2019-2020学年高二数学上学期期中试题 理

合集下载

甘肃省镇原县镇原中学2019-2020学年高二上学期期中考试试题 数学【含答案】

甘肃省镇原县镇原中学2019-2020学年高二上学期期中考试试题 数学【含答案】

甘肃省镇原县镇原中学2019-2020学年高二上学期期中考试试题数学一、选择题(本题共12小题,每小题5分,满分60分)1.在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若3C π=,4B π=,2b =则边长c 等于( ) A.3 B.23C.2D.62.设数列{a n }是等差数列,Sn 为其前n 项和,a 5=8,S 3=6,则( )A.a 1=-2 d=3B.a 1=2 d=-3C. a 1=0 d=2D.a 1=3 d=-23.已知a 、b ∈R ,下列命题正确的是( )A. 若a>b ,则|a|>|b|B. 若a>b ,则b 1a 1<C. 若|a|>b ,则a 2>b 2D. 若a>|b|,则a 2>b 24.不等式2x 2-x-3>0的解集是( )A.),(123-B.),(),(∞+-∞-231C.),(231-D. ),(),(∞+-∞-1235.在正项等比数列{a n }中,S n 为其前n 项和S 2=24,S 4=30则公比q=( )A.31B.21C.2D.36. 在△AB C 中,角A 、B 、C 的对边分别是a 、b 、c ,若b 2+c 2=a 2+bc,cosB+cosC=2cosA ,则△ABC 是( )A.等边三角形B.钝角三角形C.等腰不等边三角形D.直角三角形7.已知数列{a n }的前n 项和为S n =2-3n则此数列奇数项的前m 项和为( )A.4949m -B. 4945m -C. 49491m --D. 49431m ---8.若不等式x 2-kx+k-1>0对x ∈(1,2)恒成立,则实数k 的取值范围是( )A. ),(2∞-B.(]2,∞-C.),(∞+2D.[)∞+,29.若不等式组 ⎝⎛≤+≥≤+≥-a y x 0y 2y x 20y x 表示的平面区域是一个三角形,则a 的取值范围是( ) A.⎪⎭⎫⎢⎣⎡+∞,34 B.(]1,0 C.]34,1[ D.(]⎪⎭⎫⎢⎣⎡+∞,341,0 10. 在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若△ABC 的面积为4c b a 222-+则c=( ) A.2π B. 3π C. 4π D. 6π 11.已知a 1、a 2、a 3、a 4依次成等比数列,且公比q 不为1,将此数列删去一个除后得到的数列(按原来的顺序)是等差数列,则正数q 的值是( )A.251+ B. 251+± C. 231+± D. 231+- 12.当<21m 0<<时,若k 2k m211m 12-≥-+恒成立,则实数k 的取值范围为( ) A.[)(]4,00,2 - B. [)(]2,00,4 -C. [-4,2]D.[-2,4]二、填空题(本题共4小题,每小题5分,满分20分)13. 在△ABC 中,552C os c =,BC=1,AC=5,则AB=________. 14.等差数列{a n }的前n 项和为S n ,若S 11=121,则a 6=_______.15.若x 、y 满足约束条件⎪⎩⎪⎨⎧≤≥+-≤--0y 01y x 02y 2x 则z=3x+2y 的最大值为________.16.已知函数f(x)=ln(x 2-4x-a),若对任意的m ∈R 均存在x 0,使得f(x 0)=m ,则实数a 的取值范围是________.三、解答题(本题共6小题,其中17题10分,其余各小题12分,满分70分)17. 在△ABC 中三个内角A 、B 、C 、所对的边分别是a 、b 、c ,且2bcosC=2a-c(1)求角B(2)若△ABC 的面积433S =,a+c=4,求b 的值.18.设S n 是公差不为0的等差数列{a n }的前n 项和a 1-a 3=4,且S 1,S 2,S 4成等比数列.(1)求数列{a n } 的首项和公差(2)设n an 2b ,求数列{b n }的差n 项和Tn.19.解关于x 的不等式:ax 2-(a+1)x+1<0 (a ∈R)20.等比数列{a n }是递减数列,满足a 2+a 3+a 4=28,且a 3+2是a 2、a 4的等差中项.(1)求数列{a n } 的公比q(2)若b n =log 4a n 求数列{b n }的前n 项和S n 及其最大值.21. 已知x>0,y>0且2x+8y-xy=0,求(1)xy 的最小值(2)x+y 的最小值.22.若二次函数f(x)=ax 2+bx+c(a ≠0)满足f(x+2)-f(x)=16x ,且f(0)=2(1)求函数f(x)的解析式(2)若存在x ∈[1,2],使不等式f(x)>2x+m 成立,求实数m 的取值范围.高二数学参考答案。

浙江省“七彩阳光”新高考研究联盟高二上学期期中联考数学试题(解析版)

浙江省“七彩阳光”新高考研究联盟高二上学期期中联考数学试题(解析版)
所以异面直线 与 所成的角为 .
又 平面 .
所以直线 与平面 所成的角为
在 中, ,
所以 .
取边 的中点 ,连结 ,
则有 ,
所以二面角 的平面角为 ,
在 中,
由余弦定理有: ,
即 ,
所以 ,
故选:D.
【点睛】
本题考查异面直线成角,线面角,二面角的求法,关键是在立体图中作出相应的角,也可以用向量法,属于中档题.
故答案为:①②③④.
【点睛】
本题考查空间的垂直,异面直线所成角,二面角等属于中档题.
17.已知 是实数,若对于任意的 ,不等式 恒成立,则 的值为______.
【答案】
【解析】不等式 恒成立,则两个因式的符号相反(或有一个为0),因为当 时, ,则此时 必须为负,则 ,且函数 和 在 轴上的交点必须重合.从而求得答案.
【答案】(1)证明见解析(2)
【解析】(1)取 中点 ,连 , ,证明平面 平面 ,然后可证明平面 平面 .
(2)连接 、 ,作 于 .连接 , 即为所求角,然后归结到三角形中求解.
【详解】
解:(1)取 中点 ,连 , ,
∵ 是 的中位线,
∴ ,
又∵ 平面 ,
∴ 平面 .
∵在 中, , 分别是 , 的中点.
A.-5B.5C.-25D.25
【答案】C
【解析】用向量的加法法则将 表示成 ,然后用向量数量积的定义进行计算.
【详解】
.
故选:C.
【点睛】
本题考查向量的加法和数量积的运算,属于基础题.
7.已知 是等比数列, , ,则 ()
A. B. C. D.
【答案】D
【解析】先根据 , 求出公比 ,再由数列 是等比数列,根据等比数列的前 项和公式得到答案.

