初中数学解分式方程练习题(附答案)
初中数学:分式方程习题精选(附参考答案)

初中数学:分式方程习题精选(附参考答案)1.某学校组织七、八两个年级学生到黄河岸边开展植树造林活动,已知七年级植树900棵与八年级植树1 200棵所用的时间相同,两个年级平均每小时共植树350棵。
求七年级年级平均每小时植树多少棵?设七年级年级平均每小时植树x 棵,则下面所列方程中正确的是( ) A .900350−x =1 200xB .900x =1 200350+xC .900350+x =1 200xD .900x=1 200350−x2.若关于x 的方程2x =m2x+1无解,则m 的值为( ) A .0 B .4或6 C .6D .0或43.解分式方程2x −1x+1=0去分母时,方程两边同乘的最简公分母是_____________. 4.分式方程3−x x−4+14−x=1的解是________.5.甲、乙两人做某种机器零件,甲每小时比乙每小时多做10个,甲做160个所用时间与乙做140个所用时间相等,甲、乙两人每小时分别做多少个?设甲每小时做x 个,则可列分式方程为__________. 6.(1)解方程:xx+1=2x 2−1(2)解方程:1x−1+1=32x−27.为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动。
甲、乙两班在一次体验挖土豆的活动中,甲班挖1 500千克土豆与乙班挖1 200千克土豆所用的时间相同。
已知甲班平均每小时比乙班多挖100千克土豆,问:乙班平均每小时挖多少千克土豆?8.已知点P (1-2a ,a -2)关于原点的对称点在第一象限内,且a 为整数,则关于x 的分式方程x+1x−a =2的解是( ) A .x =5 B .x =1 C .x =3D .不能确定9.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个。
设原计划每天生产x 个,根据题意可列分式方程为( ) A .20x+10x+4=15 B .20x−10x+4=15 C .20x+10x−4=15 D .20x−10x−4=1510.照相机成像应用了一个重要原理,用公式1f =1u +1v (v ≠f )表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离。
中考数学分式方程专题训练100题(含参考答案)

30.养鱼池养了同一品种的鱼,要大概了解养鱼池中的鱼的数量,池塘的主人想出了如下的办法:“他打捞出80尾鱼,做了标记后又放回了池塘,过了三天,他又捞了一网,发现捞起的90尾鱼中,带标记的有6尾.”你认为池塘主的做法()
A.有道理,池中大概有1200尾鱼B.无道理
C.有道理,池中大概有7200尾鱼D.有道理,池中大概有1280尾鱼
45.某市计划对道路进行维护.已知甲工程队每天维护道路的长度比乙工程队每天维护道路的长度多50%,甲工程队单独维护30千米道路的时间比乙工程队单独维护24千米道路的时间少用1天.
(1)求甲、乙两工程队每天维护道路的长度是多少千米?
(2)若某市计划对200千米的道路进行维护,每天需付给甲工程队的费用为25万元,每天需付给乙工程队的费用为15万元,考虑到要不超过26天完成整个工程,因工程的需要,两队均需参与,该市安排乙工程队先单独完成一部分,剩下的部分两个工程队再合作完成.问乙工程队先单独做多少天,该市需付的整个工程费用最低?整个工程费用最低是多少万元?
A.甲、丁B.乙、丙C.甲、乙D.甲、乙、丙
37.若关于x的一元一次不等式组 有解,且关于y的分式方程 = 的解是正整数,则所有满足条件的整数a的值之和是()
A.﹣14B.﹣15C.﹣16D.﹣17
38.已知关于x的方程 有增根,则a的值为( )
A.4B.5C.6D.﹣5
39.若关于x的分式方程 +1= 有整数解,且关于y的不等式组 恰有2个整数解,则所有满足条件的整数a的值之积是( )
34.美是一种感觉,当人体下半身长与身高的比值越接近黄金分割比时,越给人一种美感.如图,某女士身高165cm,下半身长x与身高L的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为().
分式方程计算题40道及答案

分式方程计算题40道(1)2x+xx+3=1。
方程两边都乘以x(3+3),去分母,得2(x+3)+x2=x2+3x,即2x-3x=-6所以x =6。
检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。
(2)15x=2×15 x+12。
方程两边都乘以x(x+12),约去分母,得15(x+12)=30x.解这个整式方程,得x =12.检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。
(3)2(1x+1x+3)+x-2x+3=1。
整理,得2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,即2x+xx+3=1.方程两边都乘以x(x+3),去分母,得2(x+3)+x2=x(x+3),即2x+6+x2=x2+3x,亦即2x-3x=-6.解这个整式方程,得x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。
(4)2x-3+1/(x-5)=x+2+1/(x-5) 。
两边同时减1/(x-5),得x=5 代入原方程,使分母为0,所以x=5是增根所以方程无解!检验格式:把x=a 带入最简公分母,若x=a使最简公分母为0,则a 是原方程的增根.若x=a使最简公分母不为零,则a是原方程的根。
(5)x/(x+1)=2x/(3x+3)+1。
两边乘3(x+1) 3x=2x+(3x+3) 3x=5x+3 -2x=3 x=3/-2 经检验,x=-3/2是方程的解。
(6)2/(x-1)=4/(x^2-1)。
2(x+1)=4、2x+2=4 、2x=2 、x=1把x=1代入原方程,分母为0,所以x=1是增根。
所以原方程无解。
(7)3x/1-x-1/x-1=1。
方程两边同时乘以(1-x),得3x+1=1-xx=0检验:x=0是原方程的解。
(8)2/1+x-3/1-x=4/x^2-1。
方程两边同时乘以(x^2-1),得2(x-1)+3(x+1)=4x=3/5经检验的:x =3/5是原方程的解。
初中数学解分式方程综合练习题(附答案)

初中数学解分式方程综合练习题一、单选题1.下列计算正确的是( )A. 235a b ab +=B. ()222a b a b -=-C. ()32626x x =D. 835x x x ÷= 2.如图,90B D ∠=∠=︒,BC CD =,140∠=︒,则2∠=( )A.40°B.50°C.60°D.75°3.下列等式从左到右的变形一定正确的是( ) A. 11b b a a +=+ B. b bm a am = C. 2ab b a a= D. 22b b a a = 4.若,x y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( ) A.2x x y +- B.22y x C.3223y x D.()222y x y -5.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A.(2)0,B.(20)-,C.(6)0,D.(60)-,6.如图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有( )A .3个B .4个C .5个D .6个7.