重庆南开中学初2015级初三(上)12月数学月考试卷
重庆市南开中学2015届高三数学上学期12月月考试卷理(含解析)

重庆市南开中学201 5届高三上学期12月月考数学试卷(理科)一.选择题:本大题共l0小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.关于x的不等式ax+b>0的解集不可能是( )A.R B.φC.D.考点:集合的表示法.专题:不等式的解法及应用.分析:分a等于0,小于0,大于0三种情况考虑,分别求出不等式的解集,即可做出判断.解答:解:当a=0时,b≤0,不等式无解;b>0,不等式解集为R;当a>0时,解得:x>,此时不等式的解集为;当a<0时,解得:x<,此时不等式的解集为,故选:D.点评:本题考查了含参数不等式的解法,利用了分类讨论的思想,分类讨论时考虑问题要全面,做到注意不重不漏.2.抛物线y2=4x的焦点到准线的距离为( )A.1 B.2 C.4 D.8考点:抛物线的简单性质.专题:阅读型.分析:根据抛物线的方程求得抛物线的焦点坐标和准线的方程,进而利用点到直线的距离求得焦点到准线的距离.解答:解:根据题意可知焦点F(1,0),准线方程x=﹣1,∴焦点到准线的距离是1+1=2故选B.点评:本题主要考查了抛物线的简单性质.考查了学生对抛物线标准方程的理解和运用.属基础题.3.已知,,则cosa=( )A.B.C.D.考点:二倍角的余弦.专题:计算题;三角函数的求值.分析:原式两边平方可解得sina=﹣,由,即可计算cosa的值.解答:解:∵,∴两边平方可得:1+sina=,即sina=﹣∵,∴cosa=﹣=﹣故选:A.点评:本题主要考察了二倍角的余弦公式的应用,属于基本知识的考查.4.等比数列{a n}的前n项和为S n,且4a1,2a2,a3成等差数列.若a1=1,则S4=( ) A.7 B.8 C.15 D.16考点:等差数列的性质;等比数列的前n项和.专题:计算题.分析:先根据“4a1,2a2,a3成等差数列”和等差中项的性质得到3者的关系式,然后根据等比数列的性质用a1、q表示出来代入以上关系式,进而可求出q的值,最后根据等比数列的前n项和公式可得到答案.解答:解:∵4a1,2a2,a3成等差数列∴,∴,即∴q=2∴S4===15故选C点评:本题主要考查等比数列、等差数列的基本性质.属基础题.5.已知单位向量,夹角为,则=( )A.B.C.2 D.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:由向量的模长公式,代值计算可得.解答:解:∵单位向量,夹角为,∴====故选:B点评:本题考查数量积与向量的夹角,涉及模长公式,属基础题.6.已知直线2ax﹣by+2=0(a>0,b>0)平分圆C:x2+y2+2x﹣4y+1=0的圆周长,则的最小值为( )A.B.C.4 D.6考点:基本不等式在最值问题中的应用;直线与圆的位置关系.专题:不等式的解法及应用;直线与圆.分析:利用直线2ax﹣by+2=0(a>0,b>0)始终平分圆x2+y2+2x﹣4y+1=0的圆周,可得圆的圆心(﹣1,2)在直线2ax﹣by+2=0(a>0,b>0)上,再利用“1”的代换,结合基本不等式,即可求出的最小值.解答:解:由题意,圆的圆心(﹣1,2)在直线2ax﹣by+2=0(a>0,b>0)上∴﹣2a﹣2b+2=0(a>0,b>0)∴a+b=1∴=(a+b)()=3+≥3+2=3+2,当且仅当,即a=,b=2时,的最小值为3+2.故选:B.点评:本题考查圆的对称性,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.7.已知定义在R上的偶函数f(x)满足:当x≥0时,f(x)=x3﹣8,则关于x的不等式:2f(x﹣2)>1的解集为( )A.{x|x<0或x>2} B.{x|x<0或x>4} C.{x|x<﹣2或x>4} D.{x|x<﹣2或x >2}考点:奇偶性与单调性的综合.专题:不等式的解法及应用.分析:根据函数奇偶性和单调性的关系,结合指数不等式即可得到结论.解答:解:不等式2f(x﹣2)>1的等价为f(x﹣2)>0,若x<0,则﹣x>0,即f(﹣x)=﹣x3﹣8,∵f(x)是偶函数,∴f(﹣x)=﹣x3﹣8=f(x),即f(x)=﹣x3﹣8,x<0.则不等式f(x﹣2)>0等价为①或②,由①得,即x>4.由②得,即x<0,综上不等式的解集为{x|x<0或x>4},故选:B点评:本题主要考查不等式的解法,利用函数奇偶性的性质是解决本题的关键.8.下列说法正确的个数是( )①命题“∀x∈R,x3﹣x2+1≤0”的否定是“∃x0∈R,x03﹣x02+1>0”;②“b=”是“三个数a,b,c成等比数列”的充要条件;⑨“m=﹣1”是“直线mx+(2m﹣1)y+1=0和直线3x+my+2=0垂直”的充要条件:④“复数Z=a+bi(a,b∈R)是纯虚数的充要条件是a=0”是真命题.A.1 B.2 C.3 D.4考点:命题的真假判断与应用.专题:简易逻辑.分析:①利用命题的否定即可判断出.②“b=±”是“三个数a,b,c成等比数列”的充要条件,即可判断出;⑨对m分类讨论:m=0,与当m≠0,时,即可判断出;④“复数Z=a+bi(a,b∈R)是纯虚数的充要条件是a=0,b≠0”,即可判断出.解答:解:①命题“∀x∈R,x3﹣x2+1≤0”的否定是“∃x0∈R,x03﹣x02+1>0”,正确;②“b=±”是“三个数a,b,c成等比数列”的充要条件,因此②不正确;⑨直线mx+(2m﹣1)y+1=0和直线3x+my+2=0.当m=0时,两条直线分别化为﹣y+1=0,3x+2=0,此时两条直线垂直;当m=时,两条直线分别化为x+1=0,3x+y+2=0,此时两条直线不垂直;当m≠0,时,两条直线的斜率分别为:,,若两条直线垂直,则•()=﹣1,解得m=﹣1;∴“m=﹣1”是“直线mx+(2m﹣1)y+1=0和直线3x+my+2=0垂直”的充分不必要条件,不正确:④“复数Z=a+bi(a,b∈R)是纯虚数的充要条件是a=0,b≠0”,因此是假命题.