浙江省宁波市慈溪市2022-2022学年高二数学上学期期中试题(含解析)

浙江省宁波市慈溪市2022-2022学年高二数学上学期期中试题(含解析)
故选A.
考点:二元一次不等式(组)与平面区域.
5.已知点M(-2,1,3)关于坐标平面xOz的对称点为A,点A关于y轴的对称点为B,则|AB|=( )
A. 2B.
C. D. 5
【答案】B
【解析】
【分析】
先根据对称逐个求出点 的坐标,结合空间中两点间的距离公式可求.
【详解】因为点M(-2,1,3)关于坐标平面xOz的对称点为A,
【答案】 (1). (2,-1) (2). (x-1)2+y2=2
【解析】
【分析】
先整理直线的方程为 ,由 可得定点;由于直线过定点 ,所以点(1,0)为圆心且与l相切的所有圆中,最大半径就是两点间的距离.
【详解(xiánɡ jiě)】因为 ,由 可得 ,所以(suǒyǐ)直线 经过(jīngguò)定点 ;
【答案】
【解析】
如图,连接(liánjiē) 交 于点 ,连接(liánjiē) .因为(yīn wèi) 是正方体,所以(suǒyǐ) 面 ,从而(cóng ér)可得 ,所以 面 ,从而有 ,所以 是二面角 的平面角.设正方体的边长为1,则 ,所以在 中有
16.设m,n是两条不同的直线, , , 是三个不同的平面,给出如下命题:
二、填空题(本大题共7小题,单空题每小题4分,多空题每小题6分,共36分)
11.已知直线 ,直线 .若直线 的倾斜角为 ,则 =_________;若 ,则 , 之间的距离为_____.
【答案】 (1). 1 (2).
【解析】
【分析】
利用直线 的倾斜角和斜率的关系可求 ;根据两条直线平行可得 ,再结合平行直线间的距离公式可求.
【详解】由圆的一般式方程可得圆心坐标 ,半径 ;
设 关于直线 的对称点为 ,则 ,解得 ,

高二上学期数学期中考试卷及答案解析(B卷)

高二上学期数学期中考试卷及答案解析(B卷)

2019~2020学年上学期期中考试高二数学(B 卷)考试范围:解三角形,数列;考试时间:120分钟;总分:120分题号一二三总分1718 19 20 21 22 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.数列0,23,45,67…的一个通项公式为( ) A.()n 2n 1a 2n 1-=-B.n n 1a 2n 1-=+C.n n 1a n 1-=+D.n 2na 3n 1=+2.已知{}n a 是等差数列,且25a =-,646a a =+,则1a =( ) A .-9B .-8C .-7D .-43.在ABC ∆中,若6A π=,a =sin sin sin a b cA B C++=++( )AB.C.D.4.在ABC ∆中,若2,45BC AC B ===︒,则角A 等于( )A .30︒B .60C .120D .1505.1和4的等比中项为( ) A .-2B .2C .52D .2±6.在ABC ∆中,角,A B 的对边分别为,a b ,根据下列条件解三角形,其中有两组解的是( )A.50a =,30b =,60A =B.30a =,65b =,30A =C.30a =,60b =,30A =D.30a =,50b =,30A =7.在ABC ∆中,已知222a b c +=+,则C = ( ) A .30B .150︒C .45︒D .135︒8.设ABC ∆的三个内角, , A B C 成等差数列,sin A 、sin B 、sin C 成等比数列,则 这个三角形的形状是 ( ) A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形9.已知等差数列{}n a 的前n 项和为n S ,且410a =,则7S = ( ) A .140B .70C .35D .35210.在等差数列{}n a 中,公差0d <,n S 为{}n a 的前n 项和,且57S S =,则当n 为何值时,n S 达到最大值.( )A .8B .7C .6D .511.《张丘建算经》卷上第22题为:今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现有一月(按30天计),共织390尺布,则该女最后一天织多少尺布?( ) A .21B .20C .18D .2512.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,CD =,并在点C 测得塔顶A 的仰角为30︒,则塔高AB 为( )A.B.C .60mD .20m。

2019-2020学年江苏省常州市高二上学期期中考试数学试卷

2019-2020学年江苏省常州市高二上学期期中考试数学试卷

2019-2020学年江苏省常州市高二上学期期中考试数学试卷★祝考试顺利★ 注意事项:1、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