如果一个正比例函数的图象经过不同象限的两点()()2,,,3A m B n ,那么一定有( )A.0,0m n >>B.0,0m n ><C.0,0m n <>D.0,0m n <<8.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A.5- B.8-C.2-D.59.下列各分式中,是最简分式的是( ) A.105xy xB. 22x y x y-- C. x y x+ D. 24x 10.若x 为整数,且使分式2123x x ++的值为整数,则满足条件的x 的值有( ) A.5个 B.6个 C.8个 D.7个11.随着时代的进步,人们对 2.5PM (空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中 2.5PM 的值31(ug /m )y 随时间(h)t 的变化如图所示,设2y 表示0时到t 时2.5PM 的值的极差(即0时到t 时 2.5PM 的最大值与最小值的差),则2y 与t 的函数关系大致是( )A .B .C .D .二、解答题12.某商店购进A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等.(1)求购买一个A 商品和一个B 商品各需要多少元;(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?13.随着5G 技术的发展,人们对各类5G 产品的使用充满期待,某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x (x 为正整数)个销售周期每台的销售价格为y 元,y 与x 之间满足如图所示的一次函数关系.(1)求y 与x 之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用1122p x =+来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?14.如图,在ABC △中,90,BAC E ∠=︒为边BC 上的点,且,AB AE D =为线段BE 的中点,过点E 作EF AE ⊥,过点A 作//AF BC ,且,AF EF 相交于点F .(1)求证:C BAD ∠=∠;(2)求证:AC EF =.15.如图, ,60,AB BC ABC BDC =∠=∠=︒求证: AD CD BD +=;三、计算题16.计算: 1.(6)(2)(3)a a a a +--+2.221121x x x x x x--÷+++17.计算:(1)222123234x y x xy --; (2)22y x x xy y x+--. 18.计算:693()(1).x x x x--÷- 19.计算下列小题:(1)计算:20(2)3(6)----;(2)解分式方程:22511x x =--.20.若33m n a a -÷=,且22m n +=,求34m n -21.化简(1)2245a a +--(2)()()22228423xy x y x y xy -+--+-22.对于实数,a b 定义运算:(,0)(,0)b b a a b a a b a a b a -⎧>≠⎪=⎨≤≠⎪⎩▲ 如: 3123=2,8-=▲242416==▲. 照此定义的运算方式计算: [][]2(4)(4)(2)-⨯--▲▲四、填空题23.已知分式2x m x n -+,当2x =时,分式的值为0;当1x =时,分式无意义,则m n += . 24.分式22,b a b a ab a ab ---+的最简公分母是 . 25.一个周长是20cm 的长方形,它的面积()2cm S 与长边()cm x 之间的函数表达式为 ,自变量x 的取值范围是 .26.已知()214k y k x k =-+-是一次函数,则()201932k += .27.如图,在ABC △中,10,12,8,AB AC BC AD AD ====是BAC ∠的平分线.若,P Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是 .28.如图,BD 是ABC △的角平分线,它的垂直平分线分别交AB ,BD ,BC 于点E ,F ,G ,若30ABC ∠=︒,45C ∠=︒,ED =H 是BD 上的一个动点,则HG HC +的最小值为 .29.分解因式:3x x -=___________.参考答案1.答案:D解析:A 、23a b +,无法计算,故此选项错误;B 、222()2a b a ab b -=-+,故此选项错误;C 、()32628x x =,故此选项错误; D 、835x x x ÷=,故此选项正确;故选:D .2.答案:B解析:3.答案:C解析:分式的基本性质是分式的分子、分母同乘(或除以)一个不为零的整式,分式的值不变.选项A,分子、分母同加1,不符合分式的基本性质,故A 错;选项B,分子、分母同乘m ,没有限制m 不等于零,故B 错;选项D,分子乘b ,分母乘a ,故D 错;选项C,分式2ab a中暗含0a ≠这个条件,所以分子、分母同时除以a ,分式值不变,故选C.4.答案:D解析:根据分式的基本性质,可知若,x y 的值均扩大为原来的3倍,选项A 中,23233x x x y x y ++≠-- ,故此选项错误;选项B 中,22629y y x x≠故此选项错误;选项C 中,3322542273y y x x≠ ,故此选项错误;选项D 中22221829()()y y x y x y =--,故此选项正确.5.答案:B解析:根据函数图象的平移规律,可知3y x =向上平移6个单位后得到的函数解析式为36y x =+,令0y =,即360x +=,解得2x =-,∴与x 轴的交点坐标为(20)-,,故选B6.答案:B 解析:利用角平线性质知角平分线上的点到角两边距离相等,通过三角形内心为其内切圆的圆心来解得.解答:根据三条路线构成的三角形知,三角形的内心为三角形内角角平分线的交点. 由三角形内心为该三角形内切圆的圆心,∴所以符合货物中转站到各路的距离相等.这样的点可找到一个.两外角平分线的交点,到三条公路的距离也相等,可找到三个.故答案为:B .7.答案:D 解析:∵点()2,A m 的横坐标为20>, ∴此点在一、四象限;∵点(),3B n 的纵坐标为30>,∴此点在一、二象限,∴此函数的图象一定经过二、四象限,∴点()2,A m 在第四象限,(),3B n 在第二象限,∴0,0m n <<.故答案为:0,0m n <<.8.答案:A解析:原分式通分得322(1)11x x m x x -++=++ 等式两边同时乘以(1)x +,得322(1)x x m -=++整理得4x m =+因为原分式无解,所以原分式的分母10x +=,即1x =-代入4x m =+中得,14m -=+,解得5m =-,故选A.9.答案:C解析:10.答案:C解析:2122(3)662333x x x x x +++==++++31,2,3,6x ∴+=±±±±,即4,2,1,5,0,6,3,9x =------时,分式的值为整数.故选C.11.答案:B解析:当0t =时,极差285850y -==,当010t <≤时,极差2y 随t 的增大而增大,最大值为43; 当1020t <≤时,极差2y 随t 的增大保持43不变;当2024t <≤时,极差2y 随t 的增大而增大,最大值为98; 故选:B .12.答案:解:(1)设购买一个B 商品需要x 元,则购买一个A 商品需要(10)x +元, 依题意,得:30010010x x=+, 解得:5x =,经检验,5x =是原方程的解,且符合题意,1015x ∴+=.答:购买一个A 商品需要15元,购买一个B 商品需要5元.