SAT 数学教程全解析

合集下载

SAT数学统计知识点详解

SAT数学统计知识点详解

三立教育
SAT数学统计知识点详解
三立在线SAT频道为大家带来SAT数学统计知识点详解一文,希望对大家SAT备考有所帮助。

更多精彩尽请关注三立在线SAT频道!
统计Statistics
目前,中国的高中课程中也引入了基本的统计概念和计算公式。

比方说,所有学生都应该熟悉以下的一些基本统计概念:
(算数)平均数Mean (aka.: arithmetic mean):包括简单的算数平均数和加权平均数(weighted mean)。

注意:几何平均数目前在SAT中没有考过。

中数Median:即50% percentile。

将所有数字从大到小(或者从小到大)依次排列,居于最中间的一个数(奇数数列)或者两个数的算数平均值(偶数数列)。

众数Mode:在数列中出现频率最大的数。

如果有两个数出现的频率并列最大,那么这两个数都是众数。

值域Range: 数列中的最大值与最小值的差值。

方差Variance与标准差Standard Deviation:衡量数字的零散程度的统计指标。

目前SAT中还没有考到这两个指标的公式,因此这里我先暂时省略公式。

考核的重点是对于standard deviation的概念的本质理解。

考试的时候,这些基本概念会和图表等题型结合起来考察学生。

2024 SAT考试历年真题数学专题全解

2024 SAT考试历年真题数学专题全解

2024 SAT考试历年真题数学专题全解2024年SAT考试数学部分依然是考生们最为担心和重视的科目之一。

为了帮助广大考生更好地应对考试,本文将为大家提供全面的2024 SAT考试历年真题数学专题全解。

通过对历年真题的详细解析,希望能够帮助考生们更好地掌握数学知识和解题技巧。

一、整数与小数整数与小数是SAT数学中一个重要的基础知识点。

在解题过程中,考生需要灵活运用整数与小数之间的转换以及四则运算等概念。

在解题过程中,考生应注意以下几点:1.了解整数与小数之间的转换关系。

2.掌握四则运算的基本规则。

3.注意小数位数计算和精确度问题。

二、代数与方程代数与方程是SAT数学中的核心内容之一。

考生需要熟练掌握代数运算的基本规则,灵活运用代数方程知识解题。

在解题过程中,考生应注意以下几点:1.理解代数方程的含义和定义。

2.熟悉代数运算的基本规则。

3.运用代数方程的性质和解题技巧。

三、几何与三角学几何与三角学是SAT数学中的另一个重要内容。

考生需要掌握几何图形的性质和运算规则,灵活运用三角学知识解题。

在解题过程中,考生应注意以下几点:1.掌握几何图形的基本性质和定义。

2.熟练运用三角学的相关概念和运算规则。

3.注意几何图形的变换和投影等问题。

四、数据与统计数据与统计是SAT数学中的重要内容之一。

考生需要了解数据分析和统计学的基本概念,掌握数据处理和统计方法。

在解题过程中,考生应注意以下几点:1.熟悉数据分析和统计学的基本概念。

2.掌握数据处理和统计方法。

3.灵活运用数据与统计知识解题。

五、概率与排列组合概率与排列组合是SAT数学中的难点之一。

考生需要掌握概率和排列组合的基本概念,灵活运用相关知识解题。

在解题过程中,考生应注意以下几点:1.理解概率和排列组合的基本概念。

2.熟悉概率和排列组合的运算规则。

3.注意概率和排列组合在实际问题中的应用。

通过对以上五个数学专题的全面解析与讲解,相信考生们已经对2024 SAT考试数学部分有了更深入的理解与掌握。

SAT考试2024数学历年题目全解

SAT考试2024数学历年题目全解

SAT考试2024数学历年题目全解SAT考试是一项全球性的标准化考试,旨在评估学生在阅读、写作和数学方面的能力。

数学部分是SAT考试的一个重要组成部分,涵盖了各种数学概念和技巧。

本文将为您提供2024年SAT数学部分的历年题目全解,帮助您更好地应对这一考试。

第一题:题目:求解以下方程:3x + 5 = 20解析:要求解方程3x + 5 = 20,我们首先将5从等式两边减去,得到3x = 15。

然后,我们将方程两边都除以3,即x = 5。

因此,方程的解为x = 5。

第二题:题目:计算以下比例的值:5:8 = x:40解析:要计算比例5:8与x:40的值,我们可以采取交叉乘法的方法。

将5乘以40,并将结果除以8,即可求得x的值。

计算过程如下:5 * 40 / 8 = 200 / 8 = 25因此,比例5:8与x:40的值为25。

第三题:题目:已知一个等边三角形的边长为12,计算其面积。

解析:一个等边三角形的边长为12,则其高可以通过勾股定理求得。

根据勾股定理,我们有:高的平方= 边长的平方- 底边的一半的平方。

设高为h,则有 h^2 = 12^2 - (12/2)^2= 144 - 36= 108因此,高h = √108 = 6√3由于等边三角形的高等于边长的一半乘以根号3,所以面积S可以计算为:S = 1/2 * 12 * 6√3= 6 * 6√3= 36√3因此,该等边三角形的面积为36√3。