3、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

5、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

6、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“2R,0x x ∀∈≥”的否定为( )A .2R,0x x ∀∉≥ B .2R,0x x ∀∈< C .2R,0x x ∃∈≥ D .2R,0x x ∃∈< 2.已知函数()()40f x x x x=+<,则下列结论正确的是( ) A .()f x 有最小值4 B .()f x 有最大值4 C .()f x 有最小值-4 D .()f x 有最大值-43.已知数列{}n a 的首项11a =,且满足11133n n a a +=+,则此数列的第三项是( )A .1B .13 C . 23 D .594.已知,a b 为实数,M a b <,:N a b <,则M 是N 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件5.关于x 的不等式1026xx -≥+的解集是( )A .{}|1x x ≤B .{}|3x x >-C .{}|31x x -<≤D .{}|31x x x <-≥或 6.已知,a b 为非零实数,且0a b -≥,则下列结论一定成立的是( )A .22a b ≥B .22ab ba ≥C .2211ab ba ≥ D .b aa b≥7.已知数列{}n a ,其任意连续的四项之和为20,且1238,7,2a a a ===,则2020a =( )A .2B .3C .7D .8 8.“[]21,2,10x ax ∃∈+≤”为真命题的充分必要条件是( )A .1a ≤-B . 14a ≤-C .2a ≤-D .0a ≤ 9.已知实数12,,,x x m n 满足12,x x m n <<,且()()()()11220,0m x n x m x n x --<--<,则下列结论正确的是( )A .12m x x n <<<B .12m x n x <<<C .12x m x n <<<D .12x m n x <<<10.已知数列{}n a 、{}n b 均为等差数列,其前n 项和分别记为n A 、n B ,满足4123n n A n B n +=+,则57a b 的值为( ) A .2117 B .3729 C .5329 D .413111.设正实数,x y 满足21x y +=,则2xx y+的最小值为( ) A .4 B .6 C .7 D .812.已知数列{}n a 的通项2020220212nn na -=-,且存在正整数,T S 使得T n S a a a ≤≤对任意的*N n ∈恒成立,则T S +的值为( )A .15B .17C .19D .21二、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卷中的横线上.13.在各项均为正数的等比数列{}n a 中,若4681016a a a a =,则21115a a 的值为 .14.函数()()22111f x x x x =+>-的最小值为 . 15.已知数列{}n a 满足112a =,()()111n n n n n n a a a a +++-=,则该数列{}n a 的通项公式n a = .16.已知关于x 的不等式()22434x ax -≤的解集中的整数解恰好有三个,则实数a 的取值范围是 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知数列{}n a 是一个公差为)0(≠d d 的等差数列,前n 项和为n S ,2a 、4a 、5a 成等比数列,且515S =-.(1)求数列{}n a 的通项公式;(2)求数列n S n ⎧⎫⎨⎬⎩⎭的前10项和.18.(本小题满分10分)已知2:2350p x x --≤,()()2:32110q x mx m m -+-+≤.(其中实数2m >)(1)分别求出,p q 中关于x 的不等式的解集M 和N ; (2)若p 是q 的必要不充分条件,求实数m 的取值范围.19.(本小题满分12分)已知函数2()|3|9f x x a x =-+-+. (1)2a =时,解关于x 的不等式()0f x ≥;(2)若不等式()0f x ≤对任意R x ∈恒成立,求实数a 的取值范围.20.(本小题满分12分)已知数列{}n a 中,14a =,()()()2112322n n n n a n a n n ++⋅-+⋅=++⋅.(1)设1nn a b n =+,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n S .21.(本小题满分12分)已知某工厂要设计一个部件(如图阴影部分所示),要求从圆形铁片上进行裁剪,部件由三个全等的矩形和一个等边三角形构成,设矩形的两边长分别为,AD y CD x ==(单位:cm ),且要求312y x >,部件的面积是392cm . (1)求y 关于x 的函数表达式,并求定义域;(2)为了节省材料,请问x 取何值时,所用到的圆形铁片面积最小,并求出最小值.22.(本小题满分14分)已知数列{}n a ,11a =,前n 项和为n S ,对任意的正整数n ,都有()21n n S n a =+恒成立.(1)求数列{}n a 的通项公式;(2)已知关于n的不等式3434222...n n a a a a a a ---⋅<对一切*3,N n n ≥∈恒成立,求实数a 的取值范围;(3)已知211n n c a ⎛⎫= ⎪+⎝⎭,数列{}nc 的前n 项和为n T ,试比较n T 与23的大小并证明.常州市“教学研究合作联盟” 2019学年度第一学期期中质量调研高二数学 参考答案一、选择题:1.D2.D3.D4.A5.C6.C7.B8.B9.A 10.B 11.B 12.D 二、填空题: 13.2 14.3 15.1n n + 16.9169,464⎡⎫⎪⎢⎣⎭三、解答题:17.(1)由2a 、4a 、5a 成等比数列得:()()()211134a d a d a d +=++,即215d a d =-,又0d ≠,∴15a =-;…………………………………………………2分而51545152S a d ⨯=+=-,∴1d =;…………………………………4分 ()116n a a n d n ∴=+-=-,{}n a ∴的通项公式为6n a n =-.…………………………………………5分(2)()2111122n n n n n S na d ⋅--=+=,112n S n n -∴=,………………7分 令n n S c n =,则112n n c c +-=为常数, {}n c ∴是首项为5-,公差为12的等差数列,…………………………8分∴n S n ⎧⎫⎨⎬⎩⎭的前10项和为109155510222⨯-⨯+⨯=-.…………………10分18.(1)()()2235750x x x x --=-+≤,[]5,7M ∴=-;…………2分()()()()232112110x mx m m x m x m -+-+=---+≤⎡⎤⎡⎤⎣⎦⎣⎦,又2m >,211m m ∴->+, []1,21N m m ∴=+-.……………………………………………………5分(2)p 是q 的必要不充分条件,NM ∴,即[][]1,215,7m m +--,51721m m -≤+⎧∴⎨≥-⎩,且等号不同时取,…………………………………8分 解得64m -≤≤,又2m >,24m ∴<≤.………………………10分19.(1)2a =时,22390x x -+-+≥,3x ≥时,()()310x x -+≤,13x ∴-≤≤,3x ∴=; 3x <时,()()350x x -+≤,53x ∴-≤≤,53x ∴-≤<;综上所述,不等式的解集为[]5,3-. …………………………………6分 (如果解集中不包含3,扣1分)(2)()0f x ≤恒成立时,2930x a x ---≥恒成立,①3x =时,不等式恒成立,R a ∴∈;……………………………7分 ②3x >时,()()330x x a -+-≥恒成立,30x a ∴+-≥恒成立,6a ∴≤; …………………………………9分③3x <时,()()330x x a -++≥恒成立,30x a ∴++≤恒成立,6a ∴≤-;…………………………………11分综上所述,a 的取值范围是(],6-∞-. ………………………………12分 20.(1)()()()2112322n n n n a n a n n ++⋅-+⋅=++⋅,等式两边同时除以()()12n n ++得:1221n n n a an n +-=++,即12n n n b b +-=;………………………………2分 2n ∴≥时,有1212b b -=,2322b b -=...112n n n b b ---=.累加得111222212n n n b b ---==--,又1122ab ==, 2n ∴≥时,2n n b =.…………………………………………………5分又1n =时,12b =也满足上式,*N n ∴∈时,2n n b =.…………6分(2)由(1)可得()12nn a n =+⋅,()123223242...12n n S n ∴=⋅+⋅+⋅+++⋅,()23412223242...12n n S n +∴=⋅+⋅+⋅+++⋅,……………8分()12312222...212n n n S n +∴-=⋅++++-+⋅,…………………10分()11122212212nn n n n ++-=+-+⋅=-⋅-,12n n S n +∴=⋅.…………………………………………………………12分21.(1)234S xy x =⋅+=,2y ∴=3分由y x >得0x <<∴函数的定义域为{|0x x <<.……………………………5分(2)设圆形铁片半径为R ,则面积2S R π=,过圆心O 作CD 的垂线,垂足为E ,交AB 于点F ,连结OD ,则,2x DE OF ==, 22222224x x R OD y ⎛⎫⎛⎛⎫∴==+=+ ⎪ ⎝⎭⎝,221313483x x =++…………………………………………………8分 20x >,由基本不等式得:2222131313483666R OD x x +∴==++≥=,当且仅当221313483x x=,即(2x =∈时,取“=”.∴(2cm ).………………………11分答:当2x =(2cm ). …………………………………………………………………………12分 22.(1)2(1)n n S n a =+ ,2n ∴≥时,()1121n n S n a --=-,12(1)n n n a n a na -∴=+-,即 1(1)(2)n n n a na n --=≥,………2分又110a =≠,0n a ∴≠,1(2)(1)n n a nn a n -∴=≥-, 3212123,,...,121n n a a a na a a n -∴===-, 累乘得2n ≥时,123 (121)n a nn a n =⋅=-,…………………………4分 1n =时,11a =也满足上式,n a n ∴=. …………………………5分(或构造常数列1(2)(1)n n a an n n -=≥-) (2)设()3434222...n na a a f n a a a ---=⋅ 则()()31434122221...n n n n a a a a f n f n a a a a ++⎡----+-=⋅⎢⎣ ()()343411222...1n n n n a a a a a a n ⎡-+---=⋅⎢+⎢⎥⎣⎦3434222...0n n a a a a a a ---=⋅<⎢⎥⎣⎦,()f n ∴在*3,N n n ≥∈上单调递减, …………………………8分()3a f ∴>=a ∴>.…………………………………10分 (3)()22211111111121222n n c a n n n n n n n ⎛⎫⎛⎫⎛⎫===<=- ⎪ ⎪ ⎪++++⋅++⎝⎭⎝⎭⎝⎭, 123...n n T c c c c ∴=++++2311111111111......4422435572n c c c n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++<+-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1111112111242231232123n n n n ⎛⎫⎛⎫=++--=-+< ⎪ ⎪++++⎝⎭⎝⎭. 23n T ∴<.…………………………………………………………14分。

