了解其在不同情境下的行为和应用。
一、电磁场的产生与性质1. 静电场与磁场的产生机制2. 静电场与磁场的区别与联系3. 电磁场的力线分布与场强的概念4. 高斯定律与安培定律的应用5. 电磁场的矢量表示及其运算规则二、电磁辐射和电磁波的特性1. 辐射的概念与特点2. 电磁波的定义和分类3. 电磁波的传播速度和能量传播方式4. 电磁波的频率和波长关系5. 电磁波与物质的作用及与光的关系三、电磁波的实验测量1. 等幅比波法测量电磁波的速度2. 利用扩散法测量电磁波的波长3. 利用光栅光谱仪测量电磁波的频率和波长4. 利用双缝干涉测量电磁波的波长5. 利用驻波法测量电磁波的频率四、电磁波在通信中的应用1. 电磁波在无线通信中的传输原理2. 电磁波的调制与解调技术3. 电磁波的天线和传输介质选择4. 电磁波在卫星通信中的应用5. 电磁波在无线电和电视广播中的应用五、电磁波对人体健康的影响1. 电磁波对人体的生物效应与健康风险2. 电磁辐射的安全标准与防护措施3. 电磁波辐射源的评估与监测4. 电磁波辐射对儿童和孕妇的影响5. 电磁波辐射与癌症的关系研究总结:通过本实验的开展,我们深入了解了电磁场和电磁波的产生机制和特性,探讨了其在实验测量、通信技术和健康影响等方面的应用。
电磁场与电磁波作为现代科技中的基础理论和技术手段,对于推动科学技术发展和提高人们的生活水平具有重要意义。
在未来的研究中,我们将继续深入探索电磁场和电磁波的更多应用和相关问题,为推动科学进步和提高人类福祉做出贡献。
最新电磁场与电磁波实验报告

最新电磁场与电磁波实验报告
在本次实验中,我们深入研究了电磁场与电磁波的基本特性,并进行了一系列的实验来验证理论和观测实际现象。
以下是实验的主要部分和观察结果的概述。
实验一:静电场的建立与测量
我们首先建立了一个简单的静电场,通过使用高压电源对两个相对的金属板进行充电。
通过改变电源的电压,我们观察到金属板上的电荷积累情况,并使用电位差计测量了电场强度。
实验数据显示,电场强度与电压成正比,这与库仑定律的预测一致。
实验二:电磁波的产生与传播
接下来,我们通过振荡电路产生了电磁波。
在一个封闭的微波腔中,我们使用电磁波发生器产生不同频率的电磁波,并通过特殊的探测器来测量波的传播特性。
实验结果表明,电磁波的传播速度在不同的介质中有所变化,这与介质的电磁特性有关。
实验三:电磁波的极化与干涉
在这部分实验中,我们研究了电磁波的极化现象。
通过使用不同极化的波前,我们观察到了波的干涉效应。
特别是在双缝干涉实验中,我们观察到了明显的干涉条纹,这证明了电磁波的波动性质。
实验四:电磁波的吸收与反射
最后,我们探讨了电磁波与物质相互作用的过程。
通过将电磁波照射在不同材料的样品上,我们测量了波的吸收和反射率。
实验发现,吸收和反射率与材料的电磁性质密切相关,并且可以通过改变波的频率来调整这些性质。
通过这些实验,我们不仅验证了电磁场与电磁波的基本理论,而且加深了对这些现象在实际应用中的理解。
这些实验结果对于无线通信、雷达技术以及其他相关领域的研究和开发具有重要的指导意义。
哈工大电磁场与电磁波实验报告

哈⼯⼤电磁场与电磁波实验报告电磁场与电磁波实验报告班级:学号:姓名:同组⼈:实验⼀电磁波的反射实验1.实验⽬的:任何波动现象(⽆论是机械波、光波、⽆线电波),在波前进的过程中如遇到障碍物,波就要发⽣反射。
本实验就是要研究微波在⾦属平板上发⽣反射时所遵守的波的反射定律。
2.实验原理:电磁波从某⼀⼊射⾓i射到两种不同介质的分界⾯上时,其反射波总是按照反射⾓等于⼊射⾓的规律反射回来。
如图(1-2)所⽰,微波由发射喇叭发出,以⼊射⾓i设到⾦属板MM',在反射⽅向的位置上,置⼀接收喇叭B,只有当B处在反射⾓i'约等于⼊射⾓i时,接收到的微波功率最⼤,这就证明了反射定律的正确性。
3.实验仪器:本实验仪器包括三厘⽶固态信号发⽣器,微波分度计,反射⾦属铝制平板,微安表头。
4.实验步骤:1)将发射喇叭的衰减器沿顺时针⽅向旋转,使它处于最⼤衰减位置;2)打开信号源的开关,⼯作状态置于“等幅”旋转衰减器看微安表是否有显⽰,若有显⽰,则有微波发射;3)将⾦属反射板置于分度计的⽔平台上,开始它的平⾯是与两喇叭的平⾯平⾏。
