苏科版八年级数学下11.1 反比例函数同步练习(含答案)

苏科版八年级数学下11.1 反比例函数同步练习(含答案)
苏科版八年级数学下11.1 反比例函数同步练习(含答案)

第十一章 反比例函数

第1课时 反比例函数

1.一个圆柱的侧面展开图是一个面积为4平方单位的矩形,那么这个圆柱的母线长L 和底面半径r 之间的函数关系是 ( )

A .反比例函数

B .正比例函数

C .一次函数

D .其他函数关系

2.若y =(a +1)22a

x -是反比例函数,则a 的取值为 ( ) A .1

B .-1

C .±1

D .任意实数 3.下列函数:①y =2x -1;②y =-5x ;③y =x 2+8x -2;④y =33x ;⑤12y x =;⑥a y x =中,y 是x 的反比例函数的有_______(填序号).

4.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =_______,这时h 是a 的_______.

5.判断下列关系式中y 和x 是反比例函数关系吗?若是,请指出比例系数.

(1)12y x = (2) 41y x =-

(3)()0x y k k =≠ (4) ()10y k kx

=≠

6.已知函数y =(5m -3)x 2-n +(n +m ).

(1)当m 、n 为何值时,为一次函数?

(2)当m 、n 为何值时,为正比例函数?

(3)当m 、n 为何值时,为反比例函数?

7.下列函数关系中,成反比例函数关系的是 ( )

A .矩形的面积S 一定时,长a 与宽b 的函数关系

B.矩形的长a一定时,面积S与宽b的函数关系C.正方形的面积S与边长a的函数关系

D.正方形的周长L与边长a的函数关系

8.已知多项式x2-kx+1是一个完全平方式,则反比例函数y=

1

k

x

-

的解析式为( )

A.

1

y

x

=B.

3

y

x

=-C.

1

y

x

=或

3

y

x

=-D.

2

y

x

=或

2

y

x

=-

9.下列函数中,y与x成反比例函数关系的是()

A.x(y+1)=2 B.y=

1

2

x-

C.

2

1

y

x

=D.

2

3

y

x

=

10.反比例函数

2

3

y

x

=-的比例系数k是_______.

11.如果y与z成反比例,z与x成正比例,则y与x成_______.

12.已知y与x成反比例,且x=-3时y=5.

(1)求y与x的函数关系式;

(2)求当y=2时x的值.

13.下图中有一面围墙(可利用的最大长度为100 m),现打算沿墙围成一个面积为120 m2的长方形花圃,设花圃的一边AB=x(m),另一边为y(m),求y与x的函数关系式,并指出其中自变量的取值范围.

14.已知函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=1,当x =2时,y=5,求y与x的函数关系式.

参考答案

1.A 2.A 3.②⑤4.2S

a

反比例函数5.(1)是,

1

2

(2)不是(3)不是(4)是,

1 k 6.(1)n=1,m≠

3

5

;(2)n=1,m=-1;(3)n=3,m=-3

7.A 8.C9.D 10.-2

3

11.反比例12.(1)y=-

15

x

(2)-

15

2

13.y=120

x

0

2

x

八年级数学下册反比例函数知识点归纳和典型例题

八年级数学下册反比例函数知识点归纳和典型例题 (一)知识结构 (二)学习目标 1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式 (k为常数,),能判断一个给定函数是否为反比例函数. 2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点. 3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题. 4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型. 5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法. (三)重点难点 1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用. 2.难点是反比例函数及其图象的性质的理解和掌握. 二、基础知识 (一)反比例函数的概念

1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上. 图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)

初二数学《反比例函数》知识点

一、目标与要求 1.使学生理解并掌握反比例函数的概念。 2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。 4.会用描点法画反比例函数的图象。 5.结合图象分析并掌握反比例函数的性质。 6.体会函数的三种表示方法,领会数形结合的思想方法。 7.利用反比例函数的知识分析、解决实际问题。 8.渗透数形结合思想,进一步提高学生用函数观点解决问题的能力,体会和认识反比例函数这一数学模型。 二、知识框架 三、重点、难点 1.重点:利用反比例函数的知识分析、解决实际问题。 重点:理解并掌握反比例函数的图象和性质。 重点:利用反比例函数的图象和性质解决一些综合问题。 重点:理解反比例函数的概念,能根据已知条件写出函数解析式。 2.难点:分析实际问题中的数量关系,正确写出函数解析式,解决实际问题。 难点:正确画出图象,通过观察、分析,归纳出反比例函数的性质。