(2)设购买B 商品m 个,则购买A 商品(80)m -个,依题意,得:80415(80)5100015(80)51050m m m m m m -≥⎧⎪-+≥⎨⎪-+≤⎩,解得:1516m ≤≤. m 为整数,15m ∴=或16.∴商店有2种购买方案,方案①:购进A 商品65个、B 商品15个;方案②:购进A 商品64个、B 商品16个.解析:13.答案:解:(1)设函数的解析式为:(0)y kx b k =+≠,由图象可得,700055000k b k b +=⎧⎨+=⎩, 解得,5007500k b =-⎧⎨=⎩, ∴y 与x 之间的关系式:5007500y x =-+;(2)设销售收入为w 万元,根据题意得,11(5007500)()22w yp x x ==-++, 即2250(7)16000w x =--+,∴当7x =时,w 有最大值为16000,此时500775004000y =-⨯+=(元)答:第7个销售周期的销售收入最大,此时该产品每台的销售价格是4000元.解析:14.答案:(1),AB AE D =为线段BE 的中点,AD BC ∴⊥, 90C DAC ∴∠+∠=︒,90BAC ∠=︒,90BAD DAC ∴∠+∠=︒,C BAD ∴∠=∠.(2)//AF BC ,FAE AEB ∴∠=∠,AB AE =,B AEB ∴∠=∠B FAE ∴∠=∠,且90,AEF BAC AB AE ∠=∠=︒=.()ABC EAF ASA ∴≌△△,AC EF ∴=.解析:15.答案:证明:如图2中,延长DC 到E,使得DB DE =∵,60DB DE BDC =∠=︒,∴△BDE 是等边三角形,,60,BD BE DBE ABC ∴∠=∠=∠=︒ABD CBE ∴∠=∠,∵AB BC =,∴△ABD ≅ △CBE ,∴AD EC =,∴BD DE DC CE DC AD ==+=+.∴AD CD BD +=.解析:16.答案:1.原式22412312a a a a a =+---=-2.原式21(1)(1)11x x x x x x x -+=⋅=+-+ 解析: 17.答案:解:(1)原式2222222689121212y y x x y x y x y =--222689.12y y x x y--= (2)原式2()y x x x y x y=--- 22()()y x x x y x x y =--- .x y x+=- 解析:18.答案:解:原式22693(3) 3.3x x x x x x x x x x -+--=÷=⋅=-- 解析:19.答案:解:(1)原式43416=-++=;(2)两边都乘以(1)(1)x x +-,得:2(1)5x +=, 解得:32x =, 检验:当32x =时,5(1)(1)04x x +-=≠, ∴原分式方程的解为32x =. 解析:20.答案:解:由1333m n m n a a a ---÷==,得到10m n --=,即1m n =+,代入22m n +=中得:222n n ++=,即0n =,把0n =代入得:1m =,则343m n -=.解析:21.答案:(1)原式3425a a =-+-3a =--(2)原式2222844812xy x y x y xy =-+-+-+225512x y =++ 解析:22.答案:解:根据题意得,412(4)216--==▲,2(4)(2)(4)16--=-=▲, 则[][]12(4)(4)(2)16116-⨯--=⨯=▲▲ 解析:23.答案:3解析:由题意,得402010m n n -=⎧⎪+≠⎨⎪+=⎩,解得41m n =⎧⎨=-⎩,故4(1)3m n +=+-=. 24.答案:()()a a b a b +-解析: 分式22,b a b a ab a ab---+的分母分别是22(),()a ab a a b a ab a a b -=-+=+,故最简公分母是()()a a b a b +-25.答案:210S x x =-+;510x <<解析:长方形的长为cm x ,周长为20cm ,则宽为()10cm x -, 所以它的面积()21010S x x x x =-=-+,易得010010x x x x >⎧⎪->⎨⎪>-⎩,解得510x <<.26.答案:1- 解析:由题意得1k =且10k -≠,解得1k =-,所以()()2019201932321k ++=-=-.27.答案:9.6解析:如图,连接.,BP AB AC AD =是BAC ∠的平分线,AD ∴垂直平分,.BC BP CP ∴=过点B 作BQ AC ⊥于点, Q BQ 交AD 于点P ,则此时PC PQ +取得最小值,最小值为BQ 的长,如图所示.11,22ABC S BC AD AC BQ =⋅=⋅△1289.610BC AD BQ AC ⋅⨯∴===28.答案:解析:29.答案:(1)(1)x x x +-解析:本题考查了分解因式,遵循先提取公因式,再利用平方差公式的顺序,32(1)(1)(1)x x x x x x x -=-=+-.。
初三解分式方程专题练习(附答案)

初三解分式方程专题练习一.解答题(共30小题)1.解方程:.2.解关于的方程:.3.解方程.4.解方程:=+1.6.解分式方程:.5.解方程:.7.(2011•台州)解方程:.8.解方程:.9.解分式方程:.10.解方程:.11.解方程:.12.解方程:.14.解方程:.13.解方程:.15.解方程:16.解方程:.17.①解分式方程;18.解方程:.19.(1)计算:|﹣2|+(+1)0﹣()﹣1+tan60°;(2)解分式方程:=+1.20.解方程:21.解方程:+=123.解分式方程:22.解方程:.24.解方程:25.解方程:27.解方程:26.解方程:+=128.解方程:29.解方程:30.解分式方程:.初三解分式方程专题练习答案与评分标准一.解答题(共30小题)1.解方程:.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0,∴y=是原方程的解,∴原方程的解为y=.2.解关于的方程:.解答:解:方程的两边同乘(x+3)(x﹣1),得x(x﹣1)=(x+3)(x﹣1)+2(x+3),整理,得5x+3=0,解得x=﹣.检验:把x=﹣代入(x+3)(x﹣1)≠0.∴原方程的解为:x=﹣.3.解方程.解答:解:两边同时乘以(x+1)(x﹣2),得x(x﹣2)﹣(x+1)(x﹣2)=3.(3分)解这个方程,得x=﹣1.(7分)检验:x=﹣1时(x+1)(x﹣2)=0,x=﹣1不是原分式方程的解,∴原分式方程无解.(8分)4.解方程:=+1.解答:解:原方程两边同乘2(x﹣1),得2=3+2(x﹣1),解得x=,检验:当x=时,2(x﹣1)≠0,∴原方程的解为:x=.5.(2011•威海)解方程:.解答:解:方程的两边同乘(x﹣1)(x+1),得3x+3﹣x﹣3=0,解得x=0.检验:把x=0代入(x﹣1)(x+1)=﹣1≠0.∴原方程的解为:x=0.6.(2011•潼南县)解分式方程:.解答:解:方程两边同乘(x+1)(x﹣1),得x(x﹣1)﹣(x+1)=(x+1)(x﹣1)(2分)化简,得﹣2x﹣1=﹣1(4分)解得x=0(5分)检验:当x=0时(x+1)(x﹣1)≠0,∴x=0是原分式方程的解.(6分)7.(2011•台州)解方程:.解答:解:去分母,得x﹣3=4x (4分)移项,得x﹣4x=3,合并同类项,系数化为1,得x=﹣1(6分)经检验,x=﹣1是方程的根(8分).8.(2011•随州)解方程:.解答:解:方程两边同乘以x(x+3),得2(x+3)+x2=x(x+3),2x+6+x2=x2+3x,∴x=6检验:把x=6代入x(x+3)=54≠0,∴原方程的解为x=6.9.