综上可得:只有①是真命题.故选:A.点评:本题考查了简易逻辑的有关知识、相互垂直的直线与斜率之间的关系、分类讨论的思想方法、复数为纯虚数的充要条件,考查了推理能力与计算能力,属于中档题.9.设F1,F2为双曲线C:=1(a>0,b>0)的左、右焦点,过坐标原点O的直线与双曲线C在第一象限内交于点P,若|PF1|+|PF2|=6a,且△PF1F2为锐角三角形,则直线OP 斜率的取值范围是( )A.B.C.D.考点:双曲线的简单性质.专题:圆锥曲线中的最值与范围问题.分析:首先,设直线OP的方程,然后根据双曲线的定义,并结合条件|PF1|+|PF2|=6a,求解|PF1|和|PF2|的值,然后,根据△PF1F2为锐角三角形,联立方程组写出相应的点P的坐标,最后限制范围即可.解答:解:∵|PF1|+|PF2|=6a,|PF1|﹣|PF2|=2a,∴|PF1|=4a,|PF2|=2a,∵|F1F2|=2c,∵△PF1F2为锐角三角形,∴,∴,∴<e,∴3<1+()2<5,∴<<2,欲使得过坐标原点O的直线与双曲线C在第一象限内交于点P,∴k∈(,).故选:A.点评:本题重点考查了双曲线的标准方程、几何性质、直线与双曲线的位置关系等知识,属于中档题.解题关键是理解直线与双曲线的位置关系处理思路和方法.10.存在实数a,使得对函数y=g(x)定义域内的任意x,都有a<g(x)成立,则称a为g(x)的下界,若a为所有下界中最大的数,则称a为函数g(x)的下确界.已知x,y,z∈R+且以x,y,z为边长可以构成三角形,则f(x,y,z)=的下确界为( )A.B.C.D.考点:分析法的思考过程、特点及应用;函数的最值及其几何意义.专题:新定义;函数的性质及应用.分析:运用极端法,就是三角形在趋近于无法构成时,即:x→0,并令y=z,可得原式>恒成立,再由分析法证明,注意运用配方和三角形的三边关系,可得下确界为.解答:解:运用极端法,就是三角形在趋近于无法构成时,即:x→0,并令y=z,所以=,当然此值只是一个极限值,原式=>恒成立,可运用分析法证明上式.即证(x+y+z)2<4xy+4yz+4zx,即有x2+y2+z2<2xy+2yz+2zx,即有(x﹣y)2+(y﹣z)2+(z﹣x)2<x2+y2+z2,由三角形中,|x﹣y|<z,|y﹣z|<x,|z﹣x|<y,均为(x﹣y)2<z2,(y﹣z)2<x2,(z﹣x)2<y2.则上式成立.故下确界是.故选B.点评:本题考查新定义的理解和运用,考查三角形的三边的关系和不等式的证明,属于中档题.二、填空置:本大题共3小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.设实数x,y满足约束条件,则z=2x+y的最大值为14.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,即可求最大值.解答:解:作出不等式组对应的平面区域如图:(阴影部分).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(4,6),代入目标函数z=2x+y得z=2×4+6=14.即目标函数z=2x+y的最大值为14.故答案为:14点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.12.数列{a n}满足:a1=2014,a n﹣a n•a n+1=1,l n表示a n的前n项之积,则l2014=﹣2014.考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:通过化简可知递推式为a n+1=1﹣,进而逐一求出a2、a3、a4发现数列的项周期出现,进而计算可得结论.解答:解:∵a n﹣a n a n+1=1,∴a n+1=1﹣,∵a1=2014,∴a2=1﹣=,a3=1﹣=﹣,a4=1﹣=2014,∴该数列是周期为3的周期数列,且前三项之积为2014••(﹣)=﹣1,∵2014=671×3+1,∴l2014=(﹣1)671•2014=﹣2014,故答案为:﹣2014.点评:本题考查数列的通项,注意解题方法的积累,属于中档题.13.椭圆=1(a>b>0)的左、右焦点分别为F1,F2,若椭圆上存在点P使线段PF1与以椭圆短轴为直径的圆相切,切点恰为线段PF1的中点,则该椭圆的离心率为.考点:椭圆的简单性质.专题:计算题;直线与圆;圆锥曲线的定义、性质与方程.分析:设线段PF1的中点为M,另一个焦点F2,利用OM是△F1PF2的中位线,以及椭圆的定义求出直角三角形OMF1的三边之长,使用勾股定理求离心率.解答:解:设线段PF1的中点为M,另一个焦点F2,由题意知,OM=b,又OM是△F1PF2的中位线,∴OM=PF2=b,PF2=2b,由椭圆的定义知 PF1=2a﹣PF2=2a﹣2b,又 MF1=PF1=(2a﹣2b)=a﹣b,又OF1=c,直角三角形OMF1中,由勾股定理得:(a﹣b)2+b2=c2,又a2﹣b2=c2,可得2a=3b,故有4a2=9b2=9(a2﹣c2),由此可求得离心率 e==,故答案为:.点评:本题考查椭圆的定义、方程和性质,考查直线和圆相切的条件,考查运算能力,属于中档题.二、考生注意.14、15、16为选做题,请从中任选两题作答,若三题全做,则按前两题给分.14.如图,EA是圆O的切线,割线EB交圆O于点C,C在直径AB上的射影为D,CD=2,BD=4,则EA=.考点:与圆有关的比例线段.专题:立体几何.分析:由相交弦定理,得CD2=AD•BD,由△BDC∽△BAE,得,由此能求出AE.解答:解:由相交弦定理,得CD2=AD•BD,即22=AD×4,解得AD=1,∴AB=1+4=5,∵EA是圆O的切线,C在直径AB上的射影为D,∴△BDC∽△BAE,∴,∴AE===.故答案为:.