平面任意力系平衡方程
平面任意力系平衡方程讲解课件

01
02
03
04
仅适用于小变形的情况
对于大变形或复杂的结构,需 要使用更高级的力学理论
仅适用于线性弹性材料
对于非线性弹性材料或塑性材 料,需要使用更高级的材料模
型
04
平面任意力系平衡方 程的优化与改进
优化求解算法
线性化求解
将平衡方程转化为线性方程,降 低求解难度,提高求解速度。
迭代法优化
采用更高效的迭代算法,如牛顿法 、拟牛顿法等,加快收敛速度。
03
平面任意力系平衡方 程的适用范围
适用场景与条件
适用于平面任意力系 的平衡问题
力的作用点可以不在 物体的重心上
物体处于平衡状态, 即没有加速度或速度
不适用场景与原因
不适用于空间力系的平衡问题
不适用于具有加速度或速度的 物体
力的作用点不在物体的重心上 时,需要考虑科氏力等因素
限制因素与局限性
平衡状态
物体在受到一组的力作用后,如果处 于静止或匀速直线运动状态,则称该 物体处于平衡状态。
平衡方程
对于平面任意力系,其平衡方程为合 力为零,即合力在x轴和y轴上的投影 分别为零。
02
平面任意力系的平衡 方程
平衡方程的推导
1 2 3
静力平衡
在无外力作用下,物体处于静止状态,此时物体 内部各部分之间无相对运动趋势,处于平衡状态 。
并行计算
利用多核CPU或分布式计算资源, 实现并行计算,大幅缩短求解时间 。
提高计算精度
精细化建模
采用更高精度的物理模型,提高 方程的准确性和精度。
高阶有限元方法
采用高阶有限元方法,降低误差 ,提高计算精度。
自适应步长控制
根据误差大小自动调整步长,确 保计算的稳定性和精度。
建筑力学第三章 平面力系的平衡方程

③ FR≠' 0,MO =0,即简化为一个作用于简化中心的合力。这时, 简化结果就是合力(这个力系的合力), FR FR'。(此时
与简化中心有关,换个简化中心,主矩不为零)
重庆大学出版社
建筑力学
④ FR' ≠0,MO ≠0,为最任意的情况。此种情况还可以继续
重庆大学出版社
建筑力学
[例] 已知:Q=7.5kN, P=1.2kN , l=2.5m , a=2m , =30o , 求:
BC杆拉力和铰A处的支座反力?
解:(1)选AB梁为研究对象。
C
(2)画受力图
FAy
FBC
A
FAx
l/2 P
B Q
a
Байду номын сангаас
l
A
l/2 P
B Q
a
l
重庆大学出版社
建筑力学
(3)列平衡方程,求未知量。
静不定问题在材料力学,结构力学,弹性力学中 用变形协调条件来求解。
重庆大学出版社
建筑力学
物系平衡问题的特点: ①物体系统平衡,物系中每个单体也是平衡的。 ②每个单体可列3个(平面任意力系)平衡方程,整个系统
可列3n个方程(设物系中有n个物体)。
解物系问题的一般方法:
机构问题: 个体 个体
个体
“各个击破”
力系中各力对于同一点之矩的代数和。
重庆大学出版社
建筑力学
3.2平面力系的平衡方程及应用
FR=0, MO =0,力系平衡
FR =0 为力平衡
MO =0 为力偶也平衡 平面力系平衡的充要条件为:
第四章:力系的平衡条件与平衡方程

