人教版数学八年级下册19.1.1变量与函数(2).课件(共30张PPT)

合集下载

人教版八年级数学下册 《19.1.1变量与函数》【教学课件】 (共47张PPT)

人教版八年级数学下册 《19.1.1变量与函数》【教学课件】 (共47张PPT)

三、运用新知 解决问题
2. 你能举出一个变化过程的例子,并说出其中的变量和常量吗?试一试! 想一想:你能确定下列变化过程中的变量吗?
(1)小敏长高了; (2)在汤中加水,汤变淡了; (3)小狗越来越可爱了.
四、巩固训练 形成能力:
1. 从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前速度随时间的 增大而逐渐增大,这个问题中变量是( ) A.物体 C.时间和速度 B.速度 D.重量和空气
二、细心体会 感受新知:
1.先请思考下面几个问题: (1)汽车以60km/h的速度匀速行驶,行驶的时间是t h,行驶的路程为s km,填写下表 ,s的值随t的值得变化而变化吗?
t/h s/km
1
2
3
Hale Waihona Puke 45二、细心体会 感受新知:
(2)每张电影票的售价为10 元,第一场售出150张票,第二场售出205张票,第三场售 出310张票,三场电影的票房收入各多少元?设一场电影售出x张票,票房收入为y 元,y的 值随x的值的变化而变化吗?
五、课堂小结
(1)什么叫变量?什么叫常量? (2)举一个运动变化的例子并指出其变量和常量.
(3)你认为变化过程中的变量之间会有联系吗?
第二课时
一、观察思考 分析变化:
问题1 下面变化过程中,是否包含两个变量?同一问题中的变量之间有什么联系? (1)汽车以60 km/h 的速度匀速行驶,行驶的时间为t h,行驶的路程为s km;
二、细心体会 感受新知:
2.变量和常量: 这些问题反映了不同事物的变化过程,其中有些量的数值是变化的,有些量的数值是始终 不变的. 变量:在一个变化过程中,数值发生变化的量为变量; 常量:在一个变化过程中,数值始终不变的量为常量.

19.1.1 变量与函数(第2课时)课件

19.1.1 变量与函数(第2课时)课件

(1)汽车以60 km/h 的速度匀速行驶,行驶的时 间为 t(单位:h),行驶的路程为 s(单位:km);
(2)多边形的边数为 n,内角和的度数为 y.
问题(1)中,t 取-2 有实际意义吗? 问题(2)中,n 取2 有意义吗?
根据刚才问题的思考,你认为函数的自变量可 以取任意值吗?
在实际问题中,函数的自变量取值范围往往是 有限制的,在限制的范围内,函数才有实际意义; 超出这个范围,函数没有实际意义,我们把这种自 变量可以取的数值范围叫函数的自变量取值范围.
例3:下列函数中自变量x的取值范围是什么?
(1)y 3x 1
(2)y 1 x2
x取全体实数
x 2x0-2
使函数解析式有意 义的自变量的全体.
(3)y x 5
x 5x05
(4) y x 2 x 1
x 2且x 1
x 1 0
x20
即 xx
1 2
... -2 -1 0
自变量的取值范围的求法
3.油箱中有油30L,油从管道中匀速流出,1h流完,则
油箱中剩余油量Q(L)与流出时间t(min)之间的
函数关系式是
Q
30
1 2
t
,自变量t的取值范围
是 0 t 60 .
4.某市乘坐出租车收费标准如下:乘坐里程不超 过3千米,收费8元;超过3千米时,超过3千米的 部分,每千米加收1.8元.设乘坐出租车的里程为x(公 里)(x为整数),相对应的收费为y(元). (1)请分别写出当0<x ≤3和x>3时,表示y与x 的关系式,并直接写出当x=2和x=6时对应的y值;
解:当0<x ≤3时,y=8; 当x>3时,y=8+1.8(x-3)=1.8x+2.6. 当x=2时,y=8;x=6时,y=1.8×6+2.6=13.4.