点评:本题考查与圆有关的线段长的求法,是中档题,解题时要注意相交弦定理的合理运用.15.在平面直角坐标系中,曲线C的参数方程为以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的坐标方程为=0,则直线l截曲线C所得的弦长为.考点:简单曲线的极坐标方程;参数方程化成普通方程.分析:本题可以先将曲线C的参数方程消去参数,得到曲线的普通方程,再将直线l的极坐标方程化成平面直角坐标方程,然后列出方程组,由弦长公式求出弦长,得到本题结论.解答:解:∵曲线C的参数方程为,∴消去参数得:.∵直线l的极坐标方程为=0,∴y﹣x+=0,即:x﹣y﹣=0.由,得:5x2﹣8x=0,∴x=0或,∴交点坐标分别为(0,),(,),弦长为=.故答案为:.点评:本题考查了参数方程与普通方程的互化,极坐标方程与平面直角坐标方程的互化,还考查了弦长公式,本题难度不大,属于基础题.16.若不等式|3x﹣b|<4的解集中的整数有且仅有1,2,3,则b的取值范围5<b<7.考点:绝对值不等式的解法.专题:计算题;压轴题.分析:首先分析题目已知不等式|3x﹣b|<4的解集中的整数有且仅有1,2,3,求b的取值范围,考虑到先根据绝对值不等式的解法解出|3x﹣b|<4含有参数b的解,使得解中只有整数1,2,3,即限定左边大于0小于1,右边大于3小于4.即可得到答案.解答:解:因为,又由已知解集中的整数有且仅有1,2,3,故有.故答案为5<b<7.点评:此题主要考查绝对值不等式的解法问题,题目涵盖知识点少,计算量小,属于基础题型.对于此类基础考点在2015届高考中属于得分内容,同学们一定要掌握.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.已知函数f(x)=sinxcosx﹣cos2x+,△ABC三个内角A,B,C的对边分别为a,b,c且f(A)=1.(I)求角A的大小;(Ⅱ)若a=7,b=5,求c的值.考点:二倍角的余弦;二倍角的正弦;余弦定理.专题:计算题;解三角形.分析:(I)由 f(x)=sinxcosx﹣cos2x+利用二倍角公式及辅助角公式对已知化简,然后结合f(A)=1,及A∈(0,π)可求A;(Ⅱ)由余弦定理a2=b2+c2﹣2bccosA可求c解答:解:(I)因为 f(x)=sinxcosx﹣cos2x+==sin(2x﹣)…又f(A)=sin(2A﹣)=1,A∈(0,π),…所以,∴…(Ⅱ)由余弦定理a2=b2+c2﹣2bccosA得到,所以c2﹣5c﹣24=0 …解得c=﹣3(舍)或c=8 …所以c=8点评:本题主要考查了二倍角公式及辅助角公式在三角函数化简中的应用,特殊角的三角函数值及余弦定理的应用18.已知点A(2,0)关于直线l1:x+y﹣4=0的对称点为A1,圆C:(x﹣m)2+(y﹣n)2=4(n>0)经过点A和A1,且与过点B(0,﹣2)的直线l2相切.(1)求圆C的方程;(2)求直线l2的方程.考点:圆的标准方程;直线的一般式方程.专题:计算题.分析:(1)由点A和A1均在圆C上且关于直线l1对称,得到圆心在直线l1上,由圆的方程找出圆心坐标,代入直线l1,得到关于m与n的方程,然后把点A的坐标代入到圆的方程中,得到关于m与n的另一个方程,联立两方程即可求出m与n的值,确定出圆C的方程;(2)当直线l2的斜率存在时,设出直线l2的方程,由直线与圆相切时圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关于k的方程,求出方程的解即可得到k的值,从而确定出直线l2的方程;当直线l2的斜率不存在时,x=0显然满足题意,综上,得到所有满足题意得直线l2的方程.解答:解:(1)∵点A和A1均在圆C上且关于直线l1对称,∴圆心在直线l1上,由圆C的方程找出圆心C(m,n),把圆心坐标直线l1,点A代入圆C方程得:,解得或(与n>0矛盾,舍去),则圆C的方程为:(x﹣2)2+(y﹣2)2=4;(2)当直线l2的斜率存在时,设直线l2的方程为y=kx﹣2,由(1)得到圆心坐标为(2,2),半径r=2,根据题意得:圆心到直线的距离d==r=2,解得k=1,所以直线l2的方程为y=x﹣2;当直线l2的斜率不存在时,易得另一条切线为x=0,综上,直线l2的方程为y=x﹣2或x=0.点评:此题考查了圆的标准方程,以及直线与圆的位置关系.要求学生会利用待定系数法求圆的方程,掌握直线与圆相切时满足的关系,在求直线l2的方程时,注意由所求直线的斜率存在还是不存在,利用分类讨论的方法得到所有满足题意得方程.19.已知函数f(x)=x2+bx为偶函数,数列{a n}满足a n+1=2f(a n﹣1)+1,且a1=3,a n>1.(1)设b n=log2(a n﹣1),求证:数列{b n+1}为等比数列;(2)设c n=nb n,求数列{c n}的前n项和S n.考点:数列的求和;等比关系的确定.专题:综合题;等差数列与等比数列.分析:(1)利用函数f(x)=x2+bx为偶函数,可得b,根据数列{a n}满足a n+1=2f(a n﹣1)+1,可得b n+1+1=2(b n+1),即可证明数列{b n+1}为等比数列;(2)由c n=nb n=n•2n﹣n,利用错位相减可求数列的和.解答:(1)证明:∵函数f(x)=x2+bx为偶函数,∴f(﹣x)=f(x),∴b=0∵a n+1=2f(a n﹣1)+1,∴a n+1﹣1=2(a n﹣1)2,∵b n=log2(a n﹣1),∴b n+1=1+2b n,∴b n+1+1=2(b n+1)∴数列{b n+1}是以2为首项,以2为公比的等比数列(2)解:由(1)可得,b n+1=2n,∴b n=2n﹣1∴c n=nb n=n•2n﹣n,∴S n=1•2+2•22+…+n•2n﹣令T=1•2+2•22+…+n•2n,2T n=1•22+2•23+…+(n﹣1)•2n+n•2n+1两式相减可得,﹣T n=2+22+23+…+2n﹣n•2n+1=(1﹣n)•2n+1﹣2∴T n=(n﹣1)•2n+1+2,∴S n=(n﹣1)•2n+1+2﹣.