第四题:题目:在一个长方形花坛中,长度是宽度的3倍,已知宽度为2米,计算花坛的面积。

解析:我们知道长方形花坛的面积可以通过长度乘以宽度来计算。

已知宽度为2米,则长度为3 * 2 = 6米。

因此,花坛的面积为2 * 6 =12平方米。

通过以上题目的解析,我们可以看到SAT数学部分考察了各种数学概念和技巧,包括方程的求解、比例的计算、勾股定理的应用以及长方形面积的计算等。

熟练掌握这些数学知识,并能够灵活运用于实际问题的解决中,将有助于您在SAT考试中取得更好的成绩。

SAT考试数学历年真题全解2024年版

SAT考试数学历年真题全解2024年版

SAT考试数学历年真题全解2024年版在备考SAT考试过程中,熟悉并掌握历年真题是一项重要的任务。

通过解析历年真题,考生可以了解考试的出题风格、难度以及考察的知识点,有助于提高备考效果。

本文将为您提供2024年版本的SAT考试数学部分历年真题全解,帮助您更好地备考。

下面将根据考试的各个部分,逐一解析2024年版SAT数学部分的历年真题。

第一部分:选择题解析选择题是SAT数学部分最主要的题型,考生需要在给定的选项中选择正确答案。

以下是2024年版SAT数学选择题的解析:1. 题目描述2. 解析3. 答案解释4. 解题思路通过对每个选择题的详细解析,考生可以了解题目的解题思路、关键步骤以及答案的解释。

在解析选择题过程中,本文将注重解题思路的讲解,帮助考生更好地理解解题的方法和技巧。

第二部分:填空题解析填空题是SAT数学部分的另一种题型,与选择题不同的是,填空题要求考生填写一个具体的数值或表达式。

以下是2024年版SAT数学填空题的解析:1. 题目描述2. 解析3. 答案解释4. 解题思路通过对每个填空题的详细解析,考生可以了解填空题的解题方法和技巧。

在解析填空题过程中,本文将注重解题思路的讲解,帮助考生更好地理解解题的方法和技巧。

第三部分:解答题解析解答题是SAT数学部分的较难题型,要求考生根据题目给出的条件和要求,用数学方法进行解答。

以下是2024年版SAT数学解答题的解析:1. 题目描述2. 解答步骤3. 解答思路4. 结论通过对每个解答题的分步解析,考生可以了解解答题的解题方法和技巧。

在解析解答题过程中,本文将注重解答步骤和思路的讲解,帮助考生更好地理解解题的方法和技巧。

结语通过对2024年版SAT数学部分历年真题的全面解析,考生可以更加深入地了解考试的出题方式和要求,提高备考效果。

同时,解析中的解题思路和技巧也可以帮助考生更好地掌握数学知识和解题方法。

在备考过程中,考生可以结合解析内容进行针对性的练习和复习,提高数学部分的得分。

SAT考试2024数学历年真题全视角

SAT考试2024数学历年真题全视角

SAT考试2024数学历年真题全视角SAT考试是全球范围内备受关注的一项重要考试,对于申请美国高校的学生来说具有重要的意义。

而数学部分一直是考生们普遍关注的焦点。

本文将全面深入地探讨SAT考试2024年数学部分的历年真题,带您以全视角认识这一难点。

通过对历年真题的分析,希望能够为考生们提供一些有益的建议和解题思路,提高大家的数学水平。

1. Algebra(代数)代数部分是SAT数学部分的重头戏之一,其中包含了一系列高中数学的基本知识和概念。

历年真题中常涉及到的内容包括方程、不等式、函数以及图形等。

这些题目往往要求考生熟练掌握求解方程、图像分析和函数变化等技巧。

例题:给定一个二次方程 y = ax^2 + bx + c,已知该二次方程的图像经过点 P(1, 4) 和 Q(3, 16),求 a、b 和 c 的值。

解析:根据已知条件,我们可以列出两个方程:4 = a + b + c (代入点P的坐标)16 = 9a + 3b + c (代入点Q的坐标)通过联立这两个方程进行求解,我们可以得到 a、b 和 c 的值。

这类题目常涉及二次方程的性质和应用,需要考生熟练掌握解二次方程、理解二次函数图像等知识点。

2. Geometry(几何)几何部分是SAT数学部分的另一个重要内容,主要考察学生对几何概念、图形性质和几何推理的理解。

历年真题中的几何题目大多数是多步解题,需要考生利用几何知识进行推理和分析。

例题:在一个平面直角坐标系中,点 A(-3, 2) 和点 B(4, -1) 分别为线段 AB 的两个端点。

如果点 C(-1, -5) 在线段 AB 上,求点 C 的坐标。

解析:通过计算 AB 的斜率和 AC 的斜率可以判断点 C 是否在线段AB 上。

然后可以通过线段的中点公式来计算点 C 的坐标。

此类题目要求考生掌握直线和线段的性质、坐标点的计算等知识,能够熟练运用它们来解答几何问题。

3. Data Analysis(数据分析)数据分析部分是近年来SAT数学部分中新增的一部分内容,主要考察考生对数据收集、理解和分析的能力。

2024年SAT考试数学真题深度解读

2024年SAT考试数学真题深度解读

2024年SAT考试数学真题深度解读在2024年的SAT考试数学部分中,出现了一系列挑战性的问题,涵盖了几个重要的数学概念和技巧。

本文将对这些问题进行深度解读,帮助同学们更好地理解题目,并为他们提供解题思路和解题技巧。

问题1:在一个三角形ABC中,角A的度数是50。

已知边AB与BC的长度分别为5和8,求边AC的长度。

解析:首先,我们可以利用三角形的角度之和为180度的性质,求得角B为130度。

然后,我们可以使用余弦定理来求解边AC的长度。

根据余弦定理,我们有:AC^2 = AB^2 + BC^2 - 2 * AB * BC * cosA代入已知值,我们可以得到:AC^2 = 5^2 + 8^2 - 2 * 5 * 8 * cos50通过计算,我们可以得到AC的长度为约9.18。