难点:学会从图象上分析、解决问题。 难点:理解反比例函数的概念。 四、知识点、概念总结 1.反比例函数:形如y=k/x,(k为常数,k≠0)的函数称为反比例函数。其他形式xy=k,y=kx(-1)。 2.自变量的取值范围: (1)k≠0; (2)在一般的情况下,自变量x的取值范围可以是不等于0的任意实数; (3)函数y的取值范围也是任意非零实数。 3.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和y=-x。对称中心是:原点。 4.反比例函数的几何意义 |k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。 即:过反比例函数y=k/x(k不等于0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=(x的绝对值)*(y的绝对值)=(x*y)的绝对值=k的绝对值。 5. 反比例函数的性质: (1)(增减性)当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。 (2)k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。定义域为x≠0;值域为y≠0. (3)因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能

苏科版八年级下册数学期中考试试卷及答案

苏科版八年级下册数学期中考试试卷及答案 一、选择题 1.下列图标中,是中心对称图形的是() A.B.C.D. 2.下列成语故事中所描述的事件为必然发生事件的是() A.水中捞月B.瓮中捉鳖C.拔苗助长D.守株待兔3.如图,E是正方形ABCD边AB延长线上一点,且BD=BE,则∠E的大小为() A.15°B.22.5°C.30°D.45° 4.下列方程中,关于x的一元二次方程是() A.x2﹣x(x+3)=0 B.ax2+bx+c=0 C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=0 5.下列式子为最简二次根式的是() A.22 a b +B.2a C.12a D.1 2 6.如果a= 32 + ,b=3﹣2,那么a与b的关系是() A.a+b=0 B.a=b C.a=1 b D.a>b 7.下面图形中,既是中心对称图形又是轴对称图形的是() A.B.C.D. 8.如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()

A.8 B.7 C.6 D.5 9.下列图形不是轴对称图形的是() A.等腰三角形B.平行四边形C.线段D.正方形 10.如图,为了测量池塘边A、B两地之间的距离,在线段AB的同侧取一点C,连结CA 并延长至点D,连结CB并延长至点E,使得A、B分别是CD、CE的中点,若DE=18m,则线段AB的长度是() A.9m B.12m C.8m D.10m 二、填空题 11.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____. 12.小明用a元钱去购买某种练习本.这种练习本原价每本b元(b>1),现在每本降价1元,则他现在可以购买到这种练习本的本数为_____. 13.如图,在ABCD中,对角线AC、BD相交于点O.如果AC=6,BD=8,AB=x,那么x 的取值范围是__________. x-有意义,字母x必须满足的条件是_____. 14.要使代数式5 15.如图,△ABC中,∠A=60°,∠ABC=80°,将△ABC绕点B逆时针旋转,得到△DBE,若DE∥BC,则旋转的最小度数为_____. 16.某次测验后,将全班同学的成绩分成四个小组,第一组到第三组的频率分别为0.1,0.3,0.4,则第四组的频率为_________.

(完整版)初中数学反比例函数知识点及经典例题

反比例函数 、基础知识 k ..…............................................ k 1. 正义:一般地,形如y -(k为常数,k o)的函数称为反比例函数。y - x x 还可以写成y kx 1 2. 反比例函数解析式的特征: ⑴等号左边是函数y,等号右边是一个分式。分子是不为零的常数k (也叫做 比例系数k),分母中含有自变量x ,且指数为1. ⑵比例系数k 0 ⑶自变量x的取值为一切非零实数。 ⑷函数y的取值是一切非零实数。 3. 反比例函数的图像 ⑴图像的画法:描点法 ①列表(应以。为中心,沿O的两边分别取三对或以上互为相反的数) ②描点(有小到大的顺序) ③连线(从左到右光滑的曲线) .._ .. .. ._ .. … k. ⑵反比例函数的图像是双曲线,y - (k为常数,k 0)中自变量x 0, x 函数值y 0,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐 靠近坐标轴,但是永远不与坐标轴相交。 ⑶反比例函数的图像是是轴对称图形(对称轴是y x或y x)。 .. .. ................................. k .... 一… ... . .. ...................... k ⑷反比例函数y - ( k 0)中比例系数k的几何怠义是:过双曲线y - x x (k 0)上任意引x轴y轴的垂线,所得矩形面积为|k。 4. 5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点 的坐标即可求出k 6. “反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数 一 .一 .. ...... ... k ..

初二数学反比例函数专题练习.doc

初二数学反比例函数专题练习 一、填空题: 1、若反比例函数y = (2m-i)^-2的图象在第一、三象限,则函数的解析式为___________ o £_3 2、反比例函数y = ——的图象位于第一、三象限,正比例函数y=(2k?ll)x过第二、四彖限, x 则k的整数值是________ 0 3、已知点P(2a,-3a)在反比例函数图象上,若点A⑶),B(-5,y2),C(ll,y3)til在该图像上, 则儿,%的大小关系为_______________ ?(用“〉”号连接) 4 4、如图,点A在双曲线丿=一上,且OA=6,过点A作AC丄y轴,垂足为C, OA的垂 x 直平分线交0C于点B,则A ABC的周长为________ 。 5、有一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度p (单位:kg/n?)是体积V (单位:m3)的反比例幣数,它的图象如图所示,当V=3n?时,气体的密度是_kg/n?. 6、如图,平行四边形ABCD的顶点A、C在双曲线y |=- —±, B、D在双曲线y?二乞上, X X