(2011•陕西)解分式方程:.解答:解:去分母,得4x﹣(x﹣2)=﹣3,去括号,得4x﹣x+2=﹣3,移项,得4x﹣x=﹣2﹣3,合并,得3x=﹣5,化系数为1,得x=﹣,检验:当x=﹣时,x﹣2≠0,∴原方程的解为x=﹣.解答:解:方程两边都乘以最简公分母(x﹣3)(x+1)得:3(x+1)=5(x﹣3),解得:x=9,检验:当x=9时,(x﹣3)(x+1)=60≠0,∴原分式方程的解为x=9.11.(2011•攀枝花)解方程:.解答:解:方程的两边同乘(x+2)(x﹣2),得2﹣(x﹣2)=0,解得x=4.检验:把x=4代入(x+2)(x﹣2)=12≠0.∴原方程的解为:x=4.12.(2011•宁夏)解方程:.解答:解:原方程两边同乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3(x﹣1),展开、整理得﹣2x=﹣5,解得x=2.5,检验:当x=2.5时,(x﹣1)(x+2)≠0,∴原方程的解为:x=2.5.13.(2011•茂名)解分式方程:.解答:解:方程两边乘以(x+2),得:3x2﹣12=2x(x+2),(1分)3x2﹣12=2x2+4x,(2分)x2﹣4x﹣12=0,(3分)(x+2)(x﹣6)=0,(4分)解得:x1=﹣2,x2=6,(5分)检验:把x=﹣2代入(x+2)=0.则x=﹣2是原方程的增根,检验:把x=6代入(x+2)=8≠0.∴x=6是原方程的根(7分).14.(2011•昆明)解方程:.解答:解:方程的两边同乘(x﹣2),得3﹣1=x﹣2,解得x=4.检验:把x=4代入(x﹣2)=2≠0.解答:(1)解:原方程两边同乘以6x,得3(x+1)=2x•(x+1)整理得2x2﹣x﹣3=0(3分)解得x=﹣1或检验:把x=﹣1代入6x=﹣6≠0,把x=代入6x=9≠0,∴x=﹣1或是原方程的解,故原方程的解为x=﹣1或(6分)16.(2011•大连)解方程:.解答:解:去分母,得5+(x﹣2)=﹣(x﹣1),去括号,得5+x﹣2=﹣x+1,移项,得x+x=1+2﹣5,合并,得2x=﹣2,化系数为1,得x=﹣1,检验:当x=﹣1时,x﹣2≠0,∴原方程的解为x=﹣1.17.(2011•常州)①解分式方程;解答:解:①去分母,得2(x﹣2)=3(x+2),去括号,得2x﹣4=3x+6,移项,得2x﹣3x=4+6,解得x=﹣10,检验:当x=﹣10时,(x+2)(x﹣2)≠0,∴原方程的解为x=﹣10;18.(2011•巴中)解方程:.解答:解:去分母得,2x+2﹣(x﹣3)=6x,∴x+5=6x,解得,x=1经检验:x=1是原方程的解.19.(2011•巴彦淖尔)(1)计算:|﹣2|+(+1)0﹣()﹣1+tan60°;(2)解分式方程:=+1.(2)方程两边同时乘以3(x+1)得3x=2x+3(x+1),x=﹣1.5,检验:把x=﹣1.5代入(3x+3)=﹣1.5≠0.∴x=﹣1.5是原方程的解.20.(2010•遵义)解方程:解答:解:方程两边同乘以(x﹣2),得:x﹣3+(x﹣2)=﹣3,解得x=1,检验:x=1时,x﹣2≠0,∴x=1是原分式方程的解.21.(2010•重庆)解方程:+=1解答:解:方程两边同乘x(x﹣1),得x2+x﹣1=x(x﹣1)(2分)整理,得2x=1(4分)解得x=(5分)经检验,x=是原方程的解,所以原方程的解是x=.(6分)22.(2010•孝感)解方程:.解答:解:方程两边同乘(x﹣3),得:2﹣x﹣1=x﹣3,整理解得:x=2,经检验:x=2是原方程的解.23.(2010•西宁)解分式方程:解答:解:方程两边同乘以2(3x﹣1),得3(6x﹣2)﹣2=4(2分)18x﹣6﹣2=4,18x=12,x=(5分).检验:把x=代入2(3x﹣1):2(3x﹣1)≠0,∴x=是原方程的根.∴原方程的解为x=.(7分)24.(2010•恩施州)解方程:经检验:当x=3时,x﹣4=﹣1≠0,所以x=3是原方程的解.(8分)25.(2009•乌鲁木齐)解方程:解答:解:方程两边都乘x﹣2,得3﹣(x﹣3)=x﹣2,解得x=4.检验:x=4时,x﹣2≠0,∴原方程的解是x=4.26.(2009•聊城)解方程:+=1解答:解:方程变形整理得:=1方程两边同乘(x+2)(x﹣2),得:(x﹣2)2﹣8=(x+2)(x﹣2),解这个方程得:x=0,检验:将x=0代入(x+2)(x﹣2)=﹣4≠0,∴x=0是原方程的解.27.(2009•南昌)解方程:解答:解:方程两边同乘以2(3x﹣1),得:﹣2+3x﹣1=3,解得:x=2,检验:x=2时,2(3x﹣1)≠0.所以x=2是原方程的解.28.(2009•南平)解方程:解答:解:方程两边同时乘以(x﹣2),得4+3(x﹣2)=x﹣1,解得:.检验:当时,,∴是原方程的解;29.(2008•昆明)解方程:解答:解:原方程可化为:,方程的两边同乘(2x﹣1),得2﹣5=2x﹣1,∴原方程的解为:x=﹣1.30.(2007•孝感)解分式方程:.解答:解:方程两边同乘以2(3x﹣1),去分母,得:﹣2﹣3(3x﹣1)=4,解这个整式方程,得x=﹣,检验:把x=﹣代入最简公分母2(3x﹣1)=2(﹣1﹣1)=﹣4≠0,∴原方程的解是x=﹣(6分)。
初中数学解分式方程练习题(附答案)

初中数学解分式方程练习题一、单选题1.下列方程不是分式方程的是( ) A.31x x-= B.1111x x x +=+- C.342x y+= D.1223x x --= 2.下列各式中,是关于x 的分式方程的是( )A.230x y -=B.12327x x +-=C. 352x x =-D.132x x ++- 3.方程2131x x =+-的解是( ) A.53x = B.5x = C.4x = D.5x =-4.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的( )A.a a b +B.b a b +C.h a b +D.h a h+ 5.已知关于x 的分式方程3133x a x -=-的解是非负数,那么a 的取值范围是( ) A.1a > B.1a ≥C.1a ≥且9a ≠D.1a ≤ 6.九年级(1)班学生周末从学校出发到某实践基地研学旅行,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地,已知快车的速度是慢车速度的1.2倍,如果设慢车的速度为x 千米/时,根据题意列方程得( )A.15015030 1.2x x-= B.15015030 1.2x x += C.15011502 1.2x x -= D.15011502 1.2x x +=7.新能源汽车环保节能,越来越受到消费者的喜爱,各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车,去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元,销售数量与去年一整年的相同,销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元,根据题意,列方程正确的是( ) A.5000500010)1(2x x -=+% B.5000500010)1(2x x +=+% C.5000500010)1(2x x -=-% D. 5000500010)1(2x x+=-% 8.解分式方程14322x x-=--时,去分母可得( ) A.()1324x --=B.()1324x --=-C.()1324x --=-D.()1324x --= 9.小王乘公共汽车从甲地到相距40千米的乙地办事.然后乘出租车返回,出租车的平均速度比公共汽车多2千米/时.