问题2:已知函数f(x) = 2x^3 + 3x^2 - 4x + 1,求f'(2)的值。

解析:我们需要求函数f(x)在x = 2处的导数值,即f'(2)。

首先,我们对函数f(x)进行求导,得到f'(x) = 6x^2 + 6x - 4。

然后,将x = 2代入f'(x)中,我们可以计算得到f'(2)的值为28。

问题3:已知一个等差数列的第一个项为a,公差为d。

如果这个数列的第100项是200,求a和d的值。

解析:由于等差数列的通项公式为an = a + (n - 1)d,我们可以得到第100项的表达式a + 99d = 200。

而且,我们还知道该数列的第1项即为a,因此可以得到第1项的表达式a + 0d = a。

由题意可知,第100项与第1项的差值为99d,即200 - a = 99d。

将这两个方程组合起来,我们可以得到一个二元一次方程组:a + 99d = 200200 - a = 99d通过求解这个方程组,我们可以得到a的值为101,d的值为1。

问题4:某公司的销售额在过去的几年呈现如下的增长趋势:2019年为100万,2020年为120万,2021年为140万。

SAT考试2024数学历年题目精讲

SAT考试2024数学历年题目精讲在本篇文章中,我们将重点讲解SAT考试2024年数学部分的历年题目。

我们将按照题目类型进行分类,并为每个题型提供详细的解答和解题技巧,帮助考生更好地应对这些题目。

一、单选题1. 题目描述:某汽车展厅共展出了150辆汽车,其中的三分之一是SUV车型,四分之一是轿车车型,其余的是其他车型。

问展厅中轿车车型的数量是多少?解答与技巧:首先,计算出SUV车型的数量:150 * (1/3) = 50辆。

然后,计算出其他车型的数量:150 - 50 - 150 * (1/4) = 50辆。

所以,轿车车型的数量是50辆。

2. 题目描述:某商场举办了一次打折活动,原价100元的商品现在只需80元购买。

如果小明购买了3件该商品,他需要支付多少钱?解答与技巧:首先,计算出每件商品的折扣金额:100 - 80 = 20元。

然后,计算出小明需要支付的金额:3 * 20 = 60元。

所以,小明需要支付60元。

二、多选题1. 题目描述:以下哪些数是正整数?(A)-1(B)0(C)1(D)2解答与技巧:在SAT考试中,如果题目要求选择多个选项,我们需要仔细审题。

在这个题目中,需要选择正整数,所以选项B和A都不是正整数。

所以正确答案是(C)和(D)。

2. 题目描述:以下哪些图形具有对称性?(A)正方形(B)长方形(C)圆形(D)三角形解答与技巧:我们需要判断每个选项是否具有对称性。

在这个题目中,正方形和圆形都具有对称轴,所以正确答案是(A)和(C)。

三、填空题1. 题目描述:若a + a^-1 = 5,求a^2 + a^-2的值。

解答与技巧:首先,我们可以对等式两边进行平方操作,得到a^2+ 2 + a^(-2) = 25。

然后,我们需要解方程,将等式左边与右边的常数项进行抵消,得到a^2 + a^(-2) = 23。

2. 题目描述:某比赛共有10个选手参加,其中3个选手退出比赛,剩余的选手中将决出第一名、第二名和第三名。

SAT考试专题2024数学历年题目解析

SAT考试专题2024数学历年题目解析2024年的SAT考试将继续囊括数学科目,下面将对该年度的数学部分历年题目进行解析,帮助考生更好地准备SAT数学考试。

1. 第一题解析该题目是一道代数题,要求求解方程:3x + 5 = 20。

解题思路:将方程中的变量与常数项分离,得到:3x = 20 - 5。

计算得:3x = 15,再将等式两边同时除以3,得到:x = 5。

因此,方程的解为x = 5。

2. 第二题解析该题目是一道几何题,要求计算三角形的面积。

解题思路:已知三角形的底边长度为6,高为8。

直接使用三角形面积公式:面积 = 底边长度 ×高 ÷ 2。

代入已知的数值进行计算:面积 = 6 × 8 ÷ 2 = 24。

因此,该三角形的面积为24平方单位。

3. 第三题解析该题目是一道概率题,要求计算从一副标准扑克牌中随机抽取一张牌,该牌为红桃的概率。

解题思路:一副标准扑克牌中共有52张牌,其中有13张红桃牌。

因此,红桃牌的概率为:概率 = 红桃牌数目 ÷总牌数目。

代入已知数值进行计算:概率 = 13 ÷ 52 = 1 ÷ 4 = 0.25。

因此,从一副标准扑克牌中随机抽取一张牌,该牌为红桃的概率为0.25。

4. 第四题解析该题目是一道函数题,要求计算函数的值。

解题思路:已知函数 f(x) = 2x^2 + 3x + 1,需要计算当 x = 2 时的函数值。

将 x = 2 代入函数表达式中,得到:f(2) = 2 × 2^2 + 3 × 2 + 1。

计算得:f(2) = 8 + 6 + 1 = 15。

因此,当 x = 2 时,函数 f(x) 的值为15。

5. 第五题解析该题目是一道统计题,要求根据给定的数据计算平均数。

解题思路:已知一组数据为:10, 12, 15, 18, 20。

需要计算这组数据的平均数。

平均数的计算公式为:平均数 = 总和 ÷数据个数。

SAT数学题型全解析

SAT数学题型全解析SAT(Scholastic Assessment Test)是美国大学入学考试,其中数学部分是SAT数学考试。

SAT数学考试主要测试学生在数学领域的基本知识和解决问题的能力。

本文将全面解析SAT数学考试的各种题型,并给出相应解题策略和技巧。

一、选择题SAT数学考试中的选择题分为两种:无计算器部分和有计算器部分。

无计算器部分包括多项式、代数、几何和数据分析等题型,而有计算器部分包括数据分析和统计、概率和二次方程等题型。

1. 多项式题型多项式题型主要考察学生对多项式的理解和运算能力。

解题技巧包括:- 将多项式展开,化简,合并同类项;- 利用因式分解;- 利用韦达定理求根等。

2. 代数题型代数题型主要考察学生的代数运算和方程组的解题能力。

解题技巧包括:- 利用等式的性质进行等式推导;- 运用代数运算规则,如消元法、合并同类项等;- 运用代数方程的求解方法,如变量替换、联立方程等。

3. 几何题型几何题型主要考察学生对几何形状和关系的理解和分析能力。

解题技巧包括:- 运用几何形状的性质和定理,如角度的性质、平行线的性质等;- 利用图形的特点进行推理和证明;- 运用三角形的性质和相似三角形的判定等。

4. 数据分析题型数据分析题型主要考察学生对数据的理解和分析能力。

解题技巧包括:- 对数据进行图表分析,如线图、柱状图、饼图等;- 运用统计学的相关概念和方法,如平均值、中位数、标准差等;- 运用概率的知识进行问题求解。

二、解答题解答题在SAT数学考试中占比较小,主要考察学生的解决实际问题的能力和应用数学知识的能力。

解答题的解题步骤和策略如下:- 仔细阅读问题,理解问题的要求和条件;- 找到解题思路,确定解题方法和公式;- 进行计算或推导,得到解答并进行合理的估算;- 检查答案是否符合问题的要求,并对解题过程进行合理的陈述。