点评:本题主要考查了利用数列的递推公式构造等比数列求解数列的通项公式,错位相减求数列的和的应用是求解的关键20.设函数f(x)=ln(x﹣1)+.(1)求函数f(x)的单调区间;(2)已知对任意的x∈(1,2)∪(2,+∞),不等式成立,求实数a的取值范围.考点:利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.专题:计算题;分类讨论;导数的综合应用;不等式的解法及应用.分析:(1)求出函数的导数,对a讨论,①当0≤a≤2,②当a>2时,求出导数为0的根,解不等式,即可得到单调区间;(2)当x>1且x≠2时,不等式成立等价为1<x<2时,f(x)<a且x>2时,f(x)>a恒成立.分别讨论当0≤a≤2时,当a>2时,函数的单调性和最值情况,即可得到a的范围.解答:解:(1)f(x)的导数f′(x)==令g(x)=x2﹣2ax+2a(a≥0,x>1),则△=4a2﹣8a=4a(a﹣2),对称轴x=a,①当0≤a≤2,g(x)≥0,即f′(x)≥0,f(x)在(1,+∞)上递增;②当a>2时,g(x)=0的两根x1=a﹣,x2=a+,由g(1)=1﹣2a+2a=1>0,a>2,则1<x1<x2,当x∈(x1,x2),g(x)<0,f(x)递减,当x∈(1,x1)∪(x2,+∞),g(x)>0,f(x)递增;则有f(x)的增区间为(1,a﹣),(a+,+∞),减区间为(a﹣,a+);(2)当x>1且x≠2时,不等式成立等价为1<x<2时,f(x)<a且x>2时,f(x)>a恒成立.由(1)知,当0≤a≤2时,f(x)在(1,+∞)上递增,f(2)≥a且f(2)≤a,即有f(2)=a,即有ln1+=a,成立,则0≤a≤2恒成立;当a>2时,g(2)=4﹣4a+2a=4﹣2a<0,即1<x1<2<x2,x1<x<2时,f(x)递减,f(x)>f(2)=a;则存在1<x<2,f(x)>a即1<x<2时,f(x)<a不恒成立,不满足题意.综上,a的取值范围是[0,2].点评:本题考查函数的导数的运用:求单调区间,考查不等式的恒成立问题,注意转化为求函数的最值问题,考查分类讨论的思想方法,考查运算能力,属于中档题和易错题.21.已知椭圆C1的中心在坐标原点,焦点在x轴上,且经过点.(1)求椭圆C1的标准方程;(2)如图,以椭圆C1的长轴为直径作圆C2,过直线x=﹣2上的动点T作圆C2的两条切线,设切点分别为A、B,若直线AB与椭圆C1求交于不同的两点C、D,求的取值范围.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线中的最值与范围问题.分析:(1)由已知得,由此能求出椭圆的标准方程.(2)圆C2的方程为x2+y2=2,设直线x=﹣2上的动点T的坐标为(﹣2,t),(t∈R),设A (x1,y1),B(x2,y2),则直线AT的方程为x1x+y1y=2,直线BT的方程为x2x+y2y=2,直线AB的方程为﹣2x+ty=2,由此利用点到直线的距离和导数的性质能求出的取值范围.解答:解:(1)设椭圆C1的标准方程为(a>b>0),将点P(),Q(﹣1,﹣)代入,得:,解得a=,b=1,∴椭圆的标准方程为.(2)圆C2的方程为x2+y2=2,设直线x=﹣2上的动点T的坐标为(﹣2,t),(t∈R),设A(x1,y1),B(x2,y2),则直线AT的方程为x1x+y1y=2,直线BT的方程为x2x+y2y=2,又T(﹣2,t)在直线AT和BT上,即,∴直线AB的方程为﹣2x+ty=2,由原点O到直线AB的距离为d=,得|AB|=2=2,联立,消去x,得(t2+8)y2﹣4ty﹣4=0,设C(x3,y3),D(x4,y4),则,,从而|CD|==,∴=,设t2+4=m,m≥4,则==,又设.0<s,则=,设f(s)=1+6s﹣32s3,令f′(s)=6﹣96s2=0,解得,故f(s)=1+6s﹣32s3在s∈(0,]上单调递增,f(s)∈(1,2],∴∈(1,].点评:本题考查椭圆的方程的求法,考查两线段比值的取值范围的求法,解题时要认真审题,注意函数与方程思想的合理运用.22.己知数{a n}满足a1=1,a n+1=a n+2n,数列{b n}满足b n+1=b n+=1.(1)求数列{a n}的通项公式;(2)令c n=,记S n=c1+c2+…+c n,求证:<1.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(1)由已知得a n+1﹣a n=2n,由此利用累加法能求出a n=n2+n+1.(2)由已知得==,从而,进而c n<[()﹣()],由此能证明<1.解答:(1)解:∵{a n}满足a1=1,a n+1=a n+2n,∴a n+1﹣a n=2n,∴a n=a1+a2﹣a1+a3﹣a2+…+a n+1﹣a n=1+2+4+6+ (2)=1+2×=n2+n+1.(2)证明:∵b n+1=b n+=1,∴=,∴==,∴,∴c n==<=[]=[()﹣()],∴S n=c1+c2+…+c n<[(1﹣)+(+…+)] ==(2﹣)<1,又由c n==,得{c n}是增数列,∴S n=c1+c2+…+c n≥c1==,∴<1.点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意累加法和裂项求和法的合理运用.。
重庆南开中学初2015届九年级上期中考试数学试题含答案

象是( )
10.下列图形都是由同样大小桃心按一定的规律组成的,则第(8)个图形中共有桃心
( )
(2)甲校学生参加比赛成绩的众数为_ _分,乙校学生参加比赛成绩的平均分为_ _
分;
(3)甲校得 90 分的学生中有 2 人是女生,乙校得 90 分的学生中有 2 人是男生,现准备从
. . . .