4)旋转分度计上的⼩平台,使⾦属反射板的法线⽅向与发射喇叭成任意⾓度i,然后将接收喇叭转到反射⾓等于⼊射⾓的位置,缓慢的调节衰减器,使微µ)。
安表显⽰有⾜够⼤的⽰数(50A5)熟悉⼊射⾓与反射⾓的读取⽅法,然后分别以⼊射⾓等于30、40、50、60、70度,测得相应的反射⾓的⼤⼩。
6)在反射板的另⼀侧,测出相应的反射⾓。
5.数据的记录预处理记下相应的反射⾓,并取平均值,平均值为最后的结果。
5.实验结论:?的平均值与⼊射⾓0?⼤致相等,⼊射⾓等于反射⾓,验证了波的反射定律的成⽴。
6.问题讨论:1.为什么要在反射板的左右两侧进⾏测量然后⽤其相应的反射⾓来求平均值?答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。
电磁场与电磁波实验报告

实验一 静电场仿真1.实验目的建立静电场中电场及电位空间分布的直观概念;2.实验仪器计算机一台3.基本原理当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场;点电荷q 在无限大真空中产生的电场强度E 的数学表达式为204qE r r πε= r 是单位向量 1-1真空中点电荷产生的电位为04qr ϕπε= 1-2其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为1221014ni n i i i q E E E E r r πε==+++=∑ i r 是单位向量1-3 电位为121014ni n i i q r ϕϕϕϕπε==+++=∑ 1-4 本章模拟的就是基本的电位图形;4.实验内容及步骤1 点电荷静电场仿真题目:真空中有一个点电荷-q,求其电场分布图;程序1:负点电荷电场示意图clearx,y=meshgrid-10:1.2:10;E0=8.85e-12;q=1.610^-19;r=;r=sqrtx.^2+y.^2+1.010^-10m=4piE0r;m1=4piE0r.^2;E=-q./m1.r;surfcx,y,E;负点电荷电势示意图clearx,y=meshgrid-10:1.2:10; E0=8.85e-12;q=1.610^-19;r=;r=sqrtx.^2+y.^2+1.010^-10m=4piE0r;m1=4piE0r.^2;z=-q./m1surfcx,y,z;xlabel'x','fontsize',16ylabel'y','fontsize',16title'负点电荷电势示意图','fontsize',10程序2clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.16:4;y=x; X,Y=meshgridx,y;R1=sqrtX+1.^2+Y.^2+1.010^-10;R2=sqrtX-1.^2+Y.^2+1.010^-10;Z=qk1./R2-1./R1;ex,ey=gradient-Z;ae=sqrtex.^2+ey.^2;ex=ex./ae;ey=ey./ae; cv=linspaceminminZ,maxmaxZ,40; contourX,Y,Z,cv,'k-';hold onquiverX,Y,ex,ey,0.7;clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.15:4;y=x; X,Y=meshgridx,y;R1=sqrtX+1.^2+Y.^2+1.010^-10;R2=sqrtX-1.^2+Y.^2+1.010^-10;U=qk1./R2-1./R1;ex,ey=gradient-U;ae=sqrtex.^2+ey.^2;ex=ex./ae;ey=ey./ae; cv=linspaceminminU,maxmaxU,40; surfcx,y,U;实验二恒定电场的仿真1.实验目的建立恒定电场中电场及电位空间分布的直观概念;2.实验仪器计算机一台3.