人教版八年级数学下册19.1.1变量与函数第二课时优质课件.ppt

人教版八年级数学下册19.1.1变量与函数第二课时优质课件.ppt

三、研学教材
思考(1)在心电图中,对于横坐标表示 时间x的每一个确定的值,纵坐标表示心 脏部位的生物电流y都有唯一确定的值与 其对应吗? 答:有
(2)在我国人口数统计表中,对于每一 个确定的年份x,都对应着一个确定的人 口数y吗? 答:是
归纳:一些用 图 或 表格 表达的问题中, 也能看到两个变量之间的联系.
1、一般地,在一个变化过程中,如果 有 两个变量x和y,并且对于x的每一个确定的值 , y都有唯__一__确__定__的__值_ 与其对应,那么我们就说 x是自变量 ,y是x的函数。
2、如果当x=a时,y=b,那么 b 叫做当自变 量的值为a 时的函数值.
3、用关于自变量的式子表示函数变_量__之间的 关系,这种式子叫做函数的解析式.
(3)汽车行驶x=200时,油箱中的汽油 量是函数 y=50-0.1x 在x=200时的函数值。 即:y = 50-0.1×200 =_3_0_
答:汽车行驶200时,油箱中还有30L汽油.
三、研学教材 温馨提示:确定自变量的取值范围时
①要使 函数关系式 有意义.
②要符合 问题 的实际意义. 3、用关于自变量数学__式__子__表示 函_数__与 自__变__量_之间的关系,这种式子叫做函__数_ 解析式, 它是描述函数的常用方法.
三、研学教材
1、在y=3x+1中,如果 x 是自变量, y 是x 的函数. 2、下列问题中哪些量是自变量?哪些量是自 变量的函数?试写出函数的解析式. (1)改变正方形的边长x,正方形 的面积s随之改变。 解:边长x是自变量 ,面积S是x的函数
函数解析式为 s=x2
三、研学教材
(2)每分向一水池注水0.1m3,注水量y(单 位:m3)随注水时间x(单位:min)的变化 而变化。解:时间x是自变量, 水量y是x的函数

人教版数学八年级下册19.1.1变量与函数第二课时教学课件PPT文档共33页

人教版数学八年级下册19.1.1变量与函数第二课时教学课件PPT文档共33页
人教版数学八年级下册19.1.1变量与函数 第二课时教学课件
31、园日涉以成趣,门虽设而常关。 32、鼓腹无所思。朝起暮归眠。 33、倾壶绝余沥,窥灶不见烟。
34、春秋满四泽,夏云多奇峰,秋月 扬明辉 ,冬岭 秀孤松 。 35、丈夫志四海,我愿不知老。
46、我们若已接受最坏的,就再没ห้องสมุดไป่ตู้什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特

人教版八年级下册数学第十九章《 19.1变量与函数》优课件(共28张PPT)

人教版八年级下册数学第十九章《 19.1变量与函数》优课件(共28张PPT)

在问题三中,是否各有两个变量?同一 个问题中的变量之 间有什么联系?
问题三
在一根弹簧的下端挂重物,改变并记录重物的质量, 观察并记录弹簧长度的变化,探索它们的变化规律。如 果弹簧长原长为10cm,每1千克重物使弹簧伸长0.5cm,
怎样用含重物质量x(单位:kg)的式子表示受力后的
弹簧长度 L(单位:cm)?
八年级 数学
第十九章 一次函数
19.1.1变量与函数
解:∵花盆图案形如三角形,每边花有n个,总共有3n个, 其中重复了算3个。
∴ s 与 n 的函数关系式为: s = 3n-3
八年级 数学
第十九章 一次函数
19.1.1变量与函数 课堂练习(备用)
4、节约资源是当前最热门的话题,我市居民每月用电 不超过100度时,按0.57元/度计算;超过100度电时,其中不 超过100度部分按0.57元/度计算,超过部分按0.8元/度计算.
常量:在一个变化过程中,数值始终不变的量为常量。
请指出上面各个变化过程中的常量、变量。
八年级 数学
第十九章 一次函数
19.1 .1 变量与函数
探究:指出下列关系式中的变量与常量:
(1) y = 5x -6
6
(2) y= x
(3) y= 4x2+5x-7 (4) S = Лr2
巩固练习
• 填空:
• 1、计划购买50元的乒乓球,所能购买的总数
2.圆的周长公式C2r,这里的变量是 r和C ,常量
是 2 。
3.下列表格是王辉从4岁到10岁的体重情况
年龄(岁) 4 5 6 7 8 9
10 …
体重(千克)15.4 16.7 18.0 19.6 21.5 23.2 25.2 …