回来时路上所花时间比去时节省了14,设公共汽车的平均速度为x 千米/时,则下面列出的方程中正确的是( ) A.40340204x x=⨯+ B.40340420x x =⨯+ C.40140204x x+=+ D.40140204x x -=+ 二、解答题10.甲、乙两同学与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行的速度是乙骑自行车速度的12,公交车速度是乙骑自行车速度的2倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.1.求乙骑自行车的速度;2.当甲到达学校时,乙同学离学校还有多远?三、填空题11.分式方程3142x x -=+的解是x = . 12.某市为治理污水,需要铺设一段全长为3000米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加25%,结果提前20天完成这一任务,则原计划每天铺设 米管道.13.当m = 时,解分式方程533x m x x -=--会出现增根. 14.分式72x -与2x x-的和为4,则x 的值为 . 参考答案1.答案:D解析: A,B,C 选项中的方程分母中都含未知数,是分式方程;D 选项的方程分母中不含未知数,不是分式方程,故选D.2.答案:C解析:230x y -=是整式方程,故A 错误;1237x x x +-=是整式方程,故B 错误;352x x =-是分式方程,且未知数为x ,故C 正确;132x x ++-不是方程故D 错误故选C 3.答案:B 解析:方程的两边都乘()()31x x +-得223x x -=+,解方程得5x =.经检验,5x =是原分式方程的解,所以原方程的解是5x =.故选B.4.答案:A解析:设第一个图形中下底面积为S ,倒立放置时,空余部分的体积为bS ,正立放置时,有墨水部分的体积是aS ,因此墨水的体积约占玻璃瓶容积的aS a aS bS a b =++故选A 5.答案:C 解析:由3133x a x -=-,解得338a x -=.分式方程的解是非负数,33018a a -∴≥≥,. 又3x ≠,3338a -∴≠,即9a ≠,1a ∴≥且9a ≠.故选C. 6.答案:C 解析:已知慢车的速度为x 千米/时,则快车的速度为1.2x 千米/时,根据题意可得15011502 1.2x x -= 7.答案:A解析:已知今年1~5月份每辆车的销售价格为x 万元,则去年每辆车的销售价格为()1x +万元,根据“销售数量与去年一整年的相同”可列方程50005000(120%)1x x-=+故选A. 8.答案:B解析:原方程可变形为14322x x -=---,方程两边同时乘()2x -,得()1324x --=-.故选B 9.答案:A 解析:公共汽车的平均速度为x 千米/时,则出租车的平均速度为()20x +千米/时,根据回来时路上所花时间比去时节省了14,得出方程为40340204x x=⨯+. 10.答案:1.设乙骑自行车的速度为x 米/分钟,则甲步行的速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意得600300060030002122x x x -+=-,解得300x =,经检验300x =是分式方程的解答:乙骑自行车的速度为300米/分钟2.3002600⨯= (米)答:当甲到达学校时,乙同学离学校还有600米解析:11.答案:9-解析:去分母,得()3142x x -=+,去括号,得3148x x -=+,移项、合并同类项,得9x -=,系数化为1,得9x =-.检验:当9x =-时,20x +≠,所以原分式方程的解是9x =-. 12.答案:30解析:设原计划每天铺设x 米管道,则依题意可得3000300020(125%)x x-=+,解得30x =,经检验,30x =是原分式方程的解,∴原计划每天铺设30米管道.13.答案:2解析:去分母得5x m -=-,解得5x m =-由原分式方程的分母可知,分式方程的增根是3x =,即53m -=,解得2m =.14.答案:3 解析:根据题意,得7422x x x+=--方程两边同乘()2x -,得()742x x -=-,解得3x =,检验:当3x =时,20x -≠,所以原分式方程的解是3x =.。
中考数学分式方程专题训练有答案解析

分式方程一、选择题1.下列各式中,是分式方程的是A.x+y=5 B.C. =0 D.2.关于x的方程的解为x=1,则a=A.1 B.3 C.﹣1 D.﹣33.分式方程=1的解为A.x=2 B.x=1 C.x=﹣1 D.x=﹣24.下列关于分式方程增根的说法正确的是A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根5.方程+=0可能产生的增根是A.1 B.2 C.1或2 D.﹣1或26.解分式方程,去分母后的结果是A.x=2+3 B.x=2x﹣2+3 C.xx﹣2=2+3x﹣2 D.x=3x﹣2+27.要把分式方程化为整式方程,方程两边需要同时乘以A.2xx﹣2 B.x C.x﹣2 D.2x﹣48.河边两地距离s km,船在静水中的速度是a km/h,水流的速度是b km/h,船往返一次所需要的时间是A.小时B.小时C.小时D.小时9.若关于x的方程有增根,则m的值是A.3 B.2 C.1 D.﹣110.有两块面积相同的小麦试验田,分别收获小麦9000㎏和15000㎏.已知第一块试验田每公顷的产量比第二块少3000㎏,若设第一块试验田每公顷的产量为x㎏,根据题意,可得方程A. =B. =C. =D. =二.填空题11.方程:的解是.12.若关于x的方程的解是x=1,则m= .13.若方程有增根x=5,则m= .14.如果分式方程无解,则m= .15.当m= 时,关于x的方程=2+有增根.16.用换元法解方程,若设,则可得关于的整式方程.17.已知x=3是方程一个根,求k的值= .18.某市在旧城改造过程中,需要整修一段全长2400m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm,则根据题意可得方程.三.解答题19.解分式方程1;2.20.甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具21.某服装厂准备加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服22.为了过一个有意义的“六、一”儿童节,实验小学发起了向某希望小学捐赠图书的活动.在活动中,五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,求两个班各有多少名同学23.请你编一道可化为一元一次方程的分式方程且不含常数项的应用题,并予以解答.分式方程参考答案与试题解析一、选择题1.下列各式中,是分式方程的是A.x+y=5 B.C. =0 D.考点分式方程的定义.分析根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.解答解:A、方程分母中不含未知数,故不是分式方程;B、方程分母中不含未知数,故不是分式方程;C、方程分母中含未知数x,故是分式方程.D、不是方程,是分式.故选C.点评本题考查的是分式方程的定义,即分母中含有未知数的方程叫做分式方程.2.关于x的方程的解为x=1,则a=A.1 B.3 C.﹣1 D.﹣3考点分式方程的解.专题计算题.分析根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含有a的新方程,解此新方程可以求得a的值.