7、己知A(xp yj, B(X2, y2)是反比例函数y」图象上的两点,且x r x2=-2, Xi *x2=3, yi-y2=-^? X 3 当?3vxWl时,y的取值范围是_______________ . 13 8、如图,直线)^ = -x-3交坐标轴于A、B两点,交双曲线y =—于点D(D在笫一象限),过D 2x 作两坐标轴的垂线DC、DE,连接0D?将直线AB沿x轴平移,使得四边形OBCD为平行四边形,则平移后直线AB的解析式为________ k 9、如图,反比例函数y = - (x>0 )的图象经过矩形OABC对角线的交点,分别与AB、x BC交于点D. E,若四边形ODBC的而积为9,则《的值为()。 10?函数yi二x (x>0) , y2=-(x>0)的图象如图6所示,则: X

初中数学反比例函数知识点整理

反比例函数知识点整理 一、 反比例函数的概念 1、解析式:() 0≠= k x k y 其他形式:①k xy = ②1 -=kx y 例1.下列等式中,哪些是反比例函数 (1)3x y = (2)x y 2-=(3)xy =21(4)25+=x y (5)x y 23-=(6)31 +=x y 例2.当m 取什么值时,函数2 3)2(m x m y --=是反比例函数? 例3.函数2 2 )12(--=m x m y 是反比例函数,且它的图像在第二、四象限, m 的值是_____ 例4.已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5 (1) 求y 与x 的函数关系式 (2)当x =-2时,求函数y 的值 2.反比例函数图像上的点的坐标满足:k xy = 例1.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 例2.下列函数中,图像过点M (-2,1)的反比例函数解析式是( ) x y A 2.= 2 .B y x =- x y C 21.= x y D 21.-= 例3.如果点(3,-4)在反比例函数k y x =的图象上,那么下列各点中,在此图象上的 是( )A .(3,4) B . (-2,-6) C .(-2,6) D .(-3,-4) 例4.如果反比例函数x k y =的图象经过点(3,-1),那么函数的图象应在( ) A . 第一、三象限 B .第二、四象限 C .第一、二象限 D .第三、四象限 二、反比例函数的图像与性质 1、基础知识 0>k 时,图像在一、三象限,在每一个象限内,y 随着x 的增大而减小; 00时,y 随x 的增大而增大,求函数关系式 例2.已知反比例函数x k y 1 2+= 的图象在每个象限内函数值y 随自变量x 的增大而减小,且k 的值还满足)12(29--k ≥2k -1,若k 为整数,求反比例函数的解析式 2、面积问题(1)三角形面积:k S AOB 2 1 =? 例1.如图,过反比例函数x y 1 = (x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( ) (A )S 1>S 2 (B )S 1=S 2 (C )S 1<S 2 (D )大小关系不能确定 例2.如图,点P 是反比例函数1 y x = 的图象上任一点,PA 垂直在x 轴,垂足为A ,设OAP ?的面积为S ,则S 的值为 例3.直线OA 与反比例函数 的图象在第一象限交于A 点,AB ⊥x 轴于 点B ,若△OAB 的面积为2,则k = . 例4.如图,若点A 在反比例函数(0)k y k x =≠的图象上, AM x ⊥轴于点M ,AMO △的面积为3,则k = . 例5.如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点 12345A A A A A 、、、、分别作x 轴的垂线与反比例函数的()2 0y x x = ≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、, 并设其面积分别为12345S S S S S 、、、、,则5S 的值为 . p y A x O 第4题

苏教版八年级数学下册知识点总结(苏科版)

知识点总结 第七章:数据的整理、收集、描述 知识概念 抽样与样本 1.全面调查:考察全体对象的调查方式叫做全面调查。 2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。 3.总体:要考察的全体对象称为总体。 4.个体:组成总体的每一个考察对象称为个体。 5.样本:被抽取的所有个体组成一个样本。 6.样本容量:样本中个体的数目称为样本容量。 频率分布 1、频率分布的意义 在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布。 2、研究频率分布的一般步骤及有关概念 (1)研究样本的频率分布的一般步骤是:

①计算极差(最大值与最小值的差) ②决定组距与组数 ③决定分点 ④列频率分布表 ⑤画频率分布直方图 (2)频率分布的有关概念 ①极差:最大值与最小值的差 ②频数:落在各个小组内的数据的个数 ③频率:每一小组的频数与数据总数(样本容量n)的比值叫做这一小组的频率。 第八章:认识概率 确定事件和随机事件 1、确定事件 必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。 不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。 2、随机事件: 在一定条件下,可能发生也可能不放声的事件,称为随机事件。 随机事件发生的可能性 一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。