人教版八年级数学下册19.1.1变量和函数 (2)(共22张PPT)

人教版八年级数学下册19.1.1变量和函数 (2)(共22张PPT)
分的面积是多少?
解:设重叠部分面积为y cm2,
MA长为x cm,y与x之间的
xy x
函数关系式为
y
1
x2
2
当x=1时, y 1 12 1
2
2
∴MA=1cm时,重叠部分的面积是1 cm2
1
Hale Waihona Puke 2我们把 做这个函数当x=1时的函数值
2
怎样求函数值? 把自变量的值代入计算即可
例5、已知函数 y= 2x ,4 求
例1 求下列函数中自变量x的取值范围:
(1) y=3x-1 (2) y=2x2+7
(3) y = 1 (4) y=
x2
x2
(5) y 3 x 5
解:(1)任意实数
(2)任意实数
(3) x≠-2
(4) x≥2
(5)任意实数
怎样求自变量的取值范围
1.整式: 取全体实数 2.分式: 取使分母不为0的值 3.二次根式: 取使“被开方数≥0”的值 4.三次根式: 取全体实数
5
(1)当x = 1时,函数y的值。
(2)当y = 3时,自变量x的值。
解:(1)把x = 1代入函数式,得
y 21 4 = 6
5
5
(2)把y=3代入函数式,得
3 2x 4 5
x 11 2
练习P28练习1,2,3, P29 4,6
小结
1.求函数自变量取值范围的方法:
(1)当函数关系用解析式来表示时,要使解析式有意义. (2)对于反映实际问题的函数关系,应使实际问题有意义
(1)每一个同学购一本代数书,书的单价为2元,则 x 个同学共 付 y 元。
解:y是x的函数.其关系式为: y=2x

人教版八年级数学下册19.1.1.1变量-课件PPT

人教版八年级数学下册19.1.1.1变量-课件PPT

例2 阅读并完成下面一段叙述:
⒈某人持续以a米/分的速度用t分钟时间跑了s米, 其中常量是 a ,变量是 t,s .
⒉s米的路程不同的人以不同的速度a米/分各需 跑的时间为t分,其中常量是 s ,变量是 a,t.
3.根据上面的叙述,写出一句关于常量与变量的 结论:在不同的条件下,常量与变量是相对的.
讲授新课
✓ 典例精讲 ✓ 归纳总结
讲授新课 一 常量与变量 问题一
汽车以60千米/时的速度匀速行驶,行驶里程
为s千米,行驶时间为t小时,填下面的表:
60 120 180 240 300
请说明你的道理: 路程 =__速__度__×__时__间__
1.在以上这个过程中,变化的量是_时__间__t_、_ __路__程__s___.不变化的量是_速__度__6_0_千__米__/_时_. 2.试用含t的式子表示s.s=___6_0__t_.
是 y=0..5x
5.瓶子或罐头盒等物体常如下图所示堆放,试确
定瓶子总数y与层数x之间的关系式.
x12
3…
y 1 1+2 1+2+3 …
n 1+2+3+ …+n
完成上表,并写出瓶子总数y与层数x之间的关系式
课堂小结
✓ 归纳总结 ✓ 构建脉络
课堂小结
常量:数值始 终不变的量
常量与变量
常量与变量的概念
方法 区分常量与变量,就是看在某个变化过程中, 该量的值是否可以改变,即是否可以取不同的值.
二 确定两个变量之间的关系 例3 弹簧的长度与所挂重物有关.如果弹簧原长为 10cm,每1kg重物使弹簧伸长0.5cm,试填下表:
重物的质 量(kg)