解答解:把x=1代入原方程得,去分母得,8a+12=3a﹣3.解得a=﹣3.故选:D.点评解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.3.分式方程=1的解为A.x=2 B.x=1 C.x=﹣1 D.x=﹣2考点解分式方程.专题计算题.分析本题的最简公分母是2x﹣3,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.解答解:方程两边都乘2x﹣3,得1=2x﹣3,解得x=2.检验:当x=2时,2x﹣3≠0.∴x=2是原方程的解.故选A.点评1解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.2解分式方程一定注意要代入最简公分母验根.4.下列关于分式方程增根的说法正确的是A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根考点分式方程的增根.分析分式方程的增根是最简公分母为零时,未知数的值.解答解:分式方程的增根是使最简公分母的值为零的解.故选D.点评本题考查了分式方程的增根,使最简公分母的值为零的解是增根.5.方程+=0可能产生的增根是A.1 B.2 C.1或2 D.﹣1或2考点分式方程的增根.专题计算题.分析本题由增根的定义可知分式分母为0,即x﹣1=0或x﹣2=0,解出即可.解答解:∵方程+=0有增根,∴x﹣1=0或x﹣2=0,解得x=1或2,点评本题主要考查增根的定义,解题的关键是使最简公分母x﹣1x﹣2=0.6.解分式方程,去分母后的结果是A.x=2+3 B.x=2x﹣2+3 C.xx﹣2=2+3x﹣2 D.x=3x﹣2+2考点解分式方程.专题计算题.分析找出各分母的最小公分母,同乘以最小公分母即可.解答解:左右同乘以最简公分母x﹣2,得x=2x﹣2+3,故选B.点评本题考查了解分式方程的内容.注意在乘以最小公分母时,不要漏乘.7.要把分式方程化为整式方程,方程两边需要同时乘以A.2xx﹣2 B.x C.x﹣2 D.2x﹣4考点解分式方程.专题计算题.分析把分式方程化为整式方程,乘以最简公分母2xx﹣2即可.解答解:∵方程的最简公分母2xx﹣2,∴方程的两边同乘2xx﹣2即可.故选A.点评本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.找出最简公分母是解此题的关键.8.河边两地距离s km,船在静水中的速度是a km/h,水流的速度是b km/h,船往返一次所需要的时间是A.小时B.小时C.小时D.小时考点列代数式分式.分析往返一次所需要的时间是,顺水航行的时间+逆水航行的时间,根据此可列出代数式.解答解:根据题意可知需要的时间为: +点评本题考查列代数式,关键知道时间=路程÷速度,从而列出代数式.9.若关于x的方程有增根,则m的值是A.3 B.2 C.1 D.﹣1考点分式方程的增根.专题计算题.分析有增根是化为整式方程后,产生的使原分式方程分母为0的根.在本题中,应先确定增根是1,然后代入化成整式方程的方程中,求得m的值.解答解:方程两边都乘x﹣1,得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故选:B.点评增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.有两块面积相同的小麦试验田,分别收获小麦9000㎏和15000㎏.已知第一块试验田每公顷的产量比第二块少3000㎏,若设第一块试验田每公顷的产量为x㎏,根据题意,可得方程A. =B. =C. =D. =考点由实际问题抽象出分式方程.专题应用题.分析关键描述语是:“有两块面积相同的小麦试验田”;等量关系为:第一块试验田的面积=第二块试验田的面积.解答解:第一块试验田的面积是,第二块试验田的面积为.那么方程可表示为.点评列方程解应用题的关键步骤在于找相等关系,找到关键描述语,找到相应的等量关系是解决问题的关键.二.填空题11.方程:的解是.考点解分式方程.专题计算题.分析本题考查解分式方程的能力,观察可得方程最简公分母为:xx+1,方程两边去分母后化为整式方程求解.解答解:方程两边同乘以xx+1,得x2+x+1x﹣1=2xx+1,解得:x=﹣.经检验:x=﹣是原方程的解.点评1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.2解分式方程一定注意要验根.3方程中有常数项的注意不要漏乘常数项,本题应避免出现x2+x+1x﹣1=2的情况出现.12.若关于x的方程的解是x=1,则m= 2 .考点分式方程的解.分析根据分式方程的解的定义,把x=1代入原方程求解可得m的值.解答解:把x=1代入方程,得,解得m=2.故应填:2.点评本题主要考查了分式方程的解的定义,属于基础题型.13.若方程有增根x=5,则m= 5 .考点分式方程的增根.专题计算题.分析由于增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,所以将方程两边都乘x﹣5化为整式方程,再把增根x=5代入求解即可.解答解:方程两边都乘x﹣5,得x=2x﹣5+m,∵原方程有增根x=5,把x=5代入,得5=0+m,解得m=5.故答案为:5.点评本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14.如果分式方程无解,则m= ﹣1 .考点分式方程的解.专题计算题.分析分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解答解:方程去分母得:x=m,当x=﹣1时,分母为0,方程无解.即m=﹣1方程无解.点评本题考查了分式方程无解的条件,是需要识记的内容.15.当m= 3 时,关于x的方程=2+有增根.考点分式方程的增根.专题方程思想.分析由于增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,所以将方程两边都乘x﹣3化为整式方程,再把增根x=3代入求解即可.解答解:方程两边都乘x﹣3,得x=2x﹣3+m,∵原方程有增根,∴最简公分母x﹣3=0,解得x=3,3=0+m,解得m=3.故答案为:3.点评本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16.2006 南通用换元法解方程,若设,则可得关于的整式方程2y2﹣4y+1=0 .考点换元法解分式方程.专题压轴题;换元法.分析本题考查用换元法整理分式方程的能力,根据题意得设=y,代入方程可把原方程化为整式.解答解:设=y,则可得=,∴可得方程为2y+=4,整理得2y2﹣4y+1=0.点评用换元法解分式方程是常用的方法之一,换元时要注意所设分式的形式及式中不同的变形.17.已知x=3是方程一个根,求k的值= ﹣3 .考点分式方程的解.分析根据方程的解的定义,把x=3代入原方程,得关于k的一元一次方程,再求解可得k 的值.解答解:把x=3代入方程,得,解得k=﹣3.故应填:﹣3.18.某市在旧城改造过程中,需要整修一段全长2400m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm,则根据题意可得方程﹣=8 .考点由实际问题抽象出分式方程.分析求的是原计划的工效,工作总量为2400,一定是根据工作时间来列等量关系.本题的关键描述语是:“提前8小时完成任务”;等量关系为:原计划用的时间﹣实际用的时间=8.解答解:原计划用的时间为:,实际用的时间为:.所列方程为:﹣=8.点评应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效.