基本原理电场的大小和方向均不随时间变化的场称为恒定电场,如直流导线,虽说电荷在导线内运动,但电场不随时间变化而变化,所以,直流导线形成的电场是恒定电场;对于恒定电场,我们可以假设其为静电场,假设有静止不动的分布在空间中的电量q产生了这一电场;通过一些边界条件等确定自己所需要的变量,然后用静电场的方法来求解问题;4.实验内容及步骤1高压直流电线表面的电场分布仿真题目:假设两条高压导线分别是正负电流,线间距2m,线直径0.04m,电流300A,两条线电压正负110kV,求表面电场分布;程序clearx,y=meshgrid -2:0.1:2; r1=sqrtx+1.^2+y.^2+0.14; r2=sqrtx -1.^2+y.^2+0.14; k=100/log1/0.02; E=k1./r1-1./r2; surfcx,y,E;xlabel'x','fontsize',16 ylabel'y','fontsize',16 title'E','fontsize',10 RR D=2m X Y P 图2-1高压直流电线示意图 R2 R1clearx,y=meshgrid-2:0.1:2;r1=sqrtx+1.^2+y.^2+0.14; r2=sqrtx-1.^2+y.^2+0.14; k=100/log1/0.02;m=log10r2./r1;U=km;surfcx,y,U;xlabel'x','fontsize',16 ylabel'y','fontsize',16title'U','fontsize',10实验三 恒定磁场的仿真1.实验目的建立恒定磁场中磁场空间分布的直观概念;2.实验仪器计算机一台3.基本原理磁场的大小和方向均不随时间变化的场,称为恒定磁场; 线电流i 产生的磁场为:024IdldB r μπ=说明了电流和磁场之间的关系,运动的电荷能够产生磁场;4.实验内容及步骤圆环电流周围引起的磁场分布仿真题目:一个半径为0.35的电流大小为1A 的圆环,求它的磁场分布;分析:求载流圆环周围的磁场分布,可以用毕奥—萨伐尔定律给出的数值积分公式进行计算:图3-1载流圆环示意图程序 clear x=-10:0.5:10; u0=4pi10^-7; R=0.35;I=1;B=u0IR.^2./2./R.^2+x.^2.^3/2; plotx,B;RrpxdB实验四电磁波的反射与折射1.实验目的1熟悉相关实验仪器的特性和使用方法2掌握电磁波在良好导体表面的反射规律2.实验仪器DH1211型3厘米信号源1台、可变衰减器、频率调节器、电流指示器、喇叭天线、金属导体板1块、支座一台;3.基本原理电磁波在传播过程中如遇到障碍物,必定要发生反射;当电磁波入射到良好导体近似认为理想导体平板上时将发生全反射;电磁波入射到良好导体近似认为理想导体平板时,分为垂直入射和以一定角度入射称为斜入射;如图4-1所示;入射线与分界面法线的夹角为入射角,反射线与分界面法线的夹角为反射角;垂直入射斜入射入射角0°、反射角0°入射角45°、反射角45°图4-1用一块金属板作为障碍物,测量当电波以某一入射角投射到此金属板上的反射角,验证电磁波的反射规律:1电磁波入射到良好导体近似认为理想导体平板上时将发生全反射; 2入射角等于反射角;4.实验内容及步骤1熟悉仪器的特性和使用方法 2连接仪器,调整系统3测量入射角和反射角反射全属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻线一致;而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属板平面一致的刻线与小平台上相应900刻度的一对刻线一致;这时小平台上的00刻度就与金属板的法线方向一致;转动小平台,使固定臂指针指在某一角度处,这一角度的读数就是入射角,然后转动活动臂在表头上找到一个最大指示,此时活动臂上的指针所指的刻度就是反射角;支座 喇叭天线金属导体铝板频率调节器DH1121B 3厘米信号源可变衰减器电流指示器检波器活动臂。
电磁场与电磁波实验报告

电磁场与电磁波实验报告实验题目:电磁场与电磁波实验实验目的:1.了解电磁场的产生原理和特性。