人教版初二数学下册第19章《19.1.1变量与函数》第二课时教学PPT

人教版初二数学下册第19章《19.1.1变量与函数》第二课时教学PPT

19.1变量与函数第2课时1・什么叫变量?2 •什么叫常量?指出其中的变量与常量: y=2x思考:1、问题(1)〜(4)中是否各有两个变量?2、同一个问题中的变量之间有什么联系?当时间t取定一个值时,路程s就问题〔1】:行驶里程s (千米)与行驶时间I (小时)的关系式为:S=60t o如下表所示:问题(2)票房收入y 元与售票数量x 张的关系式:y=10xX=150 时 y=1500;X=310 时 当售票数量X 取定一个值时,票房收入y 一确定的值与其对应。

X=205 时 y=2050;y=3100;就有唯问题⑶据此可以算岀r 分别为10cm ,20cm ,30cm 时,s 分 别为1O 磴力? 400?烧 QOQcni一确定的值与其对应。

圆的面积s 与半径r 的关系式为:sI :I 当圆的半径r 取定一个值时,面积S 就有唯问题(4)矩形的邻边长y与x的关系式为:y=5-x据严可以算出x分别为3m,3・5m,4m,4・5m时,y分别当—取定一个值时,y 就有唯一确定的值与其对应。

归纳1每个变化的过程中都存在着(两个)变量.2两个变量互相联系f当其中一个变量取定_个值时,另一个变量就有(唯一确定的值与其对应)函数的概念:在一个变化过程中,如果有两个变量X与必并且对于x的每一个确定的值,有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。

如果当乂=玄时『=匕那么b叫做当自变量的值为a时的函数值。

函数概念理解(1)在一个变化过程中(2)有两个变量v与y■加升的每一个确定的值,甫有唯一确定的值与■思考:1 ・ S=60t; 2. y=10x; 3. s = TZT2 4,y=5-x上面每个问题中,哪个量是自变量?哪个量是自变量函数?p \想一想■ 在计算器上按下列程序进行操作: 诵入X (任意一个薮齐I按鋼冈回田巨I显勃(计算结果)I 填表显示的数y是x的函数吗?为什么?函数关系可以表述为:输入X (自变量)函数关系输出y (因变量)y的值是唯一的思考⑴下图是体检时的心电图.其中图上点的横坐标X表示时间, 纵坐标y表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每一个确定的值,y都有唯一确定的对应值吗?:士::: :|:::d IX思考⑵⑵在下硼般人理刎訓,轴与人瑚可竝作时奸 烏屮对于表申4个械髀份⑴,刪应卜何制人理人口林 年份人诚/必1984 10.341989 11.061994 11761899 12.52像 1 ・ S=60t; 2. y=10x ; 3. s = 7ZT2 4.y=5-x一•函数关系是用数学式子给出的(叫解析式法)二.前面像体检心电图函数关系是用图象给出的(叫图象法)三•前面我国人口数统计表函数关系是用表格给出因此,当汽车行驶200 km时,油箱中还有油30L的(叫列表法)因此,当汽车行驶200 km 时,油箱中还有油30L 例1 一辆汽车的油箱中现有汽油50L,如果 不再加油,那么油箱中的余油量y (单位:L) 随行驶里程T 伸位:km)的增加而减少,平 均耗油量为O.lL/kmo(1) 写出表示y 与兀的函数关系的式子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何书写函数的关系式呢?
函数的关系式是等式.通常等式左边 的一个字母表示因变量(即函数),
等式右边是含有自变量的代数式.
1、写出下列各问题中的关系式,并指出其中 的自变量与函数。
(1)正方形的面积S 随边长 x 的变化 S=x2
(2)秀水村的耕地面积是106m2,这个村人均耕
地面积y随着人数的变化而变化 y 106 x
(3)y
3 x2
解:由x+2 ≠ 0得 x≠-2 ∴自变量 n 的取值范围: x≠-2
(4)h
1 k k 1
解:自变量的取值范围是: k≤1且k ≠-1
八年级 数学
14.1.2 函数
第十四章 一次函数
y=2x+15 X≥1且为整数
x ≠ -1
八年级 数学
14.1.2 函数
第十四章 一次函数
解:∵花盆图案形如三角形,每边花有n个,总共有3n个, 其中重复了算3个。
价 x (元)的关系。 解: y 是 x 的函数,其关系式为: y =
50 x
(X>0)
(3)一个铜球在0 ℃的体积为1000cm3,加热后温度每增加
1℃,体积增加0.051cm3,t ℃时球的体积为 V cm3 。
解: v是 t 的函数,其关系式为: v = 0.051t+1000
八年级 数学
14.1.2 函数
y 是 x 的函数。
• 思考题: 填表并回答问题:
x
1
y=+2x 2和-2
4
9
16
8和-8 18和-18 32和-32
(1)对于x的每一个值,y都有唯一的值与之
对应吗?答:不是

