幂律流体管段沿程摩阻计算
摩阻计算公式

摩阻计算公式摩阻,听起来是不是有点陌生又有点神秘?别担心,让咱们一起来揭开它的面纱,搞清楚摩阻计算公式这个神奇的东西。
先来说说啥是摩阻。
简单来讲,摩阻就是在流体流动过程中,由于流体与管道内壁或者其他物体表面的摩擦而产生的阻力。
想象一下,水在水管里流动,或者空气在风道里穿梭,它们都会受到这样的阻力。
那摩阻计算公式到底是啥呢?常见的摩阻计算公式有达西-威斯巴赫公式(Darcy-Weisbach Equation),它长这样:$h_f =f\frac{L}{D}\frac{v^2}{2g}$ 。
这里的 $h_f$ 表示沿程水头损失,也就是摩阻造成的能量损失;$f$ 是摩擦系数,和管道内壁的粗糙度等有关;$L$ 是管道长度;$D$ 是管道直径;$v$ 是流体的平均流速;$g$ 是重力加速度。
我记得有一次,在学校的实验室里,我们做了一个关于水流摩阻的小实验。
老师给我们准备了不同材质和管径的水管,让我们通过改变水流速度和测量水头损失来验证这个公式。
我当时特别兴奋,拿着尺子和秒表,认真地记录着每一个数据。
当水流快速通过细管的时候,我明显感觉到水的冲击力很强,但是测量出来的水头损失也很大。
而在粗管里,水流相对平缓,水头损失就小了很多。
我一边做实验,一边在心里默默想着那个摩阻计算公式,试图去理解每个参数的意义。
回到公式本身,摩擦系数 $f$ 是个很关键的因素。
它的确定可不简单,要考虑管道的材质、粗糙度,还有流体的性质。
比如说,光滑的不锈钢管和粗糙的铸铁管,它们的摩擦系数就相差很大。
另外,管道长度 $L$ 越长,摩阻通常也会越大。
这就好比跑步,跑的路程越长,你可能就会越累,遇到的阻力感觉也越大。
管径 $D$ 对摩阻的影响也不能忽视。
管径越小,流体受到的限制就越大,摩阻也就相应增加。
这就像在狭窄的通道里走路,总觉得比在宽阔的大道上费劲。
流速 $v$ 的平方也出现在公式中,这意味着流速对摩阻的影响非常显著。
流速越快,摩阻造成的能量损失就会急剧上升。
水管沿程阻力计算公式

水管沿程阻力计算公式水管沿程阻力计算公式这事儿啊,说起来还挺有意思的。
咱们先来说说啥是水管沿程阻力。
想象一下,水在水管里欢快地跑着,但是这一路上可不顺畅,它会遇到各种各样的阻碍,就好像我们在路上碰到堵车一样。
而这些阻碍让水流得不那么痛快的力,就是沿程阻力啦。
那怎么来计算这个沿程阻力呢?这就得提到一个重要的公式:$h_f = λ \frac{l}{d} \frac{v^2}{2g}$ 。
这里面的$h_f$ 就是沿程阻力水头损失,λ是沿程阻力系数,l 是管长,d 是管径,v 是平均流速,g 是重力加速度。
为了让您更好地理解这个公式,我给您讲个我亲身经历的事儿。
有一次,我家里的水管出了点问题,水流变得特别小。
我就琢磨着是不是沿程阻力太大了。
我拿出尺子量了量水管的长度和管径,还估算了一下水流的速度。
然后根据这个公式算啊算,发现果然是因为水管太长,而且管径有点小,导致沿程阻力增大,水就流得慢了。
在实际生活中,这个沿程阻力的计算可重要啦。
比如说在城市的供水系统中,如果不把沿程阻力算清楚,那高楼里的居民可能就用不上水啦。
或者在工厂的生产线上,要是沿程阻力没算好,可能会影响到生产效率呢。
再来说说这个沿程阻力系数λ。
它可不是个固定的值,它会受到很多因素的影响,比如水管的内壁粗糙度、水流的雷诺数等等。
这就好像我们在路上开车,路况不同,堵车的情况也不一样。
管径的大小也对沿程阻力有很大的影响。
管径越大,水流受到的阻碍相对就越小,沿程阻力也就越小。
这就好比宽敞的大马路,车跑起来就顺畅得多。