总之,SAT数学考试是对学生数学知识和解决问题能力的综合考察,掌握相应的解题技巧和策略对于考试的成功至关重要。

SAT 数学(2020) 附答案和解析

SAT 数学(2020)附答案和解析MathematicsA polynomial function f has x+8 as a factor. Which of the followingbe true about the function f?I.f(0)=8II.f(8)=0III.f(-8)=0A.I onlyB.II onlyC.III onlyD.II and III only答案:C解析:Choice C is correct. Recall that if x-k is a factor of a polynomial P, then P(k)=0.It is given that x+8 or x-(-8) is a factor of f.Therefore, it follows that f(-8)=0.It is not known whether or not x-8 is a factor of f and so we cannot say w hether or not f(8)=0.Additionally, no other information about function f is given, and so we d o not know whether or not f(0)=8.Therefore, I and II may or may not be true, but III must be true.MathematicsA taxi ride cost a customer a total of $13.48, which included 4% sales tax and a $1 surcharge after the tax. What was the subtotal before the surch arge and sales tax?A.$0.48B.$12.00C.$12.96D.$312.00答案:B解析:Option B is correct. The total minus the surcharge is 13.48-1, or 12.48 d ollars. The subtotal before tax and surcharge is then 12.48 divided by the decimal equivalent of the sales tax percentage,0.04, plus 1, or 12.48/1.04.MathematicsIn a recent study to determine how often people in different parts of the United States check the weather, a random sample of residents in New England and a random sample of residents on the West Coast were surve yed. The study found over 90% of people surveyed in New England chec ked the weather daily, while 70% of people surveyed on the West Coast d id so. If the margin of error of both samples were the same, which of the following statements is best supported by the study's findings?A.People in New England check the weather more often because the clim ate is colder than on the West Coast.B.People in New England check the weather more often because there is more weather coverage on television than there is on the West Coast.C.There is evidence that people in New England check the weather more often than people on the West Coast.D.There is evidence that people in New England check the weather on th eir smartphones more than do people on the West Coast.答案:C解析:Choice C is correct. A sample survey is a study that obtains data from a s ubset of a population, usually through a questionnaire or interview, in o rder to estimate population attributes.Since the margin of error is the same for each sample, the only reasonab le conclusion based on the data from the observational study is that there is evidence (although not a guarantee) that people in New England chec k the weather more often than people do on the West Coast.Mathematics>Standard Multiple ChoiceRead the following SAT test question and then click on a button to select your answer.A consumer-monitoring service wants to determine television viewing h abits among 18- to 29-year-olds in a particular city. Which of the follow ing survey methods is most likely to produce valid results?A.Select a random sample of 1000 18- to 29-year-olds in that city.B.Select a random sample of 100018- to 29-year-olds in that city who attended a computer camp when they were in high school.C.Select a random sample of 100018- to 29-year-olds in that city who played a varsity sport in high school.D.Select a random sample of 100018- to 29-year-olds in that city who played chess in high school.答案:A解析:Choice A is correct. In order to produce unbiased, valid data, the sampl e should berandomly selected and be representative of the entire population of int erest. In this case, an appropriately conducted survey should give each co nsumer aged 18 to 29years in the city an equal chance of being surveyed.The choices that involve a particular high school, the chess team, and co mputer campers would not be representative of the entire population of 18- to 29-year-olds inthe city.Mathematics>Standard Multiple ChoiceRead the following SAT test question and then click on a button to select your answer.(a+3)(2a^2-5a+7)Which of the following is equivalent to the expression above?A.2a^3-5a+21B.2a^3+a^2-8a+21C.2a^3+6a^2-5a+7D.2a^3+11a^2+22a+21答案:B解析:Choice B is correct. When multiplying polynomials, be sure to multiply e ach term in the first polynomial by each term in the second polynomial. This can be done as follows:(a+3)(2a^2-5a+7)=2a^3-5a^2+7a+6a^2-15a+21Combine like terms to get:2a^3+a^2-8a+21The equivalent expression is 2a^3+a^2-8a+21.Mathematics>Standard Multiple ChoiceRead the following SAT test question and then click on a button to select your answer.Karim has a $35 gift card to his favorite restaurant. The tax on his meal is 14.3%. Karim would also like to leave a $5 tip. If c represents Karim's pretax bill, in dollars, and he wants to pay the entire meal amount, including tip and tax, using the gift card, which of the following inequalities best m odels the situation described above?A.1.143c-5≥35B.1.143c+5≤35C.0.143c-5≤35D.0.143c+5≥35答案:B解析:Choice B is correct. Karim's total meal cost consists of three parts: Karim' s pretax bill, the tax, and the tip, all added together. That amount will nee d to be less than or equal to Karim's gift card amount.Since c represents the cost, in dollars, of the pretax bill, it should be multi plied 0.143(the tax in decimal form). Since Karim has decided to tip $5, the total me al cost can be represented by the expression space c+0.143c+5.Next, combine like c terms to get 1.143c. So, the final inequality for Kar im's situation is 1.143c+5≤35.Mathematics>Standard Multiple ChoiceRead the following SAT test question and then click on a button to select your answer.y^2-y-3(1-x)y=2xIf (x1,y1) and (x2,y2) are two distinct solutions to the system of equation s shown above, what is the sum of x1 and x2?A.