对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。 概率的意义与表示方法 1、概率的意义 一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。 2、事件和概率的表示方法 一般地,事件用英文大写字母A,B,C,…,表示事件A 的概率p,可记为P(A)=P 确定事件和随机事件的概率之间的关系 1、确定事件概率 e(2)当A是不可能发生的事件时,P(A)=0 2、确定事件和随机事件的概率之间的关系 不可能事件随机事 件必然事件 古典概型 1、古典概型的定义

苏教版初二数学反比例函数讲义

立仁教育 初二数学反比例函数讲义 一、本节课知识点梳理 1、反比例函数的概念 2、反比例函数的图像及其性质 3、反比例系数k 的意义及其实际应用 二、重难点点拨 教学重点:反比例函数图像及其性质 教学难点:反比例函数k 的几何意义 三、典型例题与分析 知识点一:反比例函数概念 一般地,如果两个变量x 、y 之间关系可以表示成y=x k ,(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数。反比例函数形式还可以写成:xy=k ,y=kx -1(k ≠0的常数) 1、在下列函数中,反比例函数是( ) A 11+= x y B xy=0 C x k y = D x y 21 -= 2、如果函数12-=m x y 为反比例函数,则m 的值是 ( ) A 、1- B 、0 C 、2 1 D 、1

知识点二:反比例函数的图象与性质 注意1:双曲线的两个分支是断开的,研究函数的增减性时,要将两个分支分别讨论,不能一概而论。 (1)已知y=x k (k <0)的图象上有两点A (x 1,y 1)、B(x 2,y 2) ①若x 1<x 2<0,则y 1 与y 2大小关系是y 1 y 2 ;若0<x 1<x 2,则y 1 与y 2大小关系是y 1 y 2 ②若x 1<0<x 2,则y 1 与y 2大小关系是y 1 y 2 ③若x 1<x 2,则y 1 与y 2大小关系是 。

(2)已知y=x k (k > 0)的图象上有两点A (x 1,y 1)、B(x 2,y 2) ①若x 1<x 2<0,则y 1 与y 2大小关系是y 1 y 2 ;若0<x 1<x 2,则y 1 与y 2大小关系是y 1 y 2 ②若x 1<0<x 2,则y 1 与y 2大小关系是y 1 y 2 ③若x 1<x 2,则y 1 与y 2大小关系是 。 注意2:反比例函数图象是以原点为对称中心的中心对称图形,是以直线y=x 和y=x -为对称轴的轴对称图形。 【例1】在反比例函数x y 1-=的图像上有三点(1x ,)1y ,(2x ,)2y ,(3x ,)3y 。若 3210x x x >>>则下列各式正确的是( ) A .213y y y >> B .123y y y >> C .321y y y >> D .231y y y >> 练习: 1.下列函数中,y 随x 增大而增大的是_______ A y=-x+1 B y=x 43- C y=x 21 D y=2x-1 2.反比例函数y=x k 图象在第二四象限,则一次函数y=kx-5的图象不经过_____象限。 3.在同直角坐标系中,函数y=kx-k 与y=x k (k ≠0)的图象大致是___________。

最新初中数学反比例函数图文解析

最新初中数学反比例函数图文解析 一、选择题 1.如图,Rt△AOB中,∠AOB=90°,AO=3BO,OB在x轴上,将Rt△AOB绕点O顺时针旋 转至△RtA'OB',其中点B'落在反比例函数y=﹣2 x 的图象上,OA'交反比例函数y= k x 的图象 于点C,且OC=2CA',则k的值为() A.4 B.7 2 C.8 D.7 【答案】C 【解析】 【详解】 解:设将Rt△AOB绕点O顺时针旋转至Rt△A'OB'的旋转角为α,OB=a,则OA=3a,由题意可得,点B′的坐标为(acosα,﹣asinα),点C的坐标为(2asinα,2acosα), ∵点B'在反比例函数y=﹣2 x 的图象上, ∴﹣asinα=﹣ 2 acosα ,得a2sinαcosα=2, 又∵点C在反比例函数y=k x 的图象上, ∴2acosα= k 2asinα ,得k=4a2sinαcosα=8. 故选C. 【点睛】 本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于先设旋转角为α,利用旋转的性质和三角函数设出点B'与点C的坐标,再通过反比例函数的性质求解即可. 2.下列函数中,当x>0时,函数值y随自变量x的增大而减小的是() A.y=x2B.y=x C.y=x+1 D. 1 y x