未知量个数 <= 独立平衡方程数 静定
(全部未知量可以由平衡方程完全求解)
未知量个数 > 独立平衡方程数 静不定或超静定
(未知量不能全部由平衡方程求解)
物体系的平衡·静定和超静定问题
未知量个数 <= 独立平衡方程数 静定
(全部未知量可以由平衡方程完全求解)
未知量个数 > 独立平衡方程数 静不定或超静定
∑ M B = 0 −8FAy + 5*8 +10*6 +10* 4 +10* 2 = 0
得 FAy = 20kN ∑ Fiy = 0 FAy + FBy − 40 = 0
得 FBy = 20kN
求各杆内力
取节点A
⎧⎪∑ ⎨⎪⎩∑
Fiy Fix
= =
0 0
→ →
FAD FAC
取节点C
⎧⎪∑ ⎨⎪⎩∑
解得 P3max=350kN
22mm 22mm
所以,平衡载重P3取值范围为:
75kN ≤ P3 ≤ 350kN
(2)P3=180kN时:
∑ M A = 0 4P3 − 2P2 −14P1 + 4FB = 0
解得 FB=870kN
∑ Fy = 0 FA + FB − P1 − P2 − P3 = 0
∑M =0
FA'
⋅r
sinθ
− M2
=
0
解得 M 2 = 8kN ⋅m
FB = FA = 8kN
例
已知:OA=R,AB=
l,
r F
,
不计物体自重与摩擦,系统在图示位置平衡;
求: 力偶矩M 的大小,轴承O处的约 束力,连杆AB受力,滑块给导 轨的侧压力.
《工程力学:第三章-力系的平衡条件和平衡方程》解析

工程力学 1. 选择研究对象。以吊车大梁 AB为研究对象,进行受力分析 (如图所示) 2.建立平衡方程
第三章 力系的平衡条件和平衡方程
FAX FTB cos 0 Fy 0
F
x
0
: (1)
M
FAy FQ FP FTB sin 0
A
(F ) 0
工程力学
第三章 力系的平衡条件和平衡方程
§3.3 考虑摩擦时的平衡问题
3.3.1 滑动摩擦定律
概念:
静摩擦力:F 最大静摩擦力:Fmax 滑动摩擦力: Fd
静摩擦因数:
水平拉力: Fp
Fmax f s FN
fs
工程力学
第三章 力系的平衡条件和平衡方程
3.3.2 考虑摩擦时构件的平衡问题
考虑摩擦力时与不考虑摩擦力时的平衡 解题方法和过程基本相同, 但是要注意摩擦力的方向与运动趋势方向相反;且在滑动之前摩擦 力不是一个定值,而是在一定范围内取值。
l l sin 0
(3)
工程力学
第三章 力系的平衡条件和平衡方程
• 联立方程(1)(2)(3)得:
FAX
FQ FP 3 l x 2
(2)由FTB结果可以看出,当x=L时,即当电动机移动到大梁右 端B点时,钢索所受的拉力最大,最大值为
非静定问题:未知数的数目多于等于独立的平衡方程的数目,不能 解出所有未知量。相应的结构为非静定结构或超静定结构。
会判断静定问题和非静定问题
工程力学
第三章 力系的平衡条件和平衡方程
工程力学
第三章 力系的平衡条件和平衡方程
3.2.2 刚体系统平衡问题的特点与解法
1.整体平衡与局部平衡的概念 系统如果整体是平衡的,则组成系统的每一个局部以及每一个 2.研究对象有多种选择 刚体也必然是平衡的。
平面任意力系的平衡资料

' FDx FE cos 45 2 F
MB o
' FDx a F 2a 0
得
' FDx 2F
对ADB杆受力图
MA 0
FBx 2a FDx a 0
得
FBx F
例311 如图所示,静定多跨梁由梁AB和梁BC用中间铰B连 接而成。已知P=20kN,q=5kN/m,α=450,求支座A、C处 的约束反力和中间铰B处两梁之间的相互作用力。
O1 B O2 A
三矩式平衡方程为:
相比较二矩式最简单
M M M
O1 O2 C
0 :N B 2a W cos a W sin b 0 0 : N A 2a W cos a W sin b 0 0 : T b N Aa N B a 0
二矩式平衡方程为:
X 0 : T W sin 0 M 0 :N 2a W cos a W sin b 0 M 0 : N 2a W cos a W sin b 0
O1 B O2 A
解得:
T W sin 5kN W cos a W sin b NA 3.33kN 2a W cos a W sin b NB 5.33kN 2a
解得
FAy q 2a P FB 0
P 3 FAy qa 4 2
已知:P 100kN, M 20kN m,
q 20 kN
求: 固定端A处约束力。 解:取T型刚架,画受力图。
1 其中 F1 q 3l 30kN 2
m
,
平面任意力系的平衡方程及应用