管长就更不用说啦,水管越长,水流遇到的阻碍就越多,沿程阻力自然就越大。
而水流的速度也是一个关键因素。
速度越快,沿程阻力也会相应增大。
总之,水管沿程阻力的计算可不是一件简单的事儿,需要我们综合考虑各种因素,运用好这个计算公式。
只有这样,我们才能让水在水管里欢快地流淌,满足我们生活和生产的各种需求。
希望通过我的讲解,您对水管沿程阻力计算公式有了更清楚的认识。
流体管道阻力计算公式

流体管道阻力计算公式管道阻力计算公式:R=(λ/D)*(ν^2*γ/2g)。
ν-流速(m/s);λ-阻力系数;γ-密度(kg/m3);D-管道直径(m);P-压力(kgf/m2);R-沿程摩擦阻力(kgf/m2);L-管道长度(m);g-重力加速度=9.8。
压力可以换算成Pa,方法如下:1帕=1/9.81(kgf/m2)。
管路内的流体阻力流体在管路中流动时的阻力可分为摩擦阻力和局部阻力两种。
摩擦阻力是流体流经一定管径的直管时,由于流体的内摩擦产生的阻力,又称为沿程阻力,以hf 表示。
局部阻力主要是由于流体流经管路中的管件、阀门以及管道截面的突然扩大或缩小等局部部位所引起的阻力,又称形体阻力,以hj表示。
流体在管道内流动时的总阻力为Σh=hf+hj。
拓展资料:流体阻力的类型如下:由于空气的粘性作用,物体表面会产生与物面相切的摩擦力,全部摩擦力的合力称为摩擦阻力。
与物面相垂直的气流压力合成的阻力称压差阻力。
在不考虑粘性和没有尾涡(见举力线理论)的条件下,亚声速流动中物体的压差阻力为零(见达朗伯佯谬)。
在实际流体中,粘性作用下不仅会产生摩擦阻力,而且会使物面压强分布与理想流体中的分布有别,并产生压差阻力。
对于具有良好流线形的物体,在未发生边界层分离的情形(见边界层),粘性引起的压差阻力比摩擦阻力小得多。
对于非流线形物体,边界层分离会造成很大的压差阻力,成为总阻力中的主要部分。
当机翼或其他物体产生举力时,在物体后面形成沿流动方向的尾涡,与这种尾涡有关的阻力称为诱导阻力,其数值大致与举力的平方成正比。
在跨声速(见跨声速流动)或超声速(见超声速流动)气流中会有激波产生,经过激波有机械能的损失,由此引起的阻力称为波阻,这是另一种形式的阻力。
作加速运动的物体会带动周围流体一起加速,产生一部分附加的阻力,通常用某个假想的附连质量与物体加速度的乘积表示。
船舶在水面上航行时会产生水波,与此有关的阻力称为兴波阻力。
管路沿程阻力计算

管路沿程阻力计算1.摩擦阻力:在流体流动中,由于流体与管道壁之间的摩擦力,使得流体流动速度逐渐减小,产生摩擦阻力。
根据代表性的达西-魏泽巴赫公式,可以计算流体在管道中的摩擦阻力。
ΔP=λ(L/D)(ρV^2/2)其中,ΔP为单位管长上的摩擦阻力损失,λ为摩擦系数,L为管道长度,D为管道直径,ρ为流体密度,V为流速。
2.沿程局部阻力:在管道流动中,由于管道内部存在一些特殊设计或结构,导致流体流动时发生局部阻力。
根据达西-魏泽巴赫公式,可以计算管道局部阻力。
ΔP=K(ρV^2/2)其中,ΔP为单位管长上的沿程局部阻力损失,K为局部阻力系数,ρ为流体密度,V为流速。
3.管道弯曲阻力:在管道中,当流体流过弯曲部分时,会受到弯曲的影响,产生较大的阻力。
根据经验公式,可以计算管道弯曲阻力。
ΔP=K(ρV^2/2)其中,ΔP为单位管长上的弯曲阻力损失,K为弯曲阻力系数,ρ为流体密度,V为流速。
这些阻力形式在实际管道中经常同时存在,因此需要综合考虑计算总阻力。
通常采用经验公式、实验数据或数值模拟等方法进行计算。