高二上学期期中考试数学试卷含答案

高二上学期期中考试数学试卷含答案

2019-2020学年上学期高二级期中考试题数学一、单选题(本题共10小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.若直线10x my +-=的倾斜角为30°,则实数m 的值为( )A. 3-B.3 C. 33-D.332.在等差数列{}n a 中,39618,n a a a S +=-表示数列{}n a 的前n 项和,则11S =( ) A .66B .99C .198D .2973.已知0,0a b <>,那么下列不等式中一定成立的是( ) A .0b a -< B .a b >C .2a ab <D .11a b< 4.满足,23,43A BC AC π===的ABC ∆的个数是( )A .0B .1C .2D .35.两条平行直线34120x y +-=与8110ax y ++=之间的距离为( ) A .235B .2310C .7D .726.已知点A 的坐标为)4,4(-,直线l 的方程为02=-+y x ,则点A 关于l 的对称点'A 的坐标为( ) A .)4,32(-B .)6,2(-C .)4,2(D .)6,1(7.如图,网格纸上虚线围成的最小正方形边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )A.πB.2πC.4πD.8π8.直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( ) A .30°B .60°C .90°D .120°9.若圆x 2+y 2=r 2(r >0)上有且仅有4个点到直线l :x -y -2=0的距离为1,则实数r 的取值范围是( ) A .(2+1,+∞) B .(2-1,2+1) C .(0,2-1)D .(0,2+1)10.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A .81π4 B .16π C .9πD .27π4二、多选题(本题共2小题,每小题5分,共10分。