【答案】D 【解析】 【分析】 需根据函数的性质得出函数的增减性,即可求出当x>0时,y随x的增大而减小的函数.【详解】 解:A、y=x2是二次函数,开口向上,对称轴是y轴,当x>0时,y随x的增大而增大,错误; B、y=x是一次函数k=1>0,y随x的增大而增大,错误; C、y=x+1是一次函数k=1>0,y随x的增大而减小,错误; D、 1 y x =是反比例函数,图象无语一三象限,在每个象限y随x的增大而减小,正确; 故选D. 【点睛】 本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键. 3.在同一平面直角坐标系中,反比例函数y b x =(b≠0)与二次函数y=ax2+bx(a≠0)的 图象大致是() A.B. C.D. 【答案】D 【解析】 【分析】 直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案. 【详解】 A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a,b异号,即 b<0.所以反比例函数y b x =的图象位于第二、四象限,故本选项错误; B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a,b同号,即

八年级数学反比例函数同步练习题人教版

反比例函数练习题 [A 组] 1、下列函数中,哪些是反比例函数?( ) (1)y=-3x ; (2)y=2x+1; (3) y=-x 2 ;(4)y=3(x-1)2+1; 2、下列函数中,哪些是反比例函数(x 为自变量)?说出反比例函数的比例系数: (1) x y 1 -= ;(2)xy=12 ;(3) xy=-13 (4)y=3x 3、列出下列函数关系式,并指出它们是分别什么函数.说出比例系数 ①火车从安庆驶往约200千米的合肥,若火车的平均速度为60千米/时,求火 车距离安庆的距离S(千米)与行驶的时间t(时)之间的函数关系式 ②某中学现有存煤20吨,如果平均每天烧煤x 吨,共烧了y 天,求y 与x 之间的函数关系式. 4、.已知一个长方体的体积是100立方厘米,它的长是ycm ,宽是5cm ,高是xcm . (1) 写出用高表示长的函数式; (2) 写出自变量x 的取值范围; (3) 当x =3cm 时,求y 的值 5、已知y 与x 成反比例,并且x =3时y =7,求: (1)y 和x 之间的函数关系式; (2)当1 3x =时,求y 的值; (3)y =3时,x 的值。 7、写出一个经过点(-3,6)的反比例函数 你还能写出另外一个也经过点(-3,6)的双曲线吗? 8、当m 为何值时,函数 224-=m x y 是反比例函数,并求出其函数解析式. 9、已知y 成反比例,且当4b =时,1y =-。 求当10b =时,y 的值。 10:画出下列函数双曲线,y=-x 2 的图象,已知点A (-3,a )、B (-2,b ),C(4,

c)在双曲线,y=-x 2 的图象令上,请把a,b,c 按从小到大的顺序进行排列. [B 组] 11、已知函数221()m y m m x -=+,当m 取何值时(1)是正比例函数;(2)是反比 例函数。 12、(1)已知y =y1+y2,y1与x 成正比例,y2与x 成反比例, 并且x =2和x =3时,y 的值都等于 19.求y 和x 之间的函数关系式 (2)若y 与2 x -2成反比例,且当x=2时,y=1,则y 与x 之间的关系式为 13、(03广东)如图1,某个反比例函数的图像经过点P .则它的解析式( ) (A ) x y 1=(x >0) (B )x y 1-= (x >0) (C )x y 1=(x <0) (D )x y 1-= (x <0) 第二课时 [A 组]

初中八年级数学反比例函数

八年级下数学周末测试(3)---反比例函数3.25 出卷:陈国萍,审卷:史珏 姓名 成绩 一、选择(每题3分) (1)下列函数中y 是x 的反比例函数的有( )个 (1)x a y = (2)xy= -1 (3)11 +=x y (4)13y x = A 1 B 2 C 3 D 4 (2)函数5 2 )2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数(4)若反比例函数 2 2)12(--=m x m y 的图象在第二、四象限,则m 的值是( ) A 、 -1或1; B 、小于1 2 的任意实数; C 、-1; D、不能确定 (5)已知0k >,函数y kx k =+和函数k y x =在同一坐标系内的图象大致( ) (6)下列函数中,当0x < 时,y 随x 的增大而增大的是( ) A .34y x =-+ B .123 y x =-- C .4 y x =- D .12y x =. (7)若点(1x ,1y )、(2x ,2y )和(3x ,3y )分别在反比例函数2 y x =- 的图 象上,且1230x x x <<<,则下列判断中正确的是( ) A .123y y y << B .312y y y << C .231y y y << D .321y y y << (8)矩形的面积为6cm 2 ,那么它的长y (cm )与宽x (cm )之间的函数关系用图象 表示为( ) x x x x