9.元元同学有急事准备从南开中学打车去大坪,出校门后发现道路拥堵使得车辆停滞不
前,等了几分钟后她决定前往地铁站乘地铁直达大坪站(忽略中途等站和停靠站的时
间),在此过程中,他离大坪站的距离 y(km)与时间 t(h)之间的函数关系的大致图
A.x≠1 B.x≠-1 C.x≥-1 D.x>-1
8.将 y x 2 向上平移 2 个单位后所得的抛物线的解析式为( )
A y=x2+2 B y=x2-2 C y=(x+2)2 D ห้องสมุดไป่ตู้=(x-2)2
7.要使分式 有意义,则 x 的取值范围是( )
初 2015 届九年级(上)期中考试 第 1 页
一、选择题(本大题共 12 个小题,每小题 4 分,共 48 分)在每个小题的下面,都给出了
代号为 A、B、C、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答
案标号涂黑.
1.下列各数中是无理数的是( )
1
(0,4 3 ),AD=2BD,若反比例函数 y 的图象刚好过 A、D 两点,则 k 的值为
x
( )
A.-3 B. 3 3 C. 2 3 D. 4 3
2 4 3 3
6.已知一个正棱柱的俯视图和左视图如图,则其主视图为( )
南开中学2015-2016九年级第一学期第一次月检测数学试卷

一、选择题(每小题 3 分,共 36 分) : 1.二次函数 y kx2 6 x 3 的图象与 x 轴有交点,则 k 的取值范围是( A. k 3 B. k 3 且 k 0 C. k 3 D. k 3 且 k 0 ) )
A.①②③ B.①③④ C.①③⑤ 二、填空题(每小题 3 分,共 18 分) :
D.②④⑤
13.在二次函数 y x 2 bx c 中,函数 y 与自变量 x 的部分对应值如下表: x y -2 7 -1 2 0 -1 1 -2 2 m 3 2 4 7
则 m=__________. 14.抛物线 y x 2 关于 x 轴对称的抛物线的解析式为___________. 15.若二次函数 y mx2 3x 2m m2 的图象经过原点,则 m ________. 16.将 y (2x 1)( x 2) 1 化成 y a( x h)2 k 的形式为___________.
25.如图,在平面直角坐标系 xOy 中,抛物线 y ax2 bx c 经过 A、B、C 三点,已知点 A (﹣3,0) ,B(0,3) ,C(1,0) . ⑴求此抛物线的解析式. ⑵点 P 是直线 AB 上方的抛物线上一动点, (不与点 A、B 重合) ,过点 P 作 x 轴的垂线,垂 足为 F,交直线 AB 于点 E,作 PD⊥AB 于点 D. ①动点 P 在什么位置时,△ PDE 的周长最大,求出此时 P 点的坐标; ②连接 PA,以 AP 为边作图示一侧的正方形 APMN,随着点 P 的运动,正方形的大小、位 置也随之改变.当顶点 M 或 N 恰好落在抛物线对称轴上时,求出对应的 P 点的坐标. (结 果保留根号)
重庆市南开中学2015届高三12月月考数学(文)试题 Word版含答案

重庆南开中学高2015级高三12月月考数学试题(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效.第Ⅰ卷(选择题共50分)一.选择题:本大题共10小题,每小题5分。
共50分.在每小题给出的四个备选项中。
只有一项是符合题目要求的。
1.圆122=+y x C :关于直线2=x 对称的圆的方程为( ) A .()1422=+-y x B .()1422=++y xC .()1422=-+y x D .()1422=++y x2.已知(){}2,x y y x A ==,(){}x y y x B ==,,则B A = ( )A .RB .[0,+∞)C .(1,1)D .()(){}1100,,,3.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本恰好是A 样本每个数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差4.已知等比数列{}n a 满足253=a a ,则7241a a a 的值是( )A .2B .4C .8D . 165.某三棱锥的三视图如右图所示,则该三棱锥最长棱的棱长为( )`A .32B .6C .22D .36.下列说法错误的是( )A .若命题“q p ∧”为真命题,则“q p ∨”为真命题B .命题“若0>m ,则方程02=-+m x x 有实根”的逆命题为真命题C .命题“022=-∈∃x x R x ,”的否定是“022≠-∈∀x x R x ,”D .“1>x ”是“0>x ”的充分不必要条件7.已知平面点集()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--≥-≥+=2211y x y x y x y x M ,,平面点集(){}122≤+y x y x ,,在集合M中任取一点P ,则点P 落在集合N 中的概率为( ) A .122-π B .1232-π C .62-π D .632-π 8.已知()x f y =是定义域为R 的奇函数,且当0>x 时,()423-+=x x f x ,若存在I x ∈0,使得()00=x f ,则区间I 不可能是( )A .()12--,B .()11,-C .()21, D .()01,- 9.阅读右面的程序框图,若输入的n 是100,则输出的变量S 和T 的 值依次是( )A .2450,2500B .2550,2450C .2500,2550D .2550,250010.已知双曲线()0012222>,>b a by a x =-上一点C ,过双曲线中心的直线交双曲线于A ,B两点,记直线AC ,BC 的斜率分别为21k k ,,当2121ln ln 2k k k k ++最小时,双曲线离 心率为( )A .2B .3C .2+1D .2第Ⅱ卷(非选择题,共l00分)二.填空题:本大题共5小题,每小题5分。