四川省成都市郫都区2019-2020学年高二上学期期中考试数学(理)试题 含解析

四川省成都市郫都区2019-2020学年高二上学期期中考试数学(理)试题 含解析

四川省成都市郫都区2019-2020学年度上期期中考试高二数学(理)试题一、选择题(本大题共12小题)1.直线x+y-1=0的倾斜角为()A. B. C. D.2.抛物线y=4x2的焦点坐标是()A. B. C. D.3.双曲线的一个焦点到它的渐近线的距离为()A. 1B.C.D. 24.下列说法正确的是()A. 命题“3能被2整除”是真命题B. 命题“,”的否定是“,”C. 命题“47是7的倍数或49是7的倍数”是真命题D. 命题“若a、b都是偶数,则是偶数”的逆否命题是假命题5.已知α、β是两个不同的平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点,命题q:α∥β,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.直线l1:x+ay+6=0与l2:(a-2)x+3y+2a=0平行,则a的值等于()A. 或3B. 1或3C.D.7.设m、n是两条不同的直线α,β,γ,是三个不同的平面,下列四个命题中正确的序号是()①若m⊥α,n∥α,则m⊥n②若α⊥γ,β⊥γ,则α∥β③若m∥α,n∥α,则m∥n④若α∥β,β∥γ,m⊥α,则m⊥γA. 和B. 和C. 和D. 和8.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),则k的值为()A. B. C. D.9.一空间几何体的三视图如图所示,则该几何体的体积为()A. 1B. 3C. 6D. 210.已知圆,圆,则这两个圆的公切线条数为()A. 1条B. 2 条C. 3 条D. 4 条11.在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为()A. B. C. D.12.已知椭圆的左右焦点分别为F1,F2,点Q为椭圆上一点.△QF1F2的重心为G,内心为I,且,则该椭圆的离心率为()A. B. C. D.二、填空题(本大题共4小题)13.已知x、y满足不等式组,则z=3x+y的最大值为______.14.体积为4π的球的内接正方体的棱长为______.15.椭圆+=1与双曲线-=1有公共的焦点F1,F2,P是两曲线的一个交点,则cos∠F1PF2= ______ .16.抛物线x2=2py(p>0)上一点A(,m)(m>1)到抛物线准线的距离为,点A关于y轴的对称点为B,O为坐标原点,△OAB的内切圆与OA切于点E,点F为内切圆上任意一点,则的取值范围为______.三、解答题(本大题共6小题)17.已知p:方程x2+2mx+(m+2)=0有两个不等的正根;q:方程表示焦点在y轴上的双曲线.(1)若q为真命题,求实数m的取值范围;(2)若“p或q”为真,“p且q”为假,求实数m的取值范围.18.在△ABC中,a,b,c分别是角A,B,C的对边,且2cos A cos C(tan A tan C-1)=1.(Ⅰ)求B的大小;(Ⅱ)若,,求△ABC的面积.19.已知在等比数列{a n}中,a1=2,且a1,a2,a3-2成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足:,求数列{b n}的前n项和S n.20.如图,多面体ABCDEF中,底面ABCD是菱形,∠BCD=60°,四边形BDEF是正方形且DE⊥平面ABCD.(Ⅰ)求证:CF∥平面ADE;(Ⅱ)若AE=,求多面体ABCDEF的体积V.21.已知动点M(x,y)满足:.(1)求动点M的轨迹E的方程;(2)设过点N(-1,0)的直线l与曲线E交于A,B两点,点A关于x轴的对称点为C(点C与点B不重合),证明:直线BC恒过定点,并求该定点的坐标.22.已知椭圆C:+=1(a>b>0)的离心率为,且过点(1,).(1)求椭圆C的方程;(2)设与圆O:x2+y2=相切的直线l交椭圆C于A,B两点,求△OAB面积的最大值,及取得最大值时直线l 的方程.答案和解析1.【答案】D【解析】解:设直线x+y-1=0的倾斜角为α.直线x+y-1=0化为.∴tanα=-.∵α∈[0°,180°),∴α=150°.故选:D.利用直线的倾斜角与斜率的关系即可得出.本题考查了直线的倾斜角与斜率的关系,属于基础题.2.【答案】C【解析】解:抛物线y=4x2的标准方程为x2=y,p=,开口向上,焦点在y轴的正半轴上,故焦点坐标为(0,),故选:C.把抛物线y=4x2的方程化为标准形式,确定开口方向和p值,即可得到焦点坐标.本题考查抛物线的标准方程,以及简单性质的应用;把抛物线y=4x2的方程化为标准形式,是解题的关键.3.【答案】C【解析】解:根据题意,由双曲线的方程为,可得焦点坐标为(-2,0)(2,0),渐近线的方程为y=±x;结合双曲线的对称性,其任一个焦点到它的渐近线的距离相等,故只需计算一个焦点到其中一条渐近线的距离即可,其距离为d==,故选:C.根据双曲线的方称可得其焦点坐标与渐近线的方程,由于双曲线的对称性,只需计算一个焦点到其中一条渐近线的距离即可,由点到直线的距离公式,计算可得答案.本题考查双曲线的性质,解题时注意结合双曲线的对称性,只需计算一个焦点到其中一条渐近线的距离即可.4.【答案】C【解析】解:对于A,3不能被2整除,∴“3能被2整除”是假命题,A错误;对于B,“∃x0∈R,x02-x0-1<0”的否定是“∀x∈R,x2-x-1≥0”,∴B错误;对于C,47不是7的倍数,49是7的倍数,∴“47是7的倍数或49是7的倍数”是真命题,C正确;对于D,“若a、b都是偶数,则a+b是偶数”是真命题,则它的逆否命题也是真命题,∴D错误.故选:C.A,3不能被2整除,判断A是假命题;B,写出命题的否定,即可判断B是假命题;C,由47不是7的倍数,49是7的倍数,利用复合命题的真假性判断即可;D,根据原命题与它的逆否命题真假性相同,判断即可.本题考查了命题真假的判断问题,是基础题.5.【答案】B【解析】解:当a,b都平行于α与β的交线时,a与b无公共点,但α与β相交.当α∥β时,a与b一定无公共点,∴q⇒p,但p⇒/q故选:B.利用量平面平行的定义推出a与b没有公共点;a与b没有公共点时推不出α∥β,举一个反例即可.利用充要条件定义得选项.本题考查两个平面平行的定义:两平面无公共点;充要条件的判断.6.【答案】D【解析】解:因为两条直线平行,两直线的斜率都存在,故它们的斜率相等,由,解得:a=-1,故选:D.直接利用两直线平行的充要条件,列出方程求解,解得a的值.本题考查两直线平行的条件,要注意特殊情况即直线斜率不存在的情况,要进行检验.7.【答案】D【解析】解:由m、n是两条不同的直线α,β,γ,是三个不同的平面,知:∵m⊥α,n∥α,∴m⊥n,故①正确;∵α⊥γ,β⊥γ,∴α∥β或α与β相交,故②不正确;∵m∥α,n∥α,∴m与n相交、平行或异面,故③不正确;∵α∥β,β∥γ,∴α∥γ,∵m⊥α,∴m⊥γ,故④正确.故选:D.由m、n是两条不同的直线α,β,γ,是三个不同的平面,知:m⊥α,n∥α⇒m⊥n;α⊥γ,β⊥γ⇒α∥β或α与β相交;m∥α,n∥α⇒m与n相交、平行或异面,故③不正确;α∥β,β∥γ⇒α∥γ,由m⊥α,知m⊥γ.本题考查平面的基本性质及其推论,是基础题.解题时要认真审题,仔细解答.8.【答案】A【解析】解:如图,直线过定点(0,1),∵∠POQ=120°∴∠OPQ=30°,⇒∠1=120°,∠2=60°,∴k=±.故选:A.直线过定点,直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),可以发现∠QOx的大小,求得结果.本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题.9.【答案】D【解析】【分析】本题主要考查由三视图求几何体的体积,在三个图形中,俯视图确定锥体的名称,即是几棱锥,正视图和侧视图确定锥体的高,注意高的大小,侧视图是最不好理解的一个图形,注意图形上的虚线部分,根据体积公式得到结果.【解答】解:由三视图知,几何体是一个四棱锥,四棱锥的底面是一个直角梯形,直角梯形的上底是1,下底是2,垂直于底边的腰是2,一条侧棱与底面垂直,这条侧棱长是2,∴四棱锥的体积是=2.故选D.10.【答案】D【解析】解:根据题意,圆C1:x2+y2+2x-4y+1=0,即(x+1)2+(y-2)2=4,其圆心为(-1,2),半径r1=2,圆C2:(x-3)2+(y+1)2=1,其圆心为(3,-1),半径r2=1,则有|C1C2|==5>r1+r2,两圆外离,有4条公切线;故选:D.根据题意,分析两圆的圆心与半径,进而分析两圆的位置关系,据此分析可得答案.本题考查圆与圆的位置关系以及两圆的公切线,关键是分析两圆的位置关系,属于基础题.11.【答案】A【解析】【分析】本题主要考查了直线与圆的位置关系,考查圆的面积的最小值的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.由已知得|OC|=|CE|=r,过点O作直线2x+y-4=0的垂直线段OF,交AB于D,交直线2x+y-4=0于F,则当D恰为AB中点时,圆C的半径最小,即面积最小.【解答】解:如图,设AB的中点为C,坐标原点为O,圆半径为r,由已知得|OC|=|CE|=r,过点O作直线2x+y-4=0的垂直线段OF,交AB于D,交直线2x+y-4=0于F,则当D恰为OF中点时,圆C的半径最小,即面积最小.