2.理解电磁波的概念和基本特性。
3.掌握测量和分析不同电磁波的实验方法。
实验器材:1.U形磁铁2.电磁铁3.直流电源4.交流电源5.电磁感应器6.示波器7.微波源8.微波接收器9.光栅片10.各种电磁波滤波器实验原理:1.电磁场的产生:电流通过电线时,会在周围产生磁场。
在一对平行导线中,当电流方向相同时,导线之间的磁场是叠加的;当电流方向相反时,导线之间的磁场互相抵消。
2.电磁场的特性:电磁场具有两种性质,即不能长距离传播和具有作用力。
通过电磁感应现象,可以观察到电磁场的作用力。
3.电磁波的产生与传播:当电场和磁场变化时,会激发并产生电磁波。
电磁波可根据频率不同被分为不同波段,如:无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。
实验步骤:实验1:观察电磁场的产生和作用1.将磁铁插入U形磁铁中,并将直流电源连接到U形磁铁的两端;2.在U形磁铁下方放置一根金属杆,并用电磁感应器在金属杆上方测量磁感应强度;3.开启直流电源,记录不同电流强度下的磁感应强度,并绘制电流与磁感应强度的图线;4.在磁铁两端放置一磁性物体,观察其受力情况。
实验2:测量电磁波的特性1.将微波源和微波接收器分别连接至交流电源和示波器;2.将微波源调至一定频率,并记录该频率;3.调整示波器至合适的量程和垂直偏置,观察示波器上的微波信号;4.更换不同频率和波长的电磁波,重复步骤3;5.将光栅片放置在微波源与接收器之间,观察光栅片的衍射效应。
实验结果与分析:实验1:观察电磁场的产生和作用根据实验数据,绘制出电流与磁感应强度的图线,可以观察到磁感应强度与电流之间呈现线性关系,并且磁性物体受到磁力的作用。
实验2:测量电磁波的特性根据实验数据,可以观察到不同频率和波长的电磁波在示波器上表现出不同的振动形态,频率越高,波长越短。
通过光栅片的衍射效应,可以观察到电磁波的波长。
电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与电磁波实验报告电磁波反射和折射实验实验目的:1. 探究电磁波在不同介质中的反射和折射规律;2. 学习使用测量工具和观察现象,从实验中深化对电磁波的认知。
实验器材:1. 实验室用的电磁波发生器、接收器和天线;2. 不同介质的板子,如玻璃、塑料、水等;3. 直尺、支架、测角器等测量工具。
实验原理:1. 电磁波反射规律当电磁波从空气传播到介质边界时,如果介质的折射率大于空气,那么电磁波会被反射回来。
反射角等于入射角,即角度相等。
2. 电磁波折射规律当电磁波传播到介质边界时,如果两侧的折射率不同,电磁波会发生折射。
角度满足斯涅尔定律,即入射角和折射角的正弦之比在两个不同介质中是常数,即:sinθ1/sinθ2=n2/n1,其中θ1是入射角,θ2是折射角,n1和n2分别是两个介质的折射率。
实验步骤:1. 将电磁波发生器的天线对准接收器,并调整距离,使得接收器接收到最大强度的信号。
2. 选择一个介质板,将其放置在天线和接收器之间。
记录下入射角和反射角的值。
3. 更换不同的介质板,如玻璃、水、塑料等,重复步骤2。
4. 对于折射实验,将介质板斜放,入射光线从上方斜射入水中,观察折射出来的角度。
5. 测量介质板的厚度,并计算出介质的折射率。
实验结果:1. 反射实验中,记录下了不同介质的入射角和反射角。
通过比较不同介质的反射角可以发现,当折射率越大的时候,反射角越小,反之越大。
2. 折射实验中,记录下了入射角和折射角的值,并计算出了水的折射率。
分析与讨论:通过实验发现,电磁波的反射和折射规律与光学的规律相同,具有相似的物理原理。
另外,实验中需要注意精确度,例如使用测角器来测量角度,要保证角度的精确度,以免影响结果。
此外,实验中不同介质的反射、折射规律的不同也需要谨慎对待。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 静电场仿真
1.实验目的
建立静电场中电场及电位空间分布的直观概念。
2.实验仪器
计算机一台
3.基本原理