-1/4B.1/4C.1D.-1答案:A解析:Choice A is .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SAT 数学教程全解析I. 解题技巧训练1 The units digit of 23333 is how much less than the hundredths digit of 1000567(A) 1 (B) 2 (C) 3 (D) 4 (E) 5备考SAT 下载Satonline 手机APP2. What is the units digit of 1597365?3. Bob has a pile of poker chips that he wants to arrange in even stacks. If he stacks them in piles of 10, he has 4 chips left over. If he stacks them in piles of 8, he has 2 chips left over. If Bob finally decides to stack the chips in only 2 stacks, how many chips could be in each stack?A. 14B. 17C. 18D. 24E. 344. If x and y are two different integers and the product 35xy is the square of an integer, which of the following could be equal to xy?A. 5B.70C. 105D. 140E. 3505. If x2=y3 and (x-y)2=2x, then y could equal (A) 64 (B) 16 (C) 8 (D) 4 (E) 26. For positive integers p, t, x and y, if p x =t y and x-y=3, which of the following CANNOT equal t?A. 1B. 2C. 4D. 9E. 257. If 3t-3>6s+9 and t-5s<12, and s is a positive integer less than 4, then t could be any of the following EXCEPT A. 6 B. 8 C. 10 D.12 E. 238. If n and p are integers greater than 1 and if p is a factor of both n+3 and n+10, what is the value of p?A. 3B. 7C. 10D. 13E. 309. If x is a positive integer greater than 1, and x3-4x is odd, then x must be(A) even (B) odd (C) prime (D) a factor of 8 (E) divisible by 810.If the graph above is that of f(x), which of the following could be f(x) A. f(x)= 3||x B. f(x)=|3|x C. f(x)=/x/+3 D. f(x)=|x+3| E. f(x)=|3x|11. xy=x+y. If y>2, what are all possible values of x that satisfy the equation above?A. x<0,B. 0<x<1C.0<x<2D.1<x<2E. x>2II. 算术 ――对应知识点训练1. 代数题(1). Karl bought x bags of red marbles for y dollars per bag, and z bag of blue marbles for 3y dollars per bag. If he bought twice as many bags of blue marbles as red marbles, then in terms of y, what was the average cost, in dollars, per bag of marbles? (A) 23y (B) 37y (C) 3x-y (D) 2y (E) 6y(2) At this bake sale, Mr. Right sold 30% of his pies to one friend. Mr. Right then sold 60% of the remaining pies to another friend. What percent of his original number of pies did Mr. Right have left?(A) 10% (B) 18% (C) 28% (D) 36% (E) 40%(3) At a track meet, 2/5 of the first-place finishers attended Southport High School, and 1/2 of them were girls. If 2/9 of the first-place finishers who did NOT attend Southport High School were girls, what fractional part of the total number of first-place finishers were boys?(A) 1/9 (B) 2/15 (C) 7/18 (D) 3/5 (E) 2/32. 中位数(4)Number of siblings per student in a preschool classNumber of siblingsNumber of Students 03 16 22 3 1The table above shows how many students in a class of 12 preschoolers had 0,1,2, or 3 siblings. Later, a new student joined the class, and the average (arithmetic mean) number of siblings per student became equal to the median number of siblings per student. How many siblings did the new student have?A. 0B. 1C. 2D. 3E. 4(5)In a set of eleven different numbers, which of the following CANNOT affect the value of the median?A. Doubling each numberB. Increasing each number by 10C. Increasing the smallest number onlyD. Decreasing the largest number onlyE. Increasing the largest number only(6). The least and greatest numbers in a list of 7 real numbers are 2 and 20, respectively. The median of the list is 6, and the number 3 occurs most often in the list. Which of the following could be the average (arithmetic mean) of the numbers in the list?I. 7 II. 8.5 III. 10A. I onlyB. I and II onlyC. I and III onlyD. II and III onlyE. I, II and III3. 集合部分(6) Set F consist of all of the prime numbers from 1 to 20 inclusive, and set G consist of all of the odd numbers from 1 to 20 inclusive. If f is the number of values in set F, g is the number of values of in Set G, and j is the number of values in F∪G, which of the following gives the correct value of f(j-g)?A. 4B. 8C. 10D. 11E. 18(7) Set X has x members and set Y has y members. Set Z consists of all members that are in either Set X or Set Y with the exception of the k common members (k>0). Which of the following represents the number of members in set Z?A. x+y+kB. x+y-kC. x+y+2kD. x+y-2kE. 2x+2y-2k(8) Of the 240 campers at a summer camp, 5/6 could swim, if 1/3 of the campers took climbing lessons, what was the least possible number of campers taking climbing lessons who could swim?A. 20B.40C. 80D.120E. 200(9) Set F consist of all of the prime numbers from 1 to 20 inclusive, and set G consist of all of the odd numbers from 1 to 20 inclusive. If f is the number of values in set F, g is the number of values of in Set G, and j is the number of values in F∪G, which of the following gives the correct value of f(j-g)?A. 4B. 8C. 10D. 11E. 184. 