此时圆的直径为O(0,0)到直线2x+y-4=0的距离为:d==,此时r=,∴圆C的面积的最小值为:S min=π×()2=.故选A.12.【答案】A【解析】解:椭圆的左右焦点分别为F1(-c,0),F2(c,0),设Q(x0,y0),∵G为△F1QF2的重心,∴G点坐标为G(,),∵,则∥,∴I的纵坐标为,又∵|QF1|+|QF2|=2a,|F1F2|=2c,∴=•|F1F2|•|y0|,又∵I为△F1QF2的内心,∴||即为内切圆的半径,内心I把△F1QF2分为三个底分别为△F1MF2的三边,高为内切圆半径的小三角形,∴=(|QF1|+|F1F2|+|QF2|)||,即×2c•|y0|=(2a+2c)||,∴2c=a,∴椭圆C的离心率为e=,∴该椭圆的离心率,故选:A.由题意,设Q(x0,y0),由G为△F1QF2的重心,得G点坐标为(,),利用面积相等可得,×2c•|y0|=(2a+2c)||,从而求椭圆的离心率.本题考查了椭圆的标准方程及其性质、三角形的重心与内心的性质、三角形面积计算公式、向量共线定理,考查了推理能力与计算能力,属于难题.13.【答案】9【解析】解:作出x、y满足不等式组表示的平面区域,得到如图的三角形及其内部,其中A(2,3),设z=F(x,y)=3x+y,将直线l:z=3x+y进行平移,当l经过点A时,目标函数z达到最大值,∴z最大值=F(2,3)=9.故答案为:9.作出题中不等式组表示的平面区域,再将目标函数z=2x+y对应的直线进行平移,可得当x=2,y=3时,求出z=3x+y取得最大值.本题给出二元一次不等式组,求目标函数z=3x+y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.14.【答案】2【解析】解:设球的半径为R,正方体的棱长a,则=4,∴R3=,∴R=,则由正方体的性质可知,正方体的体对角线=2R=2,∴a=2,故答案为:2.先确定球的半径,利用球的内接正方体的对角线为球的直径,即可求得结论.本题考查球的内接正方体,解题的关键是利用球的内接正方体的对角线为球的直径,属于基础题.15.【答案】【解析】解:由题意设焦点F2(2,0)、F1(-2,0),∴3+b2=4,求得b2=1,双曲线-=1,即双曲线-y2=1.不妨设点P在第一象限,再根据椭圆、双曲线的定义和性质,可得|PF1|+|PF2|=2,|PF1|-|PF2|=2,可得|PF1|=+,|PF2|=-,且|F1F2|=4.再由余弦定理可得cos∠F1PF2=即=,故答案为:.不妨设点P在第一象限,再根据椭圆、双曲线的定义和性质,可得|PF1|+|PF2|=2,|PF1|-|PF2|=2,求得|PF1|和|PF2|的值,根据|F1F2|=4,利用余弦定理可得cos∠F1PF2的值.本题主要考查椭圆、双曲线的定义和性质及其标准方程,余弦定理的应用,属于中档题.16.【答案】【解析】解:因为点在抛物线上,所以,点A到准线的距离为,解得或p=6.当p=6时,,故p=6舍去,所以抛物线方程为x2=y,∴,所以△OAB是正三角形,边长为,其内切圆方程为x2+(y-2)2=1,如图4,∴.设点F(cosθ,2+sinθ)(θ为参数),则,∴.故答案为:.利用点在抛物线上,求出m,点A到准线的距离为,求出p,即可解出抛物线方程,设点F(cosθ,2+sinθ)(θ为参数),化简数量积,求解范围即可.本题考查抛物线的简单性质,直线与抛物线的位置关系圆的方程的应用,考查转化思想以及计算能力.17.【答案】解:(1)由已知方程表示焦点在y轴上的双曲线,则,得,得m<-3,即q:m<-3.(2)若方程x2+2mx+(m+2)=0有两个不等的正根则,解得-2<m<-1,即p:-2<m<-1.因p或q为真,所以p、q至少有一个为真.又p且q为假,所以p,q至少有一个为假.因此,p,q两命题应一真一假,当p为真,q为假时,,解得-2<m<-1;当p为假,q为真时,,解得m<-3.综上,-2<m<-1或m<-3.【解析】(1)根据双曲线的标准方程进行求解即可.(2)根据复合命题真假关系得到p,q两命题应一真一假,进行求解即可.本题主要考查复合命题的真假应用,根据条件求出命题为真命题的等价条件是解决本题的关键.18.【答案】解:(Ⅰ)由2cos A cos C(tan A tan C-1)=1得:2cos A cos C(-1)=1,∴2(sin A sin C-cos A cos C)=1,即cos(A+C)=-,∴cos B=-cos(A+C)=,又0<B<π,∴B=;(Ⅱ)由余弦定理得:cos B==,∴=,又a+c=,b=,∴-2ac-3=ac,即ac=,∴S△ABC=ac sin B=××=.【解析】(Ⅰ)已知等式括号中利用同角三角函数间基本关系切化弦,去括号后利用两角和与差的余弦函数公式化简,再由诱导公式变形求出cos B的值,即可确定出B的大小;(Ⅱ)由cos B,b的值,利用余弦定理列出关系式,再利用完全平方公式变形,将a+b以及b的值代入求出ac的值,再由cos B的值,利用三角形面积公式即可求出三角形ABC面积.此题考查了余弦定理,三角形面积公式,两角和与差的余弦函数公式,熟练掌握余弦定理是解本题的关键.19.【答案】解:(Ⅰ)等比数列{a n}的公比设为q,a1=2,a1,a2,a3-2成等差数列,可得2a2=a1+a3-2,即为4q=2+2q2-2,解得q=2,则a n=a1q n-1=2n,n∈N*;(Ⅱ)=+2log22n-1=+2n-1,则数列{b n}的前n项和S n=(++…+)+(1+3+…+2n-1)=+n(1+2n-1)=1-+n2.【解析】(Ⅰ)等比数列{a n}的公比设为q,由等差数列中项性质和等比数列的通项公式,解方程可得q,进而得到所求通项公式;(Ⅱ)求得=+2log22n-1=+2n-1,由数列的分组求和和等差数列、等比数列的求和公式,计算可得所求和.本题考查等差数列中项性质和等比数列的通项公式和求和公式的运用,考查数列分组求和,以及化简整理的运算能力,属于中档题.20.【答案】(Ⅰ)证明:∵底面ABCD是菱形,∴AD∥BC,∵四边形BDEF是正方形,∴DE∥BF,∵BF∩BC=B,∴平面ADE∥平面BCF,∵CF⊂平面BCF,∴CF∥平面ADE.(Ⅱ)解:连结AC,交BD于O,∵四边形BDEF是正方形且DE⊥平面ABCD.∴DE⊥平面ABCD,又AC⊂平面ABCD,∴AC⊥DE,∵底面ABCD是菱形,∴AC⊥BD,又BD∩DE=D,∴AC⊥平面BDEF,∵AE=,∠BCD=60°,∴AD=DE=BD=1,∴AO=CO=,∴多面体ABCDEF的体积:V=2V A-BDEF=2×=2×=.【解析】(Ⅰ)由已知得AD∥BC,DE∥BF,从而平面ADE∥平面BCF,由此能证明CF∥平面ADE.(Ⅱ)连结AC,交BD于O,由线面垂直得AC⊥DE,由菱形性质得AC⊥BD,从而AC⊥平面BDEF,进而多面体ABCDEF的体积V=2V A-BDEF,由此能求出多面体ABCDEF的体积V.本题考查线面平行证明,考查多面体的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.21.【答案】解:(1)由已知,动点M到点P(-1,0),Q(1,0)的距离之和为2,且|PQ|<2,所以动点M的轨迹为椭圆,而a=,c=1,所以b=1,所以,动点M的轨迹E的方程:+y2=1.(2)设A(x1,y1),B(x2,y2),则C(x1,-y1),由已知得直线l的斜率存在,设斜率为k,则直线l的方程为:y=k(x+1),由,得(1+2k2)x2+4k2x+2k2-2=0,所以x1+x2=-,x1x2=,直线BC的方程为:y-y2=(x-x2),所以y=x-,令y=0,则x====-2,所以直BC与x轴交于定点D(-2,0).【解析】(1)分别求出a,b,c的值,求出M的轨迹方程即可;(2)输出直线l的方程为:y=k(x+1),联立直线和椭圆的方程,根据根与系数的关系,求出定点D的坐标即可.本题考查了求椭圆的轨迹方程问题,考查直线和椭圆的关系以及韦达定理的应用,是一道中档题.22.【答案】解:(1)由题意可得,e==,a2-b2=c2,点(1,)代入椭圆方程,可得+=1,解得a=,b=1,即有椭圆的方程为+y2=1;(2)①当k不存在时,x=±时,可得y=±,S△OAB=××=;②当k存在时,设直线为y=kx+m(k≠0),A(x1,y1),B(x2,y2),将直线y=kx+m代入椭圆方程可得(1+3k2)x2+6kmx+3m2-3=0,x1+x2=-,x1x2=,由直线l与圆O:x2+y2=相切,可得=,即有4m2=3(1+k2),|AB|=•=•=•=•=•≤•=2,当且仅当9k2= 即k=±时等号成立,可得S△OAB=|AB|•r≤×2×=,即有△OAB面积的最大值为,此时直线方程y=±x±1.【解析】(1)运用椭圆的离心率公式和点满足椭圆方程,解方程可得a,b,进而得到椭圆方程;(2)讨论①当k不存在时,②当k存在时,设直线为y=kx+m,A(x1,y1),B(x2,y2),将直线y=kx+m代入椭圆方程,运用韦达定理和弦长公式,以及直线和圆相切的条件:d=r,结合基本不等式即可得到所求面积的最大值和直线l的方程.本题考查椭圆的方程的求法,注意运用离心率公式和点满足椭圆方程,考查三角形的面积的最大值,注意运用分类讨论的思想方法,联立直线方程和椭圆方程,运用韦达定理和弦长公式,以及直线和圆相切的条件:d=r,和基本不等式的运用,属于中档题.。