在实际工程中,一般可以通过试验或计算得到相应的阻力系数,并且根据阻力计算公式,结合流体参数,来计算管路沿程阻力。
在实际应用中,管路沿程阻力的计算是非常重要的,它影响到管道系统的工作效率和输送能力。
为了降低阻力损失,有效节约能源,可以采取以下措施:优化管道布局,减少管道弯曲和局部阻力;选择合适的管道材料和直径,减小摩擦阻力;采用流体增压、注入润滑剂等方法来减小摩擦阻力。
总之,管路沿程阻力的计算是管道工程中的一个重要环节,通过合理地计算和设计,可以提高管道系统的效率和安全性,降低能源消耗。
水泵管道沿程阻力计算公式

水泵管道沿程阻力计算公式在水泵管道系统中,阻力是一个重要的参数。
阻力的大小直接影响着水泵的工作效率和管道系统的运行情况。
因此,准确地计算水泵管道沿程阻力是非常重要的。
在本文中,我们将介绍水泵管道沿程阻力的计算公式,并对其进行详细的解析和应用。
水泵管道沿程阻力计算公式可以通过多种方法进行推导,其中最常见的方法是使用达西-魏布尔斯公式。
该公式可以用来计算流体在管道中的摩阻阻力,其表达式如下:f = (1/ (2g)) (L/D) (v^2)。
其中,f代表单位长度管道的摩阻系数,L代表管道长度,D代表管道直径,v代表流体的流速,g代表重力加速度。
在这个公式中,摩阻系数f是一个关键的参数,它描述了流体在管道中受到的摩擦阻力。
摩阻系数的大小取决于流体的性质、管道的粗糙度和流速等因素。
一般情况下,可以通过查表或者使用经验公式来确定摩阻系数的数值。
管道长度L和直径D是另外两个影响阻力的重要参数。
当管道长度增加时,阻力也会随之增加;而当管道直径增加时,阻力则会减小。
因此,在设计管道系统时,需要合理地选择管道的长度和直径,以降低阻力并提高系统的运行效率。
流体的流速v是影响阻力的另一个重要因素。
一般情况下,流速越大,阻力也会越大。
因此,在实际应用中,需要合理地控制流速,以降低阻力并提高系统的运行效率。
除了达西-魏布尔斯公式之外,还有一些其他常用的计算阻力的公式,例如克兰德尔公式、海伦-斯蒂文森公式等。
这些公式都可以用来计算管道沿程的阻力,并在实际工程中得到了广泛的应用。
在实际工程中,计算水泵管道沿程阻力是非常重要的。
通过准确地计算阻力,可以帮助工程师合理地设计管道系统,降低能耗,提高系统的运行效率。
因此,工程师需要对阻力的计算方法有深入的了解,并能够灵活地应用到实际工程中。
总之,水泵管道沿程阻力的计算公式是工程设计中的重要内容。
通过合理地计算阻力,可以帮助工程师设计出高效、节能的管道系统,从而提高工程的经济效益和社会效益。
5幂律流体流动规律

用幂律方程可以描述假塑性流体和膨胀性流体的流变特 性。对管路中的流动,幂律方程可写成:
K du n
(32)
dr
流变指数n<1时,适用于假塑性流体;n>1时,上式适 用于膨胀性流体。
对于具有屈服应力的假塑性流体或膨胀性流体,由于其 存在结构流流态,因而可按塑性流体的分析方法进行研究。 本节只讨论不具有屈服应力的幂律流体。
4n
(39) (40)
式(40)就是判别幂律流体流动状态的雷诺数,实验证明, 该雷诺数的临界值仍为2000。当Re≤2000时,流动为层流; 当Re>2000时,幂律流体处于湍流状态。
4 幂律流体的流动规律
4.4 局部水头损失
幂律流体从小直径圆管突然扩大到大直径圆管的流动过
程,其压降可按下式计算:
4 幂律流体的流动规律
4.3 幂律流体层流流动的沿程水头损失
及雷诺数
由幂律流体圆管层流断面平均流速的表达式(35),可得
到如下压降关系式:
p
2LKV n n n R1n
3n 1
(38)
4 幂律流体的流动规律
对于水平放置的圆形直管,其沿程水头损失为:
hf
p
2LKV n
n
n 1 n
1 n
Rn
nR pR n 1 2LK
n
3n 1V n 1
或
V
n 1 3n 1
um
(36)
4 幂律流体的流动规律
将式(33) 与式(35)相 除,可得到 u 无因次速度 V
分布:
u V
3n 1 n 1
1
管道水力摩阻系数的计算
管道水力摩阻系数的计算Черникин,A.B.Черникин,A.B.:管道水力摩阻系数的计算,油气储运,1999,18(2)26~28。
摘要介绍了计算水力摩阻系数λ的通用公式,在分析现有计算摩阻系数公式的基础上,借助于专门的过渡函数,求出了新的通用式。
推荐可实际应用于管道水力计算的公式λ=0.11[(Z+ε+C1.4)/(115 C+1)]1/4,该公式可完全避免确定液体流动区域的程序,适用于任一雷诺数Re和不同管子相对粗糙度ε,排除了由于自身连续性而导致不同区域边界上λ数值不一致的情况。
主题词管道水力摩阻系数计算方程一、管道水力摩阻系数计算的改进完善各种管道(原油管道、天然气管道、水管道等)的水力计算,可以通过提高计算精度或使计算公式通用化等途径来实现。
进行水力计算所需重要参数之一,便是水力摩阻系数λ,一般情况下它是以下两个参数的函数:雷诺数Re和管子相对粗糙度ε。
依据这些参数的数值,管道内流体流动划分为不同区域(状态),对于每个区域都有计算λ的公式,以及确定区域边界的所谓雷诺数过渡值。
在分析现有计算系数λ的公式和寻求通用计算式的基础上,借助专门的过渡函数,求得以下形式新的通式:(1)这一公式覆盖所有的流动区域,即在管输液体和气体介质时,用于计算任一Re和ε时的λ。
公式中的参量具有如下数值:对于液体,α=0.11,C=1.4,γ=68/Re,A=(28 γ)10,B=115,n=4;对于气体介质,α=0.077,C=1.5,γ=79/Re,A=(25 γ)10,B=76,n=5。
比较式(1)和常用的斯托克斯公式、Aльтшуль公式、俄罗斯天然气科学研究院公式(做为特例,针对不同流动区域,由式(1)很容易求得这些公式)计算λ的结果,它们完全吻合。
最大的偏差(不超过1.7%)发生在层流与湍流过渡区边界上。
在其它情况下,偏差甚小。
二、计算管道水力摩阻系数的通式在进行原油、成品油、水管道水力计算时,摩阻压头损失计算起着重要的作用,并由达西—魏斯巴哈公式确定:(2)式中λ——水力摩阻系数;L——管道长度;D——管道内径;W——液体流速;g——重力加速度。
流体摩阻计算公式
流体摩阻计算公式一、层流时的流体摩阻(粘性摩擦阻力)1. 圆管中层流。
- 对于牛顿流体在圆管中作层流流动时,沿程阻力(摩阻)损失的计算公式为:- h_f=(64)/(Re)(l)/(d)frac{v^2}{2g}- 其中h_f为沿程水头损失(表示摩阻损失的一种形式,单位为长度单位,如米),Re=(vd)/(ν)为雷诺数(无量纲),v为管内流体的平均流速,d为圆管内径,ν为流体的运动粘度,l为管长,g为重力加速度(g = 9.81m/s^2)。
- 从另一个角度看,圆管层流时的切应力τ与半径r的关系为:- τ=(Δ p)/(l)(r)/(2)(Δ p为管段两端的压力差),在管壁处(r =R=(d)/(2)),壁面切应力τ_0=(Δ p)/(l)(d)/(4),而沿程阻力损失h_f=(Δ p)/(ρ g),所以也可以通过压力差来反映摩阻的情况。
2. 平板层流边界层。
- 对于平板层流边界层的摩擦阻力,当平板长度为L,宽度为b,来流速度为U时,平板一侧的摩擦阻力D_f为:- D_f = C_f(1)/(2)ρ U^2S- 其中S = L× b为平板的一侧面积,摩擦系数C_f=(1.328)/(√(Re_L)),Re_L=(UL)/(ν)。