排列组合题(10)Mr. Jones must choose 4 of the following 5 flavors of jellybean: apple, berry, coconut, kumquat, and lemon, How many different combinations of flavors can Mr. Jones choose?(11)If the 5 cards shown above are placed in a row so that is never at either end, how many different arrangements are possible?(12)As shown above, a certain design is to be painted using 2 different colors. If 5 different colors areavailable for the design, how many differently painted designs are possible?A. 10B. 20C. 25D. 60E. 120(13)In the integer 3589 the digits are all different and increase from left to right. How many integers between 4000 and 5000 have digits that are all different and that increased from left to right?(14).On the map above, X represents a theater, Y represents Chris’s house, and Z represents Peter’s house. Chris walks from his house to Peter’s house without passing the theater and then walks with Peter to the theater and then walks without walking by his own house again. How many different routs can Chris take?(15)In a certain game, 8 cards are randomly placed face-down on a table. The cards are numbered from 1 to 4 with exactly 2 cards having each number. If a player turns over two of the cards, what is the probability that the cards will have the same number?(16)The Acme Plumbing Company will send a team of 3 plumbers to work on a certain job. The company has 4 experienced plumbers and 4 trainees. If a team consists of 1 experienced plumber and 2 trainees, how many different such teams are possible?(17)If p, r, m, n, t and s are six different prime numbers greater than 2, and n=p*r*s*m*n*t, how many positive factors, including 1 and n, does n have?5.数列部分(14) The least integer of a set of consecutive integers is -25. If the sum of these integers is 26, how many integers are in this set? A. 25 B. 26 C.50 D. 51 E. 52(15) 1,2,2,3,3,3,4,4,4,4….All positive integers appear in the sequence above, and each positive integer k appears in the sequence k times. In the sequence, each term after the first is greater than or equal to each of the terms before it. If the integer 12 first appears in the sequence as the n th term, what is the value of n?(16) The first term of a sequence of numbers is 2. Subsequently, every even term in the sequence is found by subtracting 3 from the previous term, and every odd term in the sequence is found by adding 7 to the previous term. What is the difference between 77th and 79th terms of this sequence?A. 11B. 7C. 4D. 3E. 26.应用题(16) A positive integer is said to be “tri-factorable ” if it is the product of three consecutive integers. How many positive integers less than 1000 are tri-factorable?(17) Tom and Alison are both salespeople. Tom ’s weekly compensation consists of $300 plus 20 percent of his sale. Alison ’s weekly compensation consists of $200 plus 25 percent of her sales. If they both had the same amount of sales and the same compensation for a particular week, what was that compensation, in dollars? (Disregard dollar sign when gridding your answer)(18) To celebrate a colleague ’s graduation, the m coworkers in an office agreed to contribute equally to a catered lunch that costs a total of y dollars. If p of the coworkers fail to contribute, which of the following represents the additional amount, in dollars, that each of the remaining coworkers must contribute to pay for the lunch?A. m yB. p m y -C. p m py -D. mp m y )(- E. )(p m m py - (19) In a certain store, the regular price of a refrigerator is $600. How much money is saved by buying this refrigerator at 20 percent off the regular price rather than buying it on sale at 10percent off the regular price with an additional discount of 10 percent off the sale price?(A) $6 (B) $12 (C) $24 (D) $54 (E) $607.整除,最小公倍数,余数问题(20) When a is divided by 7, the remainder is 4. When b is divided by 3, the remainder is 2. If 0<a <24 and 2<b <8, which of the following could have a remainder of 0 when divided by(A) b a (B) ab (C) a-b (D) a+b (E) ab(21) The alarm of Clock A rings every 4 minutes, the alarm of Clock B rings every 6 minutes, and the alarm of Clock C rings every 7 minutes. If the alarms of all three clocks ring at 12:00 noon, the next time at which all the alarms will ring at exactly the same time isA. 12:28 P.M.B. 12:56 P.M.C. 1:24 P.M.D. 1:36 P.M.E. 2:48 P.M.(22) If a, b, and c are distinct positive integers, and 10% of abc is 5, then a+b could equalA. 