重庆市九年级上学期数学12月月考试卷

重庆市九年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如果是随机投掷一枚骰子所得的数字(1,2,3,4,5,6),则关于的一元二次方程有两个不等实数根的概率P=()A .B .C .D .2. (2分)如图所示,在菱形ABCD中,两条对角线AC=6,BD=8,则此菱形的边长为()A . 10B . 8C . 6D . 53. (2分) (2019九上·官渡期末) 如图,在两个同心圆中,三条直径把大、小圆都分成相等的六个部分,若随意向圆中投球,球落在阴影区域的概率是()A .B .C .D .4. (2分) (2019九下·沙雅期中) 三角尺在灯泡O的照射下在墙上形成的影子如图所示,OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A . 5:2B . 2:5C . 4:25D . 25:45. (2分) (2017八下·丽水期末) 用配方法解方程时,此方程可变形为()A .B .C .D .6. (2分)(2020·北京模拟) 下列几何体中,主视图和左视图完全相同的图形的有几个()A . 1个B . 2个C . 3个D . 4个7. (2分) (2018九上·江阴期中) 已知 = ,那么下列等式中不一定正确的是()A . 2x=5yB . =C . =D . =8. (2分) (2020九上·桂林期末) 下列函数中,能表示是的反比例函数的是()A .B .C .D .9. (2分) (2018九上·温州期中) 下列事件是必然事件的为()A . 明天早上会下雨B . 任意一个三角形,它的内角和等于180°C . 掷一枚硬币,正面朝上D . 打开电视机,正在播放“瑞安新闻”10. (2分)在正方形网格中,△ABC的位置如图所示,则cosB的值为()A .B .C .D .二、填空题 (共6题;共7分)11. (1分) (2018八上·无锡期中) 已知直角三角形的两条直角边长分别是6和8,则斜边上的中线长________.12. (1分) (2017八下·简阳期中) 如图,反比例函数y= 的图象与直线y=kx(k>0)相交于A、B两点,AC∥y轴,BC∥x轴,则△ABC的面积等于________个面积单位.13. (1分) (2019七下·芮城期末) “五一劳动节”,老师将全班分成个小组开展社会实践活动,活动结束后,随机抽取一个小组进行汇报展示,则第小组被抽到的概率是________.14. (1分)如图所示,一般书本的纸张是原纸张多次对开得到的,矩形ABCD沿EF对开后,再把矩形EFCD 沿MN对开,依此类推,若各种开本的矩形都相似,那么等于________ .15. (1分)物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是________现象.16. (2分) (2016九上·连州期末) 一元二次方程﹣3x2=5(x﹣3)的二次项系数是________,常数项是________.三、解答题 (共12题;共97分)17. (5分)(2017·苏州模拟) 计算:﹣(﹣)﹣2+(π﹣1)0 .18. (10分)解方程(1) x2﹣4x+2=0(2) 2(x﹣3)2=x2﹣9.19. (5分) (2018八上·义乌期中) 如图,AC⊥BC ,AD⊥BD , AD=BC ,那么请你判断阴影部分图形的形状,并说明理由.20. (5分)有两根木棒AB、CD在同一平面上直立着,其中AB这根木棒在太阳光下的影子BE如图所示,请你在图中画出这时木棒CD的影子.21. (5分)如图,⊿ABC在平面直角坐标系内三顶点坐标分别为A(1,2),B(3,3),C(3,1)(1)先画出⊿ABC;(2)以B为位似中心,画出⊿A1B1C1 ,使⊿A1B1C1与⊿ABC相似且相似比为2:122. (5分) 2014年1月23日,安徽省省政府新闻办召开新闻发布会,通报了2013年全省经济运行情况。
重庆南开中学2015-2016学年秋初三上阶段检验三数学试题(答案解析图片)

重庆南开(融侨)中学初2016届九年级(上)阶段测试(三)数 学 试 题(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-。
一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上对应题目的正确答案标号涂黑。
1、小圆身高170cm ,以小圆的身高为标准,小圆爸爸的身高为180cm ,记作10+cm ,那么小圆妈妈的身高为165cm 应记为( C ) A 、5+cmB 、10+cmC 、5-cmD 、10-cm2、计算()22x y -的结果是( D ) A 、422x yB 、4x y -C 、22x yD 、42x y3、下列图案中,不是..中心对称图形的是( C )A .B .C .D . 4、如图,//,110,70AB CD DBF ECD ∠=∠=,则E ∠的度数为( B ) A 、30B 、40C 、50D 、605、已知3x =是关于x 的方程53x a -=的解,则a 的值等于( C ) A 、12B 、14C 、12-D 、14-6、如图,点A 、B 、C 是⊙O 上的三点,且AB OB =,则ACB ∠的度数为( B ) A 、22.5B 、30C 、45D 、604题图 6题图 7题图 7、一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是( C ) A 、0x >B 、0x <C 、2x >D 、2x <8、如图,DEF ∆是由ABC ∆经过位似变换得到的,点O 是位似中心,D 、E 、F 分别是OA 、OB 、OC 的中点,则DEF ∆与ABC ∆的面积比是( A )A 、1:4B 、1:2C 、1:9D 、1:29、用火柴棒按如下方式搭图形,按照这种方式搭下去,搭第8个图形需火柴棒的根数是( D ) A 、48根B 、50根C 、52根D 、54根10、如图,在Rt ABC ∆中,90,6ACB AC BC ∠===,D AC 为的中点,E 是线段AB 边上一动点,连接ED 、EC ,则CDE ∆周长的最小值为( D ) A 、35B 、33C 、333+D 、353+11、如图,矩形OABC 放置在平面直角坐标系中,OA 所在直线为x 轴,OC 所在直线为y 轴,且4,2OA OC ==。