二、湍流时的流体摩阻。
1. 圆管湍流。
- 对于光滑圆管湍流,沿程阻力损失系数λ可由布拉修斯公式计算(当Re<10^5时):- λ=(0.3164)/(Re^0.25)- 则沿程水头损失h_f=λ(l)/(d)frac{v^2}{2g}。
- 对于粗糙圆管湍流,沿程阻力损失系数λ与相对粗糙度(varepsilon)/(d)(varepsilon为管壁的绝对粗糙度)和雷诺数Re有关,可由莫迪图查得,然后同样用h_f=λ(l)/(d)frac{v^2}{2g}计算沿程水头损失(摩阻损失)。
2. 平板湍流边界层。
- 当平板湍流边界层时,摩擦系数C_f的计算公式有多种形式。
流体流动-第七次课(湍流摩擦阻力损失,管路计算)讲解
A
B
并联管路
A
C B
分支管路
1、 并联管路
VA 1
B
qV=qV1+qV2
2
∑hfAB= ∑hf1 =∑hf2 (各支管单位质量流体阻
力损失相等)
证明
zA
pA
g
u
2 A
2g
zB
pB
g
uB2 2g
hf 1
zA
pA
g
u
2 A
2g
zB
pB
Kd beu b b b e
K
du
b
d
e
湍流摩擦阻力系数的通式:
K
du
b
d
e
λ只与两个无因次数群有关。
3、湍流摩擦系数的求算 经验公式
常见的几种解析式有:
光滑管 (1)柏拉修斯(Blasius)式:
4.1 阻力系数法
hf
u2 2
为局部阻力系数。由实验得出,可查表或图。
常见局部阻力系数的求法:
1). 突扩管和突缩管 突扩管
f
(
A小 A大
)
(1
A小 ) 2 A大
2). 进口和出口
进口:容器进入管道,突缩。A小/A大0, =0.5 出口:管道进入容器,突扩。A小/A大0, =1.0
d 4ab
2 ab
e 2(ab) (ab)
环形管
de
管道摩擦阻力计算(λ公式选取)
长距离输水管道水力计算公式的选用1. 常用的水力计算公式:供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有:达西(DARCY )公式:gd v l h f 22**=λ(1)谢才(chezy )公式:i R C v **= (2)海澄-威廉(HAZEN-WILIAMS )公式:87.4852.1852.167.10dC lQ h h f ***= (3) 式中h f ------------沿程损失,mλ―――沿程阻力系数 l ――管段长度,m d-----管道计算内径,m g----重力加速度,m/s 2 C----谢才系数 i----水力坡降;R ―――水力半径,mQ ―――管道流量m/s 2v----流速 m/sC n ----海澄――威廉系数其中大西公式,谢才公式对于管道和明渠的水力计算都适用。
海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。
三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。
2. 规范中水力计算公式的规定3. 查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1:表1 各规范推荐采用的水力计算公式3.1达西公式达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。
公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。
舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。
舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广. 柯列勃洛可公式)Re 51.27.3lg(21λλ+∆*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000<Re<108.大量的试验结果表明柯列勃洛克公式与实际商用圆管的阻力试验结果吻合良好,不仅包含了光滑管区和完全粗糙管区,而且覆盖了整个过渡粗糙区,该公式在国外得到及为广泛的应用.布拉修斯公式25.0Re 316.0=λ是1912年布拉修斯总结光滑管的试验资料提出的,适用条件为4000<Re<105,一般用于紊流光滑管区的计算. 3.2 谢才公式该式于1775年由CHEZY 提出,实际是达西公式的一个变形,式中谢才系数C 一般由经验公式y e R n C *=1计算得出,其中61=y 时称为曼宁公式,y 值采用)1.0(75.013.05.2---=n R n y (n 为粗糙系数)公式计算时称为巴浦洛夫斯基,这两个公式应用范围均较广.就谢才公式本身而言,它适用于有压或无压均匀流动的各阻力区,但由于计算谢才系数C 的经验公式只包括反映管壁粗糙状况的粗糙系数n 和水力半径R,而没有包括流速及运动年度,也就是与雷诺数Re 无关,因此该式一般仅适用于粗糙区.曼宁公式的适用条件为n<0.02,R<0.5m;巴浦洛夫斯基公式的适用条件为0.1m ≤R ≤3m;0.011≤n ≤0.04.3.3 海澄-威廉公式是在直径≤3.66m 工业管道的大量测试数据基础上建立的著名经验公式,适用于常温的清水输送管道,式中海澄-威廉系数Ch 与不同管材的管壁表面粗糙程度有关.因为该式参数取值简单,易用,也是得到广泛应用的公式之一.此公式适用范围为光滑区至部分粗糙度区,对应雷诺数Re 范围介于104-2*106.通过对各相关规范所推荐计算公式的比较,除混凝土管仍然推荐采用谢才公式外,其它管材大多推荐采用达西公式.在新版《室外给水设计规范》中取消舍维列夫公式的相关条文,笼统采用达西公式,但未明确要求计算λ值采用的经验公式.由于舍维列夫公式是建立在对旧钢管及旧铸铁管研究的基础上,然而现在一般采用的钢或铸铁材质管道,内壁通常需进行防腐内衬,经过涂装的管道内壁表面均比旧钢管,旧铸铁管内壁光滑得多,也就是Δ值小得多,采用舍维列夫公式显然也就会产生较大得计算误差,该公式得适用范围相应较窄.经过内衬得金属管道采用柯列勃洛克公式或谢才公式计算更为合理.PVC-U,PE 等塑料管道,或者内衬塑料得金属管道,因为其内壁Δ值很低,一般处于0.0015-0.015,管道流态大多位于紊流光滑区,采用适用光滑区得布拉修斯公式以及柯列勃洛克公式一般均能够得到与实际接近得计算结果.因此, 《埋地硬聚氯乙稀给水管道工程技术规程》及《埋地聚乙稀给水管道工程技术规程》中对塑料管道水力计算公式均是合理得且与《室外给水设计规范》并不矛盾. 海澄-威廉公式可以适用于各种不同材质管道得水力计算,其中海澄-威廉系数Ch 得取值应根据管材确定.对于内衬水泥砂浆或者涂装有比较光滑得内防腐涂层得管道,其海澄-威廉系数应该参考类似工程经验参数或者实测数据,合理取用.因此,无论采用达西公式,谢才公式或者海澄-威廉公式计算,不同管材得差异均表现在 管内壁表面当量粗糙程度得不同上,各公式中与粗糙度相关系数得取值是影响计算结果得重要因素.