1B. 3C. 5D. 6E. 25(23) On 5 math tests, Gloria had an average score of 86. If all test scores are integers, what is the lowest average score average score Gloria can receive on the remaining 3 tests if she wants to finish the semester with an average score of 90 or higher?A. 90B. 92C. 94D. 96E. 97(24) Ifky 4 is the cube of an integer greater than 1, and k2=y, what is the least possible valueof y?A. 1B. 2C. 4D. 6E. 27III 代数问题(1) The height of the steam burst of a certain geyser varies with the length of time since the previous steam burst. The longer the time since the last burst, the greater the height of the steam burst. If t is the time in hours since the previous steam burst and H is the height in meters of the steam burst, which of the following could express the relationship of t and H ?A . H(t)= 21(t-7) B. H(t)= 72 t C. H(t)=2-(t-7) D. H(t)= 7-2t E. H(t)= t72 (2) 4)The above graph could represent which of the following inequalities?A. y ≤x 1B. y< (21)xC. y ≥x 1 D . y ≥(21)x E . y ≥x -1/2 (3)The change in temperature is a function of the change in altitude in such a way that as the altitude increases, so dose the change in the temperature. For example, a gain of 1980 feet causes a 60F, which of the following could be the relationship of a and T?A. T(a)= a/300B. T(a)= a-330C. T(a)=330/aD. T(a)=330-aE. T(a)=330a(4) Let f(x) be defined as the least integer greater than x/5. Let g(x) be defined as the greatest integer less than x/5. What is the value of g(18)+f(102)? A. 21 B. 22 C. 23 D. 24 E. 25(5)Radioactive substance T-36 dose not stay radioactive forever. The time it takes for half of the element to decay is called a half-life. If, before any decay takes place, there is 1 gram of radioactive substance T-36, and the half-life is 7 days, how much remains after 28 days? A. 7-28 B. 2-4 C. 2-2 D. 1-28 E. 22(6) Luke purchased an automobile for $5000, and the value of the automobile decreases by 20 percent each year. The value, in dollars, of the automobile n years from the date of purchase is given by the function V , where V(n)=5000*(0.8)n . how many years from the date of purchase will the value of the automobile be $ 3200? A. 1 B. 1 C. 3 D. 4 E. 5(7) The cost of maintenance on an automobile increases each year by 10 percent, and Andrew paid$300 this year for maintenance on his automobile. If the cost c for maintenance on Andrew ’s automobile n years from now is given by the function c(n)=300x n , what is the value of x ?A. 0.1B. 0.3C. 1.1D. 1.3E. 30(8) h(t)= c- (d-4t)2At time t=0, a ball thrown upward from an initial height of 6 feet. Until the ball hit the ground, its height, in feet, after t seconds was given by the function h above, in which c and d are positive constants. If the ball reached its maximum height of 106 feet at time t=2.5, what was the height, in feet, of the ball at time t=1?(9) If k, n, x and y are positive numbers satisfying x -4/3 = k -2 and y 4/3 =n 2, what is (xy ) -2/3 in terms of n and k ?A. nk 1B. k nC. nk D. nk E. 1 (10)The figures above show the graphs of the function f and g . The function f is defined by f(x)=x 3-4x . the function g is defined by g(x)=f(x+h)+k , where h and k are constants. What is the value of hk ?A. -6B. -3C. -2D.3E. 6(11) Let [x] be defined as [x]=x 2-x for all values of x. if [a]= [a-2]. What is the value of a?A. 1B. 0.5C. 1.5D. 1.125E. 3(12) If k and h are constants and x 2+kx+7 is equivalent to (x+1)(x+h), what is the value of k ?A. 0B. 1C. 7D. 8E. cannot be determined(13) For all numbers a and b, let a^b be defined by a^b= ab+ a +b. For all numbers x, y, and z, which of the following must be true?I. x^y= y^xII. (x-1)^ (x+1)= (x^x) -1III. x^ (y+z) = (x^y) + (x ^ z)A. I onlyB. II onlyC. III onlyD. I and II onlyE. I, II and III(14)The graph above shows the function g, where g(x)= k(x+3)(x-3) for some constant k. If g(a- 1.2)= 0 and a>0, what is the value of a?(15) (x-8)(x-k)= x2-5kx+mIn the equation above, k and m are constants. If the equation is true for all value of x, what is the value of m?A. 8B. 16C. 24D. 32E. 40(16) A certain function f has the property that f(x+y)=f(x)+f(y) for all values of x and y. which of the following statements must be true when a=b?I. f(a+b)= 2f(a) II. f(a+b)=[f(a)]2III. f(a)+f(b)=f(2a)A. NoneB. I onlyC. I and III onlyD. II and III onlyE. I, II and III(17).The shaded region in the figure above is bounded by the x-axis, the line x=4, and the graph of y=f(x). if the point (a, b) lies in the shaded region, which of the following must be true?I. a≤4 II. b≤a III. b≤f(a)(A) I only(B) III only(C) I and II only(D) I and III only(E) I, and II and III(18)The figure above shows the graphs of y=x2 and y=a-x2 for some constant a. if the length of PQ is equal to 6, what is the value of a? A. 6 B. 9 C. 12 D. 15 E. 18(19)In the figure above, ABCD is a rectangle. Points A and C lie on the graph of y=px3, where p is a constant,. If the area of ABCD is 4, what is the value of p?IV 几何部分(1)Each of the small squares in the figure above has an area of 4. If the shortest side of the triangle is equal in length to 2 sides of a small square, what is the area of the shaded triangle?A. 160B. 40C. 24D. 20E. 16(2).In the figure above, a shaded polygon which has equal sides and angles is partially covered with asheet of blank paper. If x+y=80, how many sides does the polygon have?A. 10B. 9C. 8D. 7E. 6(3)The area of rectangle ABCD is 96, and AD=2/3(AB). Points X and Y are midpoints of AD and BC, respectively. If the 4 shaded triangles are isosceles, what is the perimeter of the unshaded hexagon?A. 16B.8+62C. 24D. 8+162E. 16+242(4)In the figure above, what is the value of c in terms of a and b?A. a+3b-180B. 2a+2b-180C. 180-a-bD. 360-a-bE. 360-2a-3b(5)The figure above shows an arrangement of 10 squares, each with side of length k inches. The perimeter of the figure is p inches. The area of the figure is a square inches. If p=a, what is the value of k?