当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。
点电荷q 在无限大真空中产生的电场强度E 的数学表达式为
2
04q E r r
πε=
(r 是单位向量) (1-1)
真空中点电荷产生的电位为
04q r
ϕπε=
(1-2)
其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为
122101
4n
i
n i i i q E E E E r r πε==++
+=
∑ (i r 是单位向量)
(1-3) 电位为
12101
4n
i
n i i q r ϕϕϕϕπε==+++=
∑ (1-4) 本章模拟的就是基本的电位图形。
4.实验内容及步骤 (1) 点电荷静电场仿真
题目:真空中有一个点电荷-q ,求其电场分布图。
程序1:
负点电荷电场示意图
clear
[x,y]=meshgrid(-10:1.2:10);
E0=8.85e-12;
q=1.6*10^(-19);
r=[];
r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r;
m1=4*pi*E0*r.^2;
E=(-q./m1).*r;
surfc(x,y,E);
负点电荷电势示意图
clear
[x,y]=meshgrid(-10:1.2:10);
E0=8.85e-12;
q=1.6*10^(-19);
r=[];
r=sqrt(x.^2+y.^2+1.0*10^(-10))
m=4*pi*E0*r;
m1=4*pi*E0*r.^2;
z=-q./m1
surfc(x,y,z);
xlabel('x','fontsize',16)
ylabel('y','fontsize',16)
title('负点电荷电势示意图','fontsize',10)
clear
q=2e-6;k=9e9;a=1.0;b=0;x=-4:0.16:4;y=x; [X,Y]=meshgrid(x,y);
R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10));
R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));
Z=q*k*(1./R2-1./R1);
[ex,ey]=gradient(-Z);
ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(Z)),max(max(Z)),40); contour(X,Y,Z,cv,'k-');
hold on
quiver(X,Y,ex,ey,0.7);
q=2e-6;k=9e9;a=1.0;b=0;x=-4:0.15:4;y=x; [X,Y]=meshgrid(x,y);
R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10));
R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));
U=q*k*(1./R2-1./R1);
[ex,ey]=gradient(-U);
ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(U)),max(max(U)),40); surfc(x,y,U);
实验二恒定电场的仿真
1.实验目的
建立恒定电场中电场及电位空间分布的直观概念。
2.实验仪器
计算机一台
3.基本原理
电场的大小和方向均不随时间变化的场称为恒定电场,如直流导线,虽说电荷在导线内运动,但电场不随时间变化而变化,所以,直流导线形成的电场是恒定电场。
对于恒定电场,我们可以假设其为静电场,假设有静止不动的分布在空间中的电量q 产生了这一电场。
通过一些边界条件等确定自己所需要的变量,然后用静电场的方法来求解问题。
4.实验内容及步骤
(1)高压直流电线表面的电场分布仿真