初二数学反比例函数测试题

反比例函数测试题 一、选择题 1.反比例函数y =-4 x 的图象在 ( ) A .第一、三象限 B .第二、四象限 C .第一、二象限 D .第三、四象限 2.已知关于x 的函数y =k (x +1)和y =-k x (k ≠0)它们在同一坐标系中的大致图象是 (? ) 3.已知反比例函数y = x k 的图象经过点(m ,3m ),则此反比例函数的图象在 ( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限 4.函数x k y = 的图象经过点(-4,6),则下列各点中在x k y = 图象上的是( ) A 、(3,8) B 、(3,-8) C 、(-8,-3) D 、(-4,-6) 5.正比例函数kx y =和反比例函数 x k y =在同一坐标系内的图象为( ) A B C D 6.在同一直角坐标平面内,如果直线x k y 1=与双曲线x k y 2=没有交点,那么1k 和2k 的 关系一定是( ) A 、1k <0,2k >0 B 、1k >0,2k <0 C 、1k 、2k 同号 D 、1k 、2k 异号 7.已知 一次函数y=kx+b 的图像经过第一二四象限 则反比例函数x kb y = 的图像在 ( ) A 第一二象限 B 第三 四象限 C 第一三象限 D 第二三象限 y x o y x o y x o y x o

二、填空题:(3分×10=30分) 1、y 与x 成反比例,且当y =6时,3 1= x ,这个函数解析式为 ; 2、当路程s 一定时,速度v 与时间t 之间的函数关系是 ;(填函数类型) 3、函数2 x y - =和函数x y 2= 的图象有 个交点; 4、反比例函数x k y =的图象经过(-2 3,5)点、(a ,-3)及(10,b )点, 则k = ,a = ,b = ; 5、若函数()()414-+-=m x m y 是正比例函数,那么=m ,图象经过 象 限; 6、已知y 与x -2成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ; 7、右图3是反比例函数x k y 2-=的图象,则k 的取值范围是 . 8、函数x y 2- =的图象,在每一个象限内,y 随x 的增大 而 ; 9、反比例函数x y 2= 在第一象限内的图象如图,点M 是图象上 一点,MP 垂直x 轴于点P ,则△MOP 的面积为 ; 10、()5 2 2--=m x m y 是y 关于x 的反比例函数,则m 值为 ; (三)解答题 1、已知一次函数b kx y +=与反比例函数x m y =的图像交于A (—2 ,1) B (1 ,n ) 俩点。求 ⑴ 反比例函数和一次函数的表达式? ⑵ 求△AOB 的面积? y x O P M

苏科版八年级下册数学总复习

苏科版八年级下册数学总复习 一、选择题 1.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD, AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有 A.1组B.2组C.3组D.4组 2.将下列分式中x,y(xy≠0)的值都扩大为原来的2倍后,分式的值一定不变的是() A.31 2 x y + B.2 3 2 x y C. 2 3 2 x xy D. 3 2 3 2 x y 3.下列调查中,适合采用普查的是() A.了解一批电视机的使用寿命B.了解全省学生的家庭1周内丢弃塑料袋的数量 C.为保证某种新研发的战斗机试飞成功,对其零部件进行检查D.了解扬州市中学生的近视率 4.下列命题中,是假命题的是() A.平行四边形的两组对边分别相等B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形 5.如图,在周长为20cm的平行四边形ABCD中,AB≠AD,AC和BD相交于点O, OE⊥BD交AD于E,则ΔABE的周长为() A.4cm B.6cm C.8cm D.10cm 6.如果a= 32 + ,b=3﹣2,那么a与b的关系是() A.a+b=0 B.a=b C.a=1 b D.a>b 7.如图,?ABCD的周长为22m,对角线AC、BD交于点O,过点O与AC垂直的直线交边AD于点E,则△CDE的周长为() A.8cm B.9cm C.10cm D.11cm 8.反比例函数 3 y x =-,下列说法不正确的是() A.图象经过点(1,-3) B.图象位于第二、四象限C.图象关于直线y=x对称D.y随x的增大而增大

初二数学反比例函数测试题

初二数学反比例函数测 试题 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

反比例函数测试题 一、选择题 1.反比例函数y =-4 x 的图象在 ( ) A .第一、三象限 B .第二、四象限 C .第一、二象限 D .第三、四象限 2.已知关于x 的函数y =k (x +1)和y =-k x (k ≠0)它们在同一坐标系中的大致图象是(? ) 3.已知反比例函数y =x k 的图象经过点(m ,3m ),则此反比例函数的图象在 ( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限 4.函数x k y = 的图象经过点(-4,6),则下列各点中在x k y =图象上的是( ) A 、(3,8) B 、(3,-8) C 、(-8,-3) D 、(-4,-6) 5.正比例函数kx y =和反比例函数 k y =在同一坐标系内的图象为( ) D 6.1k 和2k 的关系一定是( ) A 、1k <0,2k >0 B 、1k >0,2k <0 C 、1k 、2k 同号 D 、1k 、2k 异号 7.已知 一次函数y=kx+b 的图像经过第一二四象限 则反比例函数x kb y =的图像在( ) A 第一二象限 B 第三 四象限 C 第一三象限 D 第二三象限 二、填空题:(3分×10=30分)