重庆南开中学初2015届九年级上期中考试数学试题含答案

1.下列各数中是无理数的是( )
A.1
B. 2
C.-2
D. 1 3
2.计算 2a2 3 的值( )
A. 8a6B. 8a6C 9a6D. 6a 6
3.下列事件中适合用普查的是( )
A.了解某节能灯的使用寿命
B.旅客上飞机前的安检
C.了解重庆市中学生课外使用手机的情况
D.了解某种炮弹的杀伤半径
前,等了几分钟后她决定前往地铁站乘地铁直达大坪站(忽略中途等站和停靠站的时
间),在此过程中,他离大坪站的距离 y(km)与时间 t(h)之间的函数关系的大致图
象是( )
10.下列图形都是由同样大小桃心按一定的规律组成的,则第(8)个图形中共有桃心 ()
A.80个
B.73个
C.64个
11.抛物线 y ax2 bx c 的图象如图所示,下列结论正确的是(
初 2015届九年级(上)期中考试 第 5 页
7.要使分式 有意义,则 x 的取值范围是( )
初 2015届九年级(上)期中考试 第 1 页
A.x≠1
B.x≠-1 C.x≥-1
D.x>-1
8.将 y x2 向上平移 2 个单位后所得的抛物线的解析式为( )
A y=x2+2
B y=x2-2
C y=(x+2)2
D y=(x-2)2
.
.
.
.
9.元元同学有急事准备从南开中学打车去大坪,出校门后发现道路拥堵使得车辆停滞不
重庆南开中学初 2015级九年级(上)期中考试
数学试题
(全卷共五个大题,满分 150分,考试时间 120分钟) 一、选择题(本大题共 12个小题,每小题 4 分,共 48分)在每个小题的下面,都给出了 代号为 A、B、C、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答 案标号涂黑.
重庆市南开中学2015届高三12月月考数学(理)试题Word版含答案

重庆南开中学高2015级高三12月月考数学试题(理科)考试说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B 铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写, 字体工整,字迹清楚;(3)请按照题号顺序在各题目的答题区域内作答.超出答题区域书写的答案无效,在草稿 纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第Ⅰ卷(选择题共50分)一.选择题:本大题共l0小题,每小题5分,共50分.在每小题给出的四个备选项中,只 有一项是符合题目要求的。
1.关于x 的不等式ax +b >0的解集不可能...是( ) (A)R (B)φ (C) ⎭⎬⎫⎩⎨⎧-a b x x > (D)⎭⎬⎫⎩⎨⎧≠a b x x 2.抛物线x y 42=的焦点到准线的距离为( ) (A)41 (B)21(C)2 (D)4 3.已知⎪⎭⎫⎝⎛∈ππ,2a ,5102cos 2sin =-a a ,则=a cos ( ) (A)54-(B)53- (C)54 (D)534.等比数列{}n a 的前n 项和为n S ,且4a ,2a 2,a 3成等差数列,若a 1=1。
则S 4=( ) (A)7 (B)8 (C)15 (D)165.已知单位向量a ,b 夹角为3π,则b a -2=( )(A)2 (B)3 (C)2 (D)56.已知直线()00022>,>b a by ax =+-平分圆014222=+-++y x y x C :的圆周长,则ba 21+的最小值为( ) (A) 24 (B) 223+ (C)4 (D)67.已知定义在R 上的偶函数()x f 满足:当x ≥0时,()83-=x x f ,则关于x 的不等式:()122>-x f 的解集为( )(A){}20>或<x x x (B) {}40>或<x x x (C) {}42>或<x x x - (D) {}22>或<x x x - 8.下列说法正确的个数是( )①命题“0123≤+-∈∀x x R x ,”的否定是“0120300>,+-∈∃x x R x ”; ②“ac b =”是“三个数a ,b ,c 成等比数列”的充要条件;⑨“1-=m ”是“直线01)12(=+-+y m mx 和直线023=++my x 垂直”的充要条件: ④“复数()R b a bi a Z ∈+=,是纯虚数的充要条件是0=a ”是真命题.(A)1 (B)2 (C)3 (D)49.设21F F ,为双曲线C :()0012222>,>b a by a x =-的左、右焦点,过坐标原点O 的直线与双曲线C 在第一象限内交于点P ,若a PF PF 621=+,且21F PF ∆为锐角三角形,则直线OP 斜率的取值范围是( )(A)⎪⎪⎭⎫⎝⎛34332, (B)⎪⎭⎫ ⎝⎛334, (C)⎪⎪⎭⎫ ⎝⎛3321, (D) ⎪⎪⎭⎫⎝⎛2332, 10.存在实数a ,使得对函数()x g y =定义域内的任意x ,都有()x g a <成立,则称a 为 g(x)的下界,若a 为所有下界中最大的数,则称a 为函数()x g 的下确界.已知+∈R z y x ,,且以z y x ,,为边长可以构成三角形,则()()2z y x zxyz xy z y x f ++++=,,的下确界为( )(A)61 (B)41 (C) 31 (D) 21第Ⅱ卷(非选择置共100分)二、填空置:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆南开中学初2015级九年级(上)阶段测试(二)