题目:假设两条高压导线分别是正负电流,线间距2m,线直径0.04m,电流300A,两条线电压正负110kV,求表面电场分布。
clear
[x,y]=meshgrid(-2:0.1:2);
r1=sqrt((x+1).^2+y.^2+0.14); r2=sqrt((x-1).^2+y.^2+0.14); k=100/(log(1/0.02));
E=k*(1./r1-1./r2);
surfc(x,y,E);
xlabel('x','fontsize',16) ylabel('y','fontsize',16)
title('E','fontsize',10)
[x,y]=meshgrid(-2:0.1:2);
r1=sqrt((x+1).^2+y.^2+0.14); r2=sqrt((x-1).^2+y.^2+0.14); k=100/(log(1/0.02));
m=log10(r2./r1);
U=k*m;
surfc(x,y,U);
xlabel('x','fontsize',16) ylabel('y','fontsize',16)
title('U','fontsize',10)
实验三 恒定磁场的仿真
1.实验目的
建立恒定磁场中磁场空间分布的直观概念。
2.实验仪器
计算机一台
3.基本原理
磁场的大小和方向均不随时间变化的场,称为恒定磁场。
线电流i 产生的磁场为:
02
4Idl
dB r μπ=
说明了电流和磁场之间的关系,运动的电荷能够产生磁场。
4.实验内容及步骤
圆环电流周围引起的磁场分布仿真
题目:一个半径为0.35的电流大小为1A 的圆环,求它的磁场分布。
分析:求载流圆环周围的磁场分布,可以用毕奥—萨伐尔定律给出的数值积分公式进行计算:
图3-1载流圆环示意图
程序
clear
x=-10:0.5:10;
u0=4*pi*10^(-7);
R=0.35;I=1;
B=(u0*I*R.^2)./2./((R.^2+x.^2).^(3/2)); plot(x,B);
实验四电磁波的反射与折射
1.实验目的
(1)熟悉相关实验仪器的特性和使用方法
(2)掌握电磁波在良好导体表面的反射规律
2.实验仪器
DH1211型3厘米信号源1台、可变衰减器、频率调节器、电流指示器、喇叭天线、金属导体板1块、支座一台。
3.基本原理
电磁波在传播过程中如遇到障碍物,必定要发生反射。
当电磁波入射到良好导体(近似认为理想导体)平板上时将发生全反射。
电磁波入射到良好导体(近似认为理想导体)平板时,分为垂直入射和以一定角度入射(称为斜入射)。
如图4-1所示。
入射线与分界面法线的夹角为入射角,反射线与分界面法线的夹角为反射角。
垂直入射斜入射
(入射角0°、反射角0°)(入射角45°、反射角45°)
图4-1
用一块金属板作为障碍物,测量当电波以某一入射角投射到此金属板上的反射角,验证电磁波的反射规律:
(1)电磁波入射到良好导体(近似认为理想导体)平板上时将发生全反射。
(2)入射角等于反射角。
4.实验内容及步骤
(1)熟悉仪器的特性和使用方法 (2)连接仪器,调整系统
(3)测量入射角和反射角
反射全属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻线一致。
而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属板平面一致的刻线与小平台上相应900
刻度的一对刻线一致。
这时小平台上的00
刻度就与金属板的法线方向一致。
转动小平台,使固定臂指针指在某一角度处,这一角度的读数就是入射角,然后转动活动臂在表头上找到一个最大指示,此时活动臂上的指针所指的刻度就是反射角。
入射角 0° 30° 45° 50° 55° 60° 最大指示值 28 34 44 47 48 50 反射角
22
39
45
51
58
【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】
支座 喇叭天线
金属导体(铝)板
频率调节器
DH1121B 3厘米信号源
可变衰减器
电流指示器(检波器)
活动臂。