(2)y是x的函数吗?为什么?
答:不是,因为y的值不是唯一的。
八年级 数学
14.1 变量与函数
第十四章 一次函数
例2
B
八年级 数学
14.1 变量与函数
第十四章 一次函数
函数
1、下列关系中,y不是x函数的是( D )
A.y x 2
B.y x2
C.y x
D. y x
A BCD
错误,请再想想。
八年级 数学
14.1 变量与函数
第十四章 一次函数
2 A
A BCD
错误,请再想想。
八年级 数学
14.1.2 函数
第十四章 一次函数
解:(1)常量是3000,-300;变量是x,y;自变量是 x;y是x的函数。
(2)常量是570,-95;变量是t,s;自变量是t; s是t的函数。
(3)常量是1;变量是x,y;自变量是x;y是x的函 数。
(4)常量是 ;变量是r,s;自变量是r;s是r
的函数。
5.如图是体检时的心电图,其中图上的横坐 标x表示时间,纵坐标y表示心脏部位的生物 电流,这个问题的变量是 x和y ,
例1 一辆汽车的油箱中现有汽油50L,如
果不再加油,那么油箱中的油量y(单位:L)
随行驶里程x(单位:km)的增加而减少,
平均耗油量为0.1L/km。
(1)写出表示y与x的函数关系的式子。 (2)指出自变量x的取值范围 (3)汽车行驶200 km时,油箱中还有多少油?
解:(1) 函数关系式为: y = 50-0.1x
在一个变化过程中,如果有两个变量x与y,并 且对于x 的一个确定的值,y都有唯一确定的 值与其对应,那么我们就说x是自变量,y是x 的函数。如果当x=a时,y=b,那么b叫做当自变 量的值为a时的函数值。
例如在问题1中,时间t是自变量, 里程s是t的函数。 t=1时,其函数值为60, t=2时,其函数值为120。
下表中的x与y分别是输入的6个数及相应的计算
结果:
x -2 -1 0 1 2 3
y -5 -2 1 4 7 10
上面操作程序中所按的第三个键和第四个 键
+1
应是
.
求出下列函数中自变量的取值范围
(1)y=2x
解: 自变量 x 的取值范围:x为任何实数
(2) m n 1
解: 由n-1≥0得n≥1 ∴自变量 n 的取值范围: n≥1
弹簧长度L就随之确定一个值。
如当x=1时,L=10.5。
问题四
设长方形的边长为 x m,面积为S m2,怎样用 含x的式子表示 s ?
S= 1 x(10-2x)
2
在问题四中可以发现:当长方形的长x取
定一个数值时,面积s就随之确定一个值。
归纳共同点
1、都描述一个变化过程;
2、都有两个变量
3、对于一个变量的每一个确定的 值,另一个变量都有唯一确定的值 与其对应。
3、一个三角形的底边为5,高h可以任1)面积s随高h变化的关系式s =
5
1 2
5,h
其中常量是 2 ,变量是 h和s , h 是自变 量, s 是 h 的函数;
(2)当h=3时,面积s=__7_.5___,
(3)当h=10时,面积s=__2_5___;
4、节约资源是当前最热门的话题,我市居 民每月用电不超过100度时,按0.57元/度计算; 超过100度电时,其中不超过100度部分按0.57 元/度计算,超过部分按0.8元/度计算.
(3)正多边形的内角和度数y随变数n的变化情况
y= (n-2) ×180°
2、指出下列变化关系中,哪些y是x的函数, 哪些不是?说出你的理由。
(1) xy=2; (3) x+y=5; (5) y=x2-4x+5
是 是