三.解答题19.解分式方程1;2.考点解分式方程.分析1首先乘以最简公分母x﹣3x去分母,然后去括号,移项,合并同类项,把x的系数化为1,最后一定要检验.2首先乘以最简公分母x﹣1x+1去分母,然后去括号,移项,合并同类项,把x的系数化为1,最后一定要检验.解答解:1去分母得:2x=3x﹣3,去括号得:2x=3x﹣9,移项得:2x﹣3x=﹣9,合并同类项得:﹣x=﹣9,把x的系数化为1得:x=9检验:当x=9时,xx﹣3=54≠0.∴原方程的解为:x=9.2去分母得:x+1=2,移项得:x=2﹣1,合并同类项得:x=1.检验:当x=1时,x﹣1x+1=0,所以x=1是增根,故原方程无解.点评此题主要考查了分式方程的解法,做题过程中关键是不要忘记检验,很多同学忘记检验,导致错误.20.甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具考点分式方程的应用.专题应用题.分析求的是工效,工作总量明显,一定是根据工作时间来列等量关系.本题的关键描述语是:“甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等”;等量关系为:甲加工90个玩具所用的时间=乙加工120个玩具所用的时间.解答解:设甲每天加工x个玩具,那么乙每天加工35﹣x个玩具.由题意得:.5分解得:x=15.7分经检验:x=15是原方程的根.8分∴35﹣x=209分答:甲每天加工15个玩具,乙每天加工20个玩具.10分点评应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.某服装厂准备加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服考点分式方程的应用.专题应用题.分析关键描述语为:“共用9天完成任务”;等量关系为:用老技术加工60套用的时间+用新技术加工240套用的时间=9.解答解:设服装厂原来每天加工x套演出服.根据题意,得:.3分解得:x=20.经检验,x=20是原方程的根.答:服装厂原来每天加工20套演出服.6分点评分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.为了过一个有意义的“六、一”儿童节,实验小学发起了向某希望小学捐赠图书的活动.在活动中,五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,求两个班各有多少名同学考点分式方程的应用.分析设一班有x人,则二班有人.根据五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,可列方程求解.解答解:设一班有x人,则二班有人.根据题意得:,解得:x=50.经检验:x=50是原方程的解.=×50=60.答:一班有50人,二班有60人.点评本题考查分式方程的应用,关键是设出人数,以平均每人捐的本数做为等量关系列方程求解.23.请你编一道可化为一元一次方程的分式方程且不含常数项的应用题,并予以解答.考点分式方程的应用.分析本题答案开放,根据题意要求,先写出符合要求的方程,如:,然后根据此方程编拟应用题.解答解:甲乙两个车间分别制造相同的机器零件,已知甲车间每小时比乙多制造10个机器零件,这样甲车间制造170个机器零件与乙制造160个所用时间相同,求甲乙两车间每小时各制造机器零件多少个点评此题考查分式方程的应用,为开放性试题,答案不唯一.。
分式方程练习题精选(含答案)

分式方程练习题精选(含答案)一、 选择题:1.以下是方程211x x x -=-去分母的结果,其中正确的是 . A .2(1)1x x --= B .2221x x --= C .2222x x x x --=- D .2222x x x x -+=-2.在下列方程中,关于x 的分式方程的个数有 . ①0432212=+-x x ②.4=a x ③;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-a x a x . A.2个 B.3个 C.4个 D.5个3.分式25m +的值为1时,m 的值是 . A .2 B .-2 C .-3 D .34.不解下列方程,判断下列哪个数是方程21311323x x x x =+++--的解 . A .x=1 B .x=-1 C .x=3 D .x=-35.若关于x 的方程122x m x x +=++有增根,则m 的值为 . A .1 B .-1 C .-2 D .26.若分式x 2-12(x+1) 的值等于0,则x 的值为 .A 、1B 、±1C 、12D 、-17.赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是 .A 、1421140140=-+x xB 、1421280280=++x x B 、1211010=++x x D 、1421140140=++x x8.关于x 的方程2354ax a x +=-的根为x =2,则a 应取值 . A.1B.3C.-2D.-39.在正数范围内定义一种运算☆,其规则为a ☆b =ba 11+,根据这个规则x ☆23)1(=+x 的解为 . A .32=x B .1=x C .32-=x 或1 D .32=x 或1- 10.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 .A .32180180=+-x x B .31802180=-+x x C .32180180=--x x D .31802180=--x x 11.李老师在黑板上出示了如下题目:“已知方程012=++kx x ,试添加一个条件,使方程的解是x=-1”后,小颖的回答是:“添加k=0的条件”;小亮的回答是:“添加k=2的条件”,则你认为 .A 、只有小颖的回答正确B 、小亮、小颖的回答都正确C 、只有小亮的回答正确D 、小亮、小颖的回答都不正确12.某工地调来72人挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力才使挖掘出来的土能及时运走,且不窝工,解决此问题,可设派x 人挖土,其它人运土,列方程:①723x x -=②723x x -=③372x x +=④372x x=-上述所列方程,正确的有 .A .1个B .2个C .3个D .4个二、 填空题: 13.若分式11--x x 的值为0,则x 的值等于14.若分式方程xm x x -=--2524无解,那么m 的值应为 15.某项工程限期完成,甲单独做提前1天完成,乙单独做延期2天完工,现两人合作1天后,余下的工程由乙队单独做,恰好按期完工,求该工程限期 天.16.阅读材料: 方程1111123x x x x -=-+--的解为1x =, 方程1111134x x x x -=----的解为x=2, 方程11111245x x x x -=-----的解为3x =,… 请写出能反映上述方程一般规律的方程,并直 接写出这个方程的解是 .三、 解答题:17.解方程)2)(1(311+-=--x x x x18.先化简代数式1121112-÷⎪⎭⎫⎝⎛+-+-+x x x x x x ,然后选取一个使你喜欢的x 的值代入求值.19.若方程122-=-+x a x 的解是正数,求a 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学解分式方程练习题
一、单选题
1.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。
设原计划行军的速度为km /x h ,,则可列方程( ) A.