湖南省2019-2020学年高二上学期期中考试数学(理)试题

湖南省2019-2020学年高二上学期期中考试数学(理)试题

期中考试高二数学(理科)试卷满分:150分时量:120分钟一、选择题(每小题5分,共60分)1、抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为X,则“X>4”表示试验的结果为()A.第一枚为5点,第二枚为1点B.第一枚大于4点,第二枚也大于4点C.第一枚为6点,第二枚为1点D.第一枚为4点,第二枚为1点2、袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,有放回地依次取出2个球,设两个球号码之和为随机变量X,则X所有可能值的个数是()A.25B.10C.9D.53、已知变量x,y之间满足线性相关关系y 1.3x 1,且x,y之间的相关数据如下表所示:则m=()x1234A.0.8B.1.8C.0.6D.1.64、在二项式(x21)x5的展开式中,含x4的项y0.1m 3.14的系数是()A.-10B.10C.-5D.55、从6个盒子中选出3个来装东西,且甲、乙两个盒子至少有一个被选中的情况有()A.16种B.18种C.22种D.37种9116、根据历年气象统计资料,某地四月份吹东风的概率为,下雨的概率为,既吹东风又3030下雨的概率为830,则在吹东风的条件下下雨的概率为()A.9882B.C.D.1111957、已知X~B(n,p),E(X)8,D(X) 1.6,则n与p的值分别是()A.100、0.08 B.20、0.4C.10、0.2D.10、0.81118、甲射击命中目标的概率是,乙命中目标的概率是,丙命中目标的概率是.现在三人234同时射击目标,则目标被击中的概率为()A.32B.43C.47D.5109、正态分布N(μ,σ),N(μ,σ),N(μ,σ)(其中σ,σ,σ均大于0)所对应的密度函数111222333123图象如下图所示,则下列说法正确的是()[222①N (μ,σ)111 A.μ最大,σ最大11C.μ最大,σ最大13②N(μ,σ)③N(μ,σ)222333B.μ最大,σ最大33D.μ最大,σ最大3110、某射手射击所得环数的分布列如下:已知的数学78910期望E ()8.9,则y的值()P x0.10.3y A.0.2B.0.4C.0.6D.0.811、假设每架飞机的引擎在飞行中出现故障率为1p,且各引擎是否有故障是独立的,已知4引擎飞机中至少有3引擎正常运行,飞机就可以成功飞行;2引擎飞机要2个引擎全部正常运行,飞机也可以成功飞行,要使4引擎飞机比2引擎飞机更安全,则p的取值范围是()2 A.(,1)31B.(,1)32C.(0,)31D.(0,)312、一个质点从原点出发,每秒必须向右、或向左、或向上、或向下跳一个单位长度,则此质点在第8秒末到达点P(4,2)的跳法种数是()A.98B.448C.1736D.196二、填空题(每题5分,共20分)113、若随机变量~B(5,),则D ()314、已知离散型随机变量X的分布列为X0 1 2p141q q2则q的值为_______________15、将5名学生分配到3个不同的社区参加社会实践活动,每个社区至少分配一名学生的方案种数为16、已知(x 2)9a a x a x2a x90129,则(a 3a 5a 7a 9a )135792(2a 4a 6a 8a )24682=三、简答题(第17题10分,其余每题12分,共70分)17、用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(10分)(1)这些四位数中偶数有多少个?(2)能被5整除的有多少个?(3)这些四位数中大于6500的有多少个?22218、某射手每次射击击中目标的概率是23,且各次射击的结果互不影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高二数学上学期期中试题理考试注意:试卷分第Ⅰ卷、第Ⅱ卷两部分。

请在答题卡上作答,答在试卷上一律无效。

第Ⅰ卷选择题(共 60 分)一、选择题(本大题共 12 小题,每小题 5 分,每小题给出的四个选项中,只有一项符合要求)1. 已知命题 .则为2. 若,则n 的值为A.4B.5C.6D. 73.若,则“”是“”的A.充分而不必要条件B. 必要而不充分条件C.充分必要条件D. 既不充分也不必要条件4. 执行如图所示的程序框图,则输出的结果是A.8B. 16C. 32D. 645. 某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是A. 抽签法B. 系统抽样法C. 分层抽样法D. 随机数法6. 在区间上随机取一个数k ,则直线与圆有两个不同公共点的概率为A. B. C. D.7. 如果用反证法证明“数列的各项均小于2 ”,那么应假设A. 数列的各项均大于2B. 数列的各项均大于或等于2C. 数列中存在一项,D. 数列中存在一项8. 下列说法正确是9. 某学校派出 5 名教师去三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有A. 80种B. 90种C. 120种D.150 种10. 从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图如图所示.根据茎叶图,下列描述正确的是A. 甲种树苗的高度的中位数大于乙种树苗高度的中位数,且甲种树苗比乙种树苗长得整齐B. 甲种树苗高度的中位数大于乙种树苗高度的中位数,但乙种树苗比甲种树苗长得整齐C. 乙种树苗的高度的中位数大于甲种树苗高度的中位数,且乙种树苗比甲种树苗长得整齐D. 乙种树苗的高度的中位数大于甲种树苗高度的中位数,但甲种树苗比乙种树苗长得整齐11. 设命题实数满足 (其中 );命题实数满足.若是的必要不充分条件,则实数的取值范围是1 2. 某地区空气质量监测资料表明,一天的空气质量为优良的概率是 0.75,连续两天为优良的概率是 0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是第Ⅱ卷非选择题(共 90 分)二、填空题(本大题共 4 小题,每小题 5 分)13. 甲、乙、丙、丁四位同学一起去向老师询问毕业会考数学成绩。