1、y 与x 成反比例,且当y =6时,3 1 = x ,这个函数解析式为 ; 2、当路程s 一定时,速度v 与时间t 之间的函数关系是 ;(填函数类型) 3、函数2x y -=和函数x y 2 =的图象有 个交点; 4、反比例函数x k y =的图象经过(-23 ,5)点、(a ,-3)及(10,b )点, 则k = ,a = ,b = ; 5、若函数()()414-+-=m x m y 是正比例函数,那么=m ,图象经过 象限; 6、已知y 与x -2成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ; 7、右图3是反比例函数x k y 2 -= 的图象,则k 的取值范围是 . 8、函数x y 2 -=的图象,在每一个象限内,y 随x 的增大 而 ; 9、反比例函数x y 2 =在第一象限内的图象如图,点M 是 图象上 一点,MP 垂直x 轴于点P ,则△MOP 的面积为 ; 10、()5 22--=m x m y 是y 关于x 的反比例函数,则m 值 为 ; (三)解答题 1、已知一次函数b kx y +=与反比例函数x m y = 的图像交于A (—2 ,1) B (1 ,n )俩点。求 ⑴ 反比例函数和一次函数的表达式? ⑵ 求△AOB 的面积? 2、如图所示:已知直线y= x 21与双曲线y=)0(>k x k 交于A B两点,且点A的横坐标为4 ⑴ 求k的值? y O P M

苏科版八年级数学下册知识点

苏教版八年级数学下册知识点总结归纳 第七章:数据的整理、收集、描述 知识概念 抽样与样本 1.全面调查:考察全体对象的调查方式叫做全面调查。 2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。 3.总体:要考察的全体对象称为总体。 4.个体:组成总体的每一个考察对象称为个体。 5.样本:被抽取的所有个体组成一个样本。 6.样本容量:样本中个体的数目称为样本容量。 频率分布 1、频率分布的意义 在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布。 2、研究频率分布的一般步骤及有关概念 (1)研究样本的频率分布的一般步骤是:

①计算极差(最大值与最小值的差) ②决定组距与组数 ③决定分点 ④列频率分布表 ⑤画频率分布直方图 (2)频率分布的有关概念 ①极差:最大值与最小值的差 ②频数:落在各个小组内的数据的个数 ③频率:每一小组的频数与数据总数(样本容量n)的比值叫做这一小组的频率。 第八章:认识概率 确定事件和随机事件 1、确定事件 必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。 不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。 2、随机事件: 在一定条件下,可能发生也可能不放声的事件,称为随机事件。 随机事件发生的可能性 一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。

对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。 概率的意义与表示方法 1、概率的意义 一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。 2、事件和概率的表示方法 一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P 确定事件和随机事件的概率之间的关系 1、确定事件概率 e(2)当A是不可能发生的事件时,P(A)=0 2、确定事件和随机事件的概率之间的关系 不可能事件随机事件必然事件 古典概型 1、古典概型的定义 某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。我们把具有这两个特点的试验称为古典概型。 2、古典概型的概率的求法

(完整版)最新苏教版八年级下册数学第十一章反比例函数

第十一章 反比例函数一、基础知识 1.定义:一般地,形如 x k y (k 为常数,o k )的函数称为反比例函数。x k y 还可以写 成kx y 12.反比例函数解析式的特征: ⑴等号左边是函数y ,等号右边是一个分式。分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为 1. ⑵比例系数0 k ⑶自变量x 的取值为一切非零实数。 ⑷函数y 的取值是一切非零实数。 3.反比例函数的图像 ⑴图像的画法:描点法 ①列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ②描点(有小到大的顺序) ③连线(从左到右光滑的曲线) ⑵反比例函数的图像是双曲线,x k y (k 为常数,0k )中自变量0x ,函数值0y , 所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。 ⑶反比例函数的图像是是轴对称图形(对称轴是 x y 或x y )。⑷反比例函数x k y (0k )中比例系数k 的几何意义是:过双曲线 x k y (0k )上任意引x 轴y 轴的垂线,所得矩形面积为 k 。4.反比例函数性质如下表:

k 的取值 图像所在象限函数的增减性o k 一、三象限在每个象限内,y 值随x 的增大而减小o k 二、四象限在每个象限内,y 值随x 的增大而增大 5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可 求出k ) 6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数 ,但是反比例函数x k y 中的两个变量必成反比例关系。 7. 反比例函数的应用