(2) x2+y2=10; (4) |y|=x; (6) y= |x|
否 否 是
4、我市白天乘坐出租车收费标准如下:乘坐里程不超过3公里, 一律收费8元;超过3公里时,超过3公里的部分,每公里加收 1.8元;设乘坐出租车的里程为x(公里)(x为整数),相对应
的收费为y(元). (1)请分别写出当0<x≤3和x>3时,表示y与x的关系式,并
直接写出当x=2和x=6时对应的y值 (2)当0<x≤3和x>3时,y都是x的函数吗?为什么?
(1)如果小聪家每月用电x(x≥100)度,请写出
电费y 与用电量x的函数关系式。
解:电费y与用电量x的函数式为:y = 0.8(x-100)+57 (x≥100) (2)若小明家8月份用了125度电,则应缴电费少?
解:当x=125时,y = 0.8×(125-100)+57 = 77 ∴应缴电费77元。 (3)若小华家七月份缴电费45.6元,则该月用电多少度?
解:∵缴电费小于57元 ∴电费y与用电量x的关系式为: y=0.57x 由 45.6 = 0.57x 得x=80 因此该月用电80度。
1、购买一些签字笔,单价3元,总价为y元,签字笔为x 支,根据题意填表:
x(支)
1
2
3

y(元) 3
6
9
(1)y随x变化的关系式y= 3x y 是 x 的函数;
, x 是自变量,
(2) 由x≥0及50-0.1x ≥0 得 0 ≤ x ≤ 500
∴自变量的取值范围是: 0 ≤ x ≤ 500 (3)当 x = 200时,函数 y 的值为:y=50-0.1×200=30
因此,当汽车行驶200 km时,油箱中还有油30L
归纳:
像y=50-0.1x这样,用关注自变量的数学 式子表示函数与自变量之间的关系的式子 叫做函数的解析式。
问题三
在一根弹簧的下端挂重物,改变并记录重物的质量, 观察并记录弹簧长度的变化,探索它们的变化规律。如 果弹簧长原长为10cm,每1千克重物使弹簧伸长0.5cm,
怎样用含重物质量x(单位:kg)的式子表示受力后的
弹簧长度 L(单位:cm)?
L=10+0.5x
在问题三中可以发现:
当重物质量x取定一个数值时,
解:(1)当0<x≤3时,y=8;
当x>3时,y=8+1.8(x-3)=1.8x+2.6.
当x=2时,y=8;x=6时,y=1.8×6+2.6=13.4.
4.请同学们找出这些函数的常量、变量、自变量 和函数: (1) y =3000-300x (2) S=570-95t (3) y=x
(4) S r 2
∴ s 与 n 的函数关系式为: s = 3n-3
4.
1 3 6 10 15
y、n
n(n 1) 2
1 2
(2)当购买8支签字笔时,总价为 24 元.
2自.的变一函量h个和数是梯s关形系的,式上s 底 12是是(44,9下)h,底的常是函量9数,是。写12出,4,面9 ,积变S随量高是h变化,
hs
h
3.小张准备将平时的零用钱节约一些储存起 来.他已存有50元,从现在起每个月节存12 元.设x个月后小张的存款数为y,试写出小张 的存款数与从现在开始的月份数之间的函数关 系式 y=50+12x ,其中常量是50,12 ,变量是 x,y ,自变量是 x , y 是 x 的函数。
变量x与y的对应关系如下表所示:
x 1 4 9 16 25 … y ±1 ±2 ±3 ±4 ±5 …
问:变量y是x的函数吗?为什么?若要 使y是x的函数,可以怎样改动表格?
y不是x的函数,因为对于x的每一个确 定的值,y都有两个确定的值与其对应. 要使y是x的函数,可以将表格中y的每 一个值中的“±”改为“+”或“-”.
问题二
每张电影票的售价为10元,如果早场售出票150张, 日场售出205张,晚场售出310张,三场电影票的票房 收入各多少元?
若设一场电影售出票 x张,票房收入
为 y 元,怎样用含 x 的式子表示 y ?
y = 10x
在问题二中可以发现: x和y是两个变量,当售票数 量 x取定一个数值时,票房收入y就随之确定一个值。 如当x=150时,y=1500。
相关文档
最新文档