老师说:“你们四人中有 2 位优秀,2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩。

”看后甲对大家说:“我还是不知道我的成绩。

根据以上信息,则可以知道自己成绩的同学是______.14. 如右图,从 A 点出发每次只能向上或者向右走一步,则到达 B 点的路径的条数为______.15. 从中任取两个不同的数,分别记为则“”的概率为__________.16. 给出下列三个命题:①命题则②若为真命题,则均为真命题;③“若,则”为假命题.其中正确的命题个数有________个.三、解答题(本大题 6 小题,共 70 分,解答应写出必要的文字说明,证明过程或演算步骤)17、(本小题 10 分)写出命题“已知,若关于的不等式有非空解集,则”的逆命题、否命题、逆否命题,并判断它们的真假.18、(本小题 12 分) 给定两个命题,对任意实数都有恒成立;关于的方程有实数根;如果“”为假,且“”为真,求实数的取值范围.19、(本小题 12 分)为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为 120 的样本,测量树苗高度(单位:cm),经统计,其高度均在区间[19,31]内,将其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成 6 组,制成如图所示的频率分布直方图.其中高度为及以上的树苗为优质树苗.(1)求图中的值(2)已知所抽取这 120 棵树苗来自于 A,B 两个试验区,部分数据如下列联表:将列联表补充完整,并判断是否有 99.9%的把握认为优质树苗与 A,B 两个试验区有关系,并说明理由;(3)用样本估计总体,若从这批树苗中随机抽取 4 棵,其中优质树苗的棵数为,求的分布列和数学期望.下面的临界值表仅供参考:20、(本小题 12 分)已知集合若成立的一个充分不必要条件是,求实数的取值范围.21、(本小题 12 分)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得 2 分;方案乙的中奖率为,中奖可以获得 3 分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,求的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?22、(本小题 12 分)在一场娱乐晚会上,有 5 位民间歌手(1 至 5 号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选 3 名歌手,其中观众甲是 1 号歌手的歌迷,他必选 1 号,不选 2 号,另在 3 至 5 号中随机选 2 名.观众乙和丙对5 位歌手的演唱没有偏爱,因此在 1 至 5 号中随机选 3 名歌手.(1)求观众甲选中 3 号歌手且观众乙未选中 3 号歌手的概率;(2)表示 3 号歌手得到观众甲、乙、丙的票数之和,求的分布列及数学期望.理科数学一、选择题答案123456789101112 B C A C C B D C D D A A填空题答案13、乙和丁; 14、16; 15、715;16、2个 .17、(1)逆命题:已知a,b∈R,若a2≥4b,则关于x的不等式x2+ax+b≤0有非空解集,为真命题.(2)否命题:已知a,b∈R,若关于x的不等式x2+ax+b≤0没有非空解集,则a2<4b,为真命题.(3)逆否命题:已知a,b∈R,若a2<4b,则关于x的不等式x2+ax+b≤0没有非空解集,为真命题.18、对任意实数x都有ax2+ax+1>0恒成立⇔a=0或⇔0≤a<4;关于x的方程x2﹣x+a=0有实数根;由于“P∧Q”为假,且“P∨Q”为真,则P与Q一真一假;(1)如果P真,且Q假,有;(2)如果Q真,且P假,有.所以实数a的取值范围为:.19、(1)根据直方图数据,有,解得.(2)根据直方图可知,样本中优质树苗有,列联表如下:A试验区B试验区合计优质树苗102030非优质树苗603090合计7050120可得.所以,没有99.9%的把握认为优质树苗与A,B两个试验区有关系.(3)由已知,这批树苗为优质树苗的概率为,且X服从二项分布B(4,),;;;;.所以X的分布列为:X01234P故数学期望EX=.20、A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |12<2x <8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A ⊆B ,∴m +1>3,即m >2.21、法一:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这两人的累计得分X ≤3”的事件为A , 则事件A 的对立事件为“X =5”,因为P (X =5)=23×25=415,所以P (A )=1-P (X =5)=1115,即这两人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲抽奖中奖次数为X 1,都选择方案乙抽奖中奖次数为X 2,则这两人选择方案甲抽奖累计得分的数学期望为E (2X 1),选择方案乙抽奖累计得分的数学期望为E (3X 2).由已知可得,X 1~B ⎝ ⎛⎭⎪⎫2,23,X 2~B ⎝ ⎛⎭⎪⎫2,25,所以E (X 1)=2×23=43,E (X 2)=2×25=45,从而E (2X 1)=2E (X 1)=83,E (3X 2)=3E (X 2)=125.因为E (2X 1)>E (3X 2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.法二:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这两人的累计得分X ≤3”的事件为A ,则事件A 包含有“X =0”“X =2”“X =3”三个两两互斥的事件,因为P (X =0)=⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-25=15,P (X =2)=23×⎝⎛⎭⎪⎫1-25=25,P (X =3)=⎝ ⎛⎭⎪⎫1-23×25=215,所以P (A )=P (X =0)+P (X =2)+P (X =3)=1115,即这两人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲所获得的累计得分为X 1,都选择方案乙所获得的累计得分为X 2,则X 1,X 2的分布列如下:所以E (X 1)=0×19+2×49+4×49=83,E (X 2)=0×925+3×1225+6×425=125.因为E (X 1)>E (X 2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.22、(1)设A 表示事件“观众甲选中3号歌手”,B 表示事件“观众乙选中3号歌手”,则P (A )=C 12C 23=23,P (B )=C 24C 35=35.∵事件A 与B 相互独立,∴观众甲选中3号歌手且观众乙未选中3号歌手的概率为P (A B )=P (A )·P (B )=P (A )·[1-P (B )]=23×25=415⎝⎛⎭⎪⎫或PA B=C 12·C 34C 23·C 35=415. (2)设C 表示事件“观众丙选中3号歌手”,则P (C )=C 24C 35=35.∵X 可能的取值为0,1,2,3,则P (X =0)=P (A B C )=13×25×25=475,P (X =1)=P (A B C )+P (A B C )+P (A B C )=23×25×25+13×35×25+13×25×35=2075, P (X =2)=P (AB C )+P (A B C )+P (A B C )=23×35×25+23×25×35+13×35×35=3375,P (X =3)=P (ABC )=23×35×35=1875,∴X 的分布列为X 0 1 2 3 P4752075337518754 75+1×2075+2×3375+3×1875=14075=2815.∴X的数学期望E(X)=0×。

相关文档
最新文档