6060120%x x =++ B. 6060120%x x =-+ C. ()
60601120%x x =++ D. ()60601120%x x =-+ 2.十一期间,几名同学共同包租一辆中巴车去红海滩游玩,中巴车的租价为480元,出发时 又有4名同学参加进来,结果每名同学比原来少分摊4元车费.设原来游玩的同学有x 名,则可得方程( ) A.48048044x x -=+ B.48048044x x -=- C.48048044x x -=- D.48048044
x x -=+ 3.已知:1113a b -=,则ab b a
-的值是( ) A .13 B .13
- C .3 D .-3 4.若分式24x x
-的值为0,则x 的值是( ) A.2或-2 B.2 C.-2 D.0
5.下列各式从左到右的变形正确的是( ) A.122122x y x y x y
x y -
-=++ B.0.220.22a b a b a b a b ++=++ C.11x x x y x y +--=+- D.
a b a b a b a b +-=-+ 6.根据分式的基本性质,分式
a a
b --可变形为( ) A.a a b -- B.a a b + C.a a b -- D.a a b
-+ 7.解分式方程
1101x +=-,正确的结果是( ) A.0x =
B.1x =
C.2x =
D.无解
二、解答题
8.小张去离家2 520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心.已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.
(1)求小张跑步的平均速度.
(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.
9.当a 为何值时,关于x 的分式方程
2311x a a x x x x --=+--无解. 10.解方程: (1)
21133x x x x =+++; (2)241111
x x x -+=-+. 11.化简:(1)222()111
a a a a a ++÷+--; (2) 已知非零实数a 满足213a a +=,求221a a +
的值. 三、填空题
12.若关于x 的方程2222x m x x
++=--有增根,则m 的值是__________ 13.已知实数m 满足,2310m m -+=,则22192m m +
+的值等于 . 14.若关于x 的分式方程
1322m x x x -=---有增根,则实数m 的值是 . 15.计算22
111m m m ---的结果是 . 16.化简:211x x x x
-+÷= . 参考答案
1.答案:C
解析:原计划用的时间60x =÷,实际用的时间为()60120%x =÷+,
则可列方程为:
60601(120%)
x x =++. 故选C.
2.答案:D
解析:原来每人分摊的车费为:
480x 实际每人分摊的车费为:4804x +所列方程为:48048044x x -=+故选D.
3.答案:C 解析:∵
1113a b -=∴13b a ab -=则3ab b a
=-故选C .
4.答案:A 解析:根据分式的值为零的条件可以得到240,0,x x ⎧-=⎨≠⎩
解得2x =或-2.故选A. 5.答案:A
解析:A 根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘或除以分子、分母中的任何一项,且扩大或缩小的倍数不能为0,故B 错误.在分式的变形中,要注意符号法则,即分式的分子、分母及分式的符号,只有同时改变其中两个时才不变,故C,D 也错误.
6.答案:C 解析:根据分式的基本性质,同时改变分式与分子的符号得
a a a
b a b -=---.故选C. 7.答案:A
解析:A 在方程的两边同乘(1)x -,得110x +-=,解得0x =.
检验:当0x =时,10,0x x -≠∴=是原方程的解.
8.答案:解:(1)设小张跑步的平均速度为x 米/分钟,别小张骑车的平均速度为1.5x 米/分钟. 根据题意得2520252041.5x x
-=, 解得210x =.
经检验,210x =是原方程的解.
答:小张跑步的平均速度足210米/分钟.
(2)小张不能在演唱会开始前赶到奥体中心.理由如下:
小张跑步到家所雷时间为252021012÷= (分钟),
小张骑车所用时间为1248-= (分钟),
小张从开始跑步回家到赶回奥体中心所需时间为128525++= (分钟).
2523>,
∴小张不能在演唱会开始前赶到奥体中心.
解析:
9.答案:解:解:去分母,得2233x ax x x x a --+=-+,即23ax x a --+=,即(2)3a x a +=-,
当20a +=,即2a =-时,整式方程无解.
当20a +≠时,由分式方程无解,得到()10x x -=,即0x =或1x =, 把0x =代入整式方程,得3a =;
把1x =代入整式方程,得12a =
. 综上所述,a 的值是-2或3或
12. 解析:
10.答案:解:(1)方程两边乘3(1)x +,得323(1)x x x =++. 解得3.2x =-
检验:当32
x =-时,3(1)0.x +≠ 所以原分式方程的解为3.2x =-
(2)去分母,得224121x x x +-=-+,
解得1x =-,
经检验,1x =-是增根,分式方程无解.
解析:
11.答案:解:(1)222()111
a a a a a ++÷+-- 2(1)(2)(1)(1)1a a a a a a -++=
÷+-- 31(1)(1)a a a a a -=
⋅+- 3.1
a =+ (2) 因为213a a +=,所以13a a +
=,两边平方得22129a a ++=,所以2217.a a += 解析:
12.答案:0
解析:方程两边都乘以()2x -得,()222x m x --=-.
∵分式方程有增根,
∴20x -=,
解得2x =.
∴()22222m --=-,
解得0m =.
13.答案:9
解析:由2310m m -+=,可得231m m =-, 所以22192
m m ++ 1931312
m m =-+-+ 193131m m =-+
+ 291831
m m +=+ 29(2).31
m m +=+ 由231m m =-可得2231m m +=+, 所以29(2)9(31).3131
m m m m ++=++ 易知310m +≠,所以
9(31)931m m +=+, 即22192
m m ++的值是9. 14.答案:1
解析:去分母,得13(2)m x x =---.
由分式方程有增根,得20x -=,即2x =, 把2x =代入整式方程可得1m =.
15.答案:11
m - 解析:原式2211.111m m m m =
+=--- 16.答案:1x - 解析:211x x x x -+÷(1)(1)1x x x x x +-=⋅+ 1.x =-。