值得一提得是,同种材质管道由于采用不同得加工工艺,其内表面得粗糙度也可能有所差异,这一因素在设计过程种也应重视(常用管材得粗糙度系数参考值见表2) 表2 常见管材粗糙度相关系数参考值根据雷诺数计算公式vVdRe ,雷诺数与流速v,管径d 成正比,与运动粘度成反比,因此对应管道得不同设计条件应对所使用计算公式得适用范围进行复核.保证计算得准确性. 大多说供水工程得设计按照水温10℃,运动粘度1.3*10-5m 2/s 得条件考虑,因此雷诺数实际受流速及管道口径得影响.以塑料管道为例,在正常设计流速范围条件下,管道内径大于100mm 时,虽然管道仍然处于紊流光滑区,但其雷诺数Re>105,也就是说已经超出了布拉修斯公式得适用范围,而且误差大小与雷诺数成正比.对PVC-U 管,采用布拉修斯公式与柯列勃洛克公式对比计算,当管内径为500mm ,流速1.5 m/s 时,采用布拉修斯公式得出得水力坡降比柯列波列克得结果低11%以上.采用《埋地硬聚氯乙稀给水管道工程技术规程》推荐得修正公式与柯式对比计算,修正公式计算结果,小口径管偏安全,中等口径与柯式符合较好,大口径管得负误差达5%以上.因此笔者认为,大口径塑料管或采用塑料内衬管不宜采用布拉修斯公式计算,而更宜于采用如柯列波洛克公式等适用条件更宽得其它经验公式,或应通过试验等对其进行修正.与上述情况类似,采用谢才公式计算时,如果管道内径大于2m 时则不采用曼宁公式计算谢才系数.如果采用巴甫洛夫斯基公式,其适用管径可以达到12m,对一般输水工程管道已完全足够了.海澄-威廉公式的数据基础是WILLIAMS 和HAZEN 在大量工业管道现场或试验测量或得的.该公式因为简单易用,被广泛运用在管网水力计算中,国内外不少管道水力计算软件均采用该公式编制.由此可见,对于口径大于2m 得管道应尽量避免采用海澄-威廉公式计算以策安全.6.值得提出得是,上述所有水力计算公式中采用得管径均为计算内径,各种管道均应采用管道净内空直径计算,对于采用水泥砂浆内衬得金属管道应考虑内衬层厚度得影响.大口径管道计算应尽量避免采用海澄-威廉公式,建议采用柯列勃洛克公式计算,大量试验结果证明该公式计算结果与实际工业管道符合性好,水力条件适用范围广,虽然运用该式需要进行多次迭代计算才能得到λ值,较为麻烦,不过运用计算机简单编程既能方便地得到较为准确地结果,手工计算时也可以通过查表或者查询蓦迪图辅助计算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂律流体管段沿程摩阻计算
D. 0. 1幂律流体管段沿程摩阻应按表D 中的雷诺数R 君划分流态范围,选择相应公式计算。
表D 幂律流体管段沿程摩阻h τ计算
雷诺数
流态 划分范
围
沿程摩阻h τ(m 液柱) 备注
n
m n n MR
n
n K V d )26(8Re 2+=
-ρ
层流 Re ≤
2000
h τ=n n v m n
n d
q d
L K )413()32(43+πρ
紊流
Re >2000
h τ=0.0826λ
τ
L d q v 5
2
2
.12
175.04
.0)lg(Re 0
.41n f n f
n MR -
⋅=-λ
τ
=4f
Dodg e-Me tzne r 半经验公式
注: h —幂律流体管段的沿程水力摩阻,液柱(m);
MR Re —幂律流体管段流动的雷诺数; n —幂律流体的流变指数;
K—幂律流体的稠度系数(Pa·s n)
m
—输油平均温度下的幂律流体密度f kg/m3 ) ; λτ—幕律流体管段的水力摩阻系数;
V—幂律流体管段管内的流速(m/s);
f—范宁( Fanning)摩阻系数。