FCDl
s in
G1
l 2
G2a
0
(a)
Fx 0 FAx FCD cos 0
(b)
Fy 0 FAy G1 G2 FCD sin 0
(c)
第2章 平面力系的平衡
C
A
D
C
l
2a
G 1
l
G2 (a)
y FAy A
FAx
图2.5
FCD
B x
G1
G2
(b)
FR'
Fx 2 Fy 2 0, MO MO (Fi ) 0
第2章 平面力系的平衡
由此可得平面任意力系的平衡方程为
Fx 0
Fy 0
Байду номын сангаас
MO (F ) 0
式(2.6)是平面任意力系平衡方程的基本形式,也称为一 力矩式方程。它说明平面任意力系平衡的解析条件是: 力系中各 力在平面内任选两个坐标轴上的投影的代数和分别为零,以及 各力对平面内任意一点之矩的代数和也等于零。这三个方程是 各自独立的三个平衡方程,只能求解三个未知量。
解(1) 选圆球为研究对象,取分离体画受力图。 主动力: 重力G。 约束反力: 绳子AB的拉力FT、斜面对球的约束力FN。 受力图如图2.6(b)所示。
第2章 平面力系的平衡
(2) 建立直角坐标系Oxy
∑Fx=0
FT-Gsin30°=0
FT=50N( ∑Fy=0
FN-G cos30°=0
FN=86.6N
解 (1)以横梁AB为研究对象,取分离体画受力图。
作用在横梁上的主动力: 在横梁中点的自重G1、起吊重量 G2。作用在横梁上的约束反力: 拉杆CD的拉力FCD、铰链A点的 约束反力FAx、FAy,如图2.5(b)所示。
工程力学-平面任意力系平衡方程

4)FR=0 M0=0 力系处于平衡状态。
例3-1 图示物体平面A、B、C三点构成一等边三角形,三点分别作
用F力,试简化该力系。
解:1.求力系的主矢
F x F F cos60o F cos60o 0
Fy 0 F sin 60o F sin 60o 0
y
C
F M0 F
上作用F力,集中力偶M0=Fa,=45°,试求杆件AB的约束力。
A
M0=Fa
C
B
F
解:1.取AB杆为研究对象画受力图
2.列平衡方程求约束力
Da a
FAx
A
M0=Fa
C
FAy FC
B F
aa
M A (F ) 0 : FC sin 45 a F 2a M 0 0
FC
2Fa a
Fa 2/2
MC (F) 0:
FAx
2
3a 3
F
a
M0
0
FAy 0 FAx 3F
C aa
一 矩
MA(F) 0: Fx 0 :
二 矩
MA(F) 0: MB(F) 0:
三 矩
MA(F) 0: MB(F) 0:
2 3a
式 Fy 0 :
式 Fx 0 :
式 M C (F8) 0 :
3
本课节小结
A F
B x
FR ( Fx )2 ( Fy )2 0
2.选A点为简化中心,求力系的主矩
M0
M A (F)
F
sin 60
AB
F
AB 2
简化结果表明该力系是一平面力偶系。
4
二、平面任意力系的平衡方程
平面任意力系的平衡方程的三种形式