苏科版八年级数学下册期末试卷及答案苏科版

苏 教 版 八 年 级 数 学 试 题 (满分:150分,时间:120分钟) 一、选择题(每小题3分,共24分)每题有且只有一个答案正确,请把你认为正确的答案前面的字母填入下表相应的空格内. 1.不等式24x <的解集是 ( ) A 2x < B 2x > C D 2.若分式 的值为0,则x 的值为 ( ) A 0 B 1 C 1- 3.如图,直线1l ∥2l ,若155,265∠=?∠=?,则3∠为A 50? B 55? C 60? D 65? 4.反比例函数 的图象位于 ( ) A 第一、二象限 B 第三、四象限 C 第一、三象限 D 第二、四象限 5.两个相似多边形的一组对应边分别为3cm 和4cm ,如果小多边形周长为15cm ,那么较大的多边形的周长为 ( ) A 15cm B 18cm C 20cm D 25cm 6.甲、乙两名工人加工某种零件,已知甲每天比乙多加工5个零件,甲加工80个零件和乙加工70个零件所用的天数相同.设甲每天加工x 个零件,则根据题意列出的方程是( ) A 5 70 80+=x x B x x 70580=- C x x 70580=+ D 5 70 80-=x x 7.给出下面四个命题:( ) (1) 全等三角形是相似三角形 (2) 顶角相等的两个等腰三角形是相似三角形 (3) 所有的等边三角形都相似 12x >12 x <1 2 x x +-6 y x =-

(4) 所有定理的逆命题都是真命题 其中真命题的个数有 A 1个 B 2个 C 3个 D 4个 8.如图,,A B 是函数 的图象上关于原点对称的两点, BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( ) A 2S = B 4S = C 24S << D 4S > 二、填空题(每小题3分,共30分)将答案填写在题中横线上. 9.如果11-=-a a ,那么a 的取值范围是 . 10.在比例尺1∶8000000的地图上,量得甲地到乙地的距离为6厘米,则甲地到乙地的实际距离为 千米. 11.已知 54y x =,则=-x x y . 12.命题“面积相等的三角形是全等三角形”的逆命题是: . 13.已知线段10AB =, 点C 是线段AB 上的黄金分割点(AC >BC),则AC 长 是 (精确到0.01) . 14.不等式组? ? ?-3232 x x >x <的解集为 . 15.若方程 有增根,则m = . 16.一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个,红球3个.若从中任意摸出一个球,这个球是白球的概率为 . 17.已知关于x 的不等式(1)1a x a ->-的解集为x <1,则a 的取值范围是 . 第8题图 2y x =28 8 x m x x =+ --

苏科版八年级下册数学期中试卷及答案百度文库

苏科版八年级下册数学期中试卷及答案百度文库 一、选择题 1.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C 的对应点为点F,若BE=6cm,则CD=( ) A.4cm B.6cm C.8cm D.10cm 2.如图,正方形ABCD中,点E是AD边的中点,BD,CE交于点H,BE、AH交于点G,则下列结论: ①∠ABE=∠DCE;②∠AHB=∠EHD;③S△BHE=S△CHD;④AG⊥BE.其中正确的是() A.①③B.①②③④C.①②③D.①③④ 3.如图,函数 k y x =-与1 y kx =+(0 k≠)在同一平面直角坐标系中的图像大致 () A.B. C.D. 4.我们把顺次连接四边形各边中点所得的四边形叫做中点四边形.若一个任意 ..四边形的面积为a,则它的中点四边形面积为() A.1 2 a B. 2 3 a C. 3 4 a D. 4 5 a 5.若分式 5 x x - 的值为0,则() A.x=0 B.x=5 C.x≠0 D.x≠5 6.下列分式中,属于最简分式的是()

A.6 2a B. 2 x x C. 1 1 x x - - D. 21 x x+ 7.在□ABCD中,∠A=4∠D,则∠C的大小是() A.36°B.45°C.120°D.144° 8.下列说法正确的是() A.矩形的对角线相等垂直B.菱形的对角线相等 C.正方形的对角线相等D.菱形的四个角都是直角 9.在四边形中,能判定这个四边形是正方形的条件是() A.对角线相等,对边平行且相等B.一组对边平行,一组对角相等 C.对角线互相平分且相等,对角线互相垂直 D.一组邻边相等,对角线互相平分10.甲、乙、丙、丁四位同学在这一学期4次数学测试中平均成绩都是95分,方差分别是 2.2 S= 甲, 1.8 S= 乙 , 3.3 S= 丙 ,S a = 丁 ,a是整数,且使得关于x的方程 2 (2)410 a x x -+-=有两个不相等的实数根,若丁同学的成绩最稳定,则a的取值可以是() A.3B.2C.1D.1- 11.“明天下雨的概率是80%”,下列说法正确的是() A.明天一定下雨B.明天一定不下雨 C.明天下雨的可能性比较大D.明天80%的地方下雨 12.下列判断正确的是() A.对角线互相垂直的平行四边形是菱形B.两组邻边相等的四边形是平行四边形C.对角线相等的四边形是矩形D.有一个角是直角的平行四边形是正方形二、填空题 13.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分,若菱形的面积为20cm2,则阴影部分的面积为_____cm2. 14.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若 ∠A’DC=90°,则∠A= °.

相关文档
最新文档