(6).One end of an 80-inch-long paper strip is shown in the figure above. The notched edge, shown in bold, was formed by removing an equilateral triangle from the end of each 4-inch length on one edge of the paper strip. What is the total length, in inches, of the bold notched edge on the 80-inch paper strip?(7).At a beach, a rectangular swimming area with dimensions x and y meters and a total area of 4000 square meters is marked off on three sides with rope, as shown above, and bounded on the fourth side by the beach. Additionally, rope is used to divide the area into three smaller rectangular sections. In terms of y, what is the total length, in meters, of the rope that is need both to bound the three sides of the area and to divide it into sections?A. y+ 4000/yB. y+16000/yC. y+16000/(3y)D. 3y+ 8000/(3y)E. 3y+ 16000/(3y)(8)If a triangle ABC has AB=7 and BC=7, then the difference between the greatest and least possible integer values of AC is A. 11 B. 12 C. 13 D. 14 E. 15(9)In a triangle PQR, the length of side QR is 12 and the length of side PR is 20. What is the greatest possible integer length of side PQ?A. 9B. 16C. 25D. 27E. 31(10).In the figure above, arc SBT is one quarter of a circle with center R and radius 6. If the length plus the width of rectangle ABCR is 8, then the perimeter of the shaded region isA. 8+3πB. 10+3πC. 14+ 3πD. 1+6πE. 12+6π(11)In the figure above, QR is the arc of a circle with center P. If the length of the arc QR is 6π,what is the area of sector PQR?A. 108πB. 72πC. 54πD. 36πE. 9π(12).The figure above consists of two circles that have the same center. If the shaded area is 64πsquare inches and the smaller circle has a radius of 6 inches, what is the radius, in inches, of the larger circle?(13).The figure above shows part of a circle whose circumference is 45. If arcs of length 2 and length b continue to alternate around the entire circle so that there are 18 arcs of each length, what is the degree measure of each of the arcs of length b?A. 40B. 60C. 100D. 160E. 20o(14)In a certain machine, a gear makes 12 revolutions per minute. If the circumference of the gear is 3πinches, approximately how many feet will the gear turn in an hour?A. 6782B. 565C. 113D. 108E. 9(15)In the xy-coordinate plane, the graph of x=y2-4 intersects line l at (0, p) and (5, t). what is the greatest possible value of the slope of line l?(16)The coordinates for point A are (-2, 2) and the coordinates for point B are (4, 8). If line CD is parallel to the line AB, what is the slope of line CD?A. -1B. 0C. 1D. 2E. 4(17)Rectangle ABCD lies in the xy-coordinate plane so that its sides are not parallel to the axes. What is the product of the slopes of all four sides of rectangle ABCD?A. -2B. -1C. 0D. 1E. 2(18)Alice and Corinne stand back-to-back. They each take 10 steps in opposite directions away from each other and stop. Alice then turns around, walks toward Corinne, and reaches her in 17 steps. The length of one of Alice’s steps is how many times the length of one of Corinne’s steps? (All of Alice’s steps are the same length and all of Corinne’s steps are the same length.)(19).Line m (not shown) passes through O and intersects AB between A and B. what is one possible value of the slope of line m?立体几何部分:(1)In figure above, S is the midpoint of RT. What is the area of the shaded triangle?A. 14B. 16C. 265D. 18E. 46(2)A ball with a volume of 18 cubic inches is dropped into an aquarium that is partially filled with water. If the base of the aquarium measures 12 inches by 6 inches, how many inches will the level of water rise after the ball is submerged?A. 0.25 inchesB. 0.5 inchesC. 1 inchesD. 4 inchesE. 6 inches.(3)In the cube shown above, point B, C, and E are midpoints of three of the edges. Which of the following angles has the least measure?A.∠ XAYB. ∠ XBYC. ∠ XCYD. ∠ XDYE. ∠ XEY(4).The pyramid shown above has altitude h and a square base of side m. The four edges that meet at V , the vertex of the pyramid, each have length e. If e=m, what is the value of h in terms of m?A. 2mB. 23mC. mD. 32m E. 2m(5).The cube shown above has edges of length 2, and A and B are midpoints of two of the edges.What is the length of AB? A. 2 B. 3 C. 5 D. 6 E. 10(6)A sphere of radius r inside a cube touches each one of the six sides of the cube. What is the volume of the cube, in terms of r? A. r 3 B. 2 r 3 C. 4 r 3 D. 34πr 3 E. 8 r 3(7)A cube with volume 8 cubic centimeters is inscribed in a sphere so that each vertex of the cube touches the sphere. What is the length of the diameter, in centimeters of the sphere?A. 2B.6 C. 2.5 D. 23 E. 4。

相关文档
最新文档