平面任意力系的平衡方程的三种形式一、概述1. 平面任意力系概念的简介在物体力学中,平面任意力系是一个很重要的概念。
平面任意力系是指一个物体在平面上受到多个力的作用,这些力可以是任意的方向和大小。
平面任意力系的研究对于分析物体的平衡和运动具有重要的意义。
2. 平衡方程的定义和作用平面任意力系的平衡方程是描述物体受力平衡的数学表达式。
通过平衡方程,可以求解物体受力的情况,从而进一步分析物体的平衡状态。
二、平面任意力系的平衡方程的三种形式1. 牛顿第一定律形式牛顿第一定律可以描述为:若物体受到多个力的作用,且这些力相互平衡,那物体将保持静止或匀速直线运动。
根据这一定律,可以得出平衡方程的第一种形式。
即对于平面任意力系,受力平衡时,力在x、y方向上的合力均为0,可以用数学公式表示为:ΣFx = 0;ΣFy = 0。
式中ΣFx表示x方向上的合力,ΣFy表示y方向上的合力。
当ΣFx和ΣFy都等于0时,物体在受力平衡状态。
2. 平衡方程的角度形式平衡方程的角度形式是指从物体受力的角度出发,建立平衡方程。
在平面任意力系中,受力平衡时,物体对于一个特定点的力矩的和为0。
力矩的和可以表示为:ΣM = 0。
式中ΣM表示力矩的和。
根据力矩的定义,可以将力矩表示为力乘以力臂的乘积。
可以将平衡方程的角度形式表示为:ΣM = ΣF × d = 0。
式中d表示力臂的长度。
当ΣM等于0时,说明物体对于特定点的力矩平衡,即物体处于受力平衡状态。
3. 用平面力系的分解形式建立平衡方程在平面任意力系中,可以将作用在物体上的力进行分解,将力分解成在x、y方向上的分力和分力的合力。
根据此方法,可以建立平衡方程的分解形式:ΣFx = 0;ΣFy = 0。
这种形式的平衡方程适用于多种情况,可以将力分解成任意方向上的分力,从而更加灵活地分析物体的受力情况和平衡状态。
三、平衡方程的应用1. 建立平面任意力系的平衡方程在实际问题中,可以通过观察和分析物体受力的情况,建立平衡方程,从而求解物体受力平衡的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回
平面汇交力系组成一个合力—主矢。
3、平面汇交力 系组成一个合 力——主矢。 根据平面汇交 力系求合力的 公式可得主矢 的大小和方向 为。
返回
平面任意力系的平衡方程
当平面任意力系作 用于物体上,并处 于平衡时,平面任 意力系向任一点简 化所得的主矢和主 矩都应该等于零, 于是得到下列平衡 方程的基本形式:
返回
解题步骤和方法
2、解题步骤和方法: (1)确定研究对象,画受力图。 (2)选择座标轴和矩心,列 平衡方程。 (3)解平衡方程,求出未知约 束反力。
例题
如图所示悬臂梁,已知L=2m,F=100N,求固定端A处的约束反力。
解 (1)、取梁AB为研究对象。 (2)、画出AB梁的受力图。 (3)、建立直角坐标系Axy。 (4)、列出平衡方程: ∑Fx=0 FAX-Fcos30˚=0 ∑Fy=0 FAy-Fsin30˚=0 ∑MA(F)=0 MA-FLsin30˚=0 (5)、解平衡方程,求出未知量。 联立求解平衡方程得 FAx=86.6 N FAy=50 N MA=100 N.m 说明:计算结果为正,说明各 未知力的实际方向均与假设方 向相同。若计算结果为负,则 未知力的实际方向与假设方向 相反。平面任意力系平衡方程源自平泉职教中心:张国芹目标与要求
目的要求:掌握利用平面任意力系平衡方程基本形式 求解平衡问题。 教学重点:平衡方程的正确运用。 教学难点:对平衡方程的理解。
教学内容
平面任意力系向任一点平移
平面任意力系平衡方程的应用
力系的简化过程
如图(a)所示平面任意 力系 根据力的平移定理, 力平移后要附加一个 力偶,其力偶的大小 等于该力对简化中心 之矩。这样,平移到 简化中心的力组成一 个平面汇交力系,所 有附加的力偶组成一 个平面力偶系。