数学试题 2014.12
参考公式:抛物线)0(2
≠++=a c bx ax y 的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 4422,,对称轴为直线a b x 2-= 一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为
A 、
B 、
C 、
D 的四个答案。
其中只有一个是正确的,请将答卷上对应的方框涂黑。
1.上下楼梯时,如果将上3步台阶记为+3,那么下3步台阶应该记为(▲)·
A .﹣3
B .3
C .+3
D .0
2.计算()23
x 的结果是(▲)。
A .5x B .6x C .9x D .32x
3.下面的图形中,既是轴对称图形又是中心对称图形的是(▲)。
4.函数x y -=3中,自变量x 的取值范围是(▲)。
A .x ≠3
B .3≥x
C .3<x
D .3≤x
5.下列调查中,调查方式选择正确的是(▲)。
A .为了了解某品牌手机的屏幕是否耐摔,选择全面调查
B .为了了解玉兔号月球车的零部件质量,选择抽样调查
C .为了了解南开步行街平均每天的人流量,选择抽样调查
D .为了了解中秋节期间重庆市场上的月饼质量,选择全面调查
6.如图,直线m l ∥,将含︒45角的三角板ABC 的直角顶点C 放在直线m 上,
若︒=∠251,则2∠的度数为(▲)。
A .20°
B .25°
C .30°
D .35°
7.如图,在ABCD 中,E 为CD 上一点,且32::=CE DE ,连结AE 、
BD 相交于点F ,则△DEF 和△ABF 的面积之比为(▲)。
A .2:3
B .4:9
C .2:5
D .4:25
8.分式方程0347=-+x x 的根是(▲)。
A .3-=x B .3=x C .1-=x D . 1=x
9.如图,△ABC 的三个顶点都在
O 上,连结CO 、BO ,已知︒=∠55A ,则BCO ∠ 的度数是(▲)。
A .55°
B .45°
C .35°
D .30°
10.今天早上,潘老师开车从后校门进入学校,准备把车停在初三教学楼下。
当他经环校路匀速行驶到北园 食堂后,为寻找路边的停车位,特意放慢了车速,但一直没有找到合适的车位。
开到初三教学楼下时,为了避让 上学的同学,潘老师停车等待了一会,然后继续沿环校路开到大校门口,终于找到一个合适的车位停下。
在此过 程中,将潘老师与初三教学楼的距离设为y (米),进入后校门后的时间设为x (分钟)。
则下列各图中,能反映 y 与x 的函数关系的大致图象是(▲)。
11.如图,通过在圆中添加不同数目的直径,得到第①个圆中有2条弧,第②个圆中有12条弧(包括劣弧、 优弧、半圆,但不包括圆本身。
下同),第③个圆中有30条弧。
照此规律,第⑥个圆中弧的条数为(▲)。
12.如图,正方形彳BCD 的顶点彳、B 分别在x 轴、y 轴的正半轴上,反比例函数
的图象经过另外两个顶点C 、D ,且点()()404<<,n n D ,则k 的
值为(▲).
A .12
B .8
C .6
D .4
二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答卷中对
应的横线上。
13.已知单项式m b a 22与33b a n 是同类项,则代数式m +n = ▲ 。
14.2014年,肆虐西非国家的埃博拉病毒蔓延速度惊人,埃博拉病毒属丝状病毒科,长度为0.00097毫米, 其中数据0.00097用科学记数法表示为 ▲ 。
15.已知一组数据2-,x ,0,3,5的众数为5,那么这组数据的中位数是 ▲ 。
16.如图,A 为
O 上任一点,OA 的垂直平分线交O 于B 、C 两点,38=BC , 则O 的半径长为 ▲ 。
17.从21023、、、、
--这5个数中随机抽取一个作为反比例函数x
k y 2+=和二次函数233+-=x kx y 的k 值,则使得反比例函数位于一、三象限且二次函数与x 轴有交点的概率为 ▲ ·
18.如图,四边形ABCD 中,已知AB =10,CD =12,对角线BD 平分ABC ∠, ︒=∠︒=∠90,45BCD ADB ,则边BC 的长度为 ▲ 。
三、解答题(本大题2个小题,每小题7分,共l4分)解答时每小题必须给出必要的演算过
程或推理步骤.请将解答过程书写在答卷中对应的位置上。
19.计算:()()032
201428cos60 ·6211--︒+-⎪⎭⎫ ⎝⎛-+--π 20.如图,在ABC Rt ∆中,︒=∠90ACB ,D 为AC 上一点,己知4=AD ,
15=AB ,5
4sin =A ,求BDC ∠tan 的值。
四、解答题(本大题4个小题,每小题l0分,共40分)解答时每小题必须给出必要的演算过
程或推理步骤,请将解答过程书写在答卷中对应的位置上。
21.先化简,再求值:1
122444222--⎪⎪⎭⎫ ⎝⎛----+÷+--x x x x x x x x ,其中x 满足方程032=--x x 。
22.为规范学生的在校表现,某班实行了操行评分制,根据学生的操行分高低分为A 、B 、C 、D 四个等 级。
现对该班上学期的操行等级进行了统计,并绘制了不完整的两种统计图,请根据图象回答问题:
(1)该班的总人数为 人,得到等级A 的学生人数在扇形统计图中的圆心角度数是 ;
(2)补全条形统计图;
(3)已知男生小伟和女生小颖的操行等级都是A ,且获得等级A 的学生中有2名男生,现班主任打算从操 行等级为A 的男生和女生中各任意抽取一名作为代表,参加学校的年度表彰大会,请用树状图或列表法求出抽 到的代表中有小伟或小颖的概率。
23.某淘宝网店销售某款服装,把进价提高50%后再让利25元作为售价,最后每件服装的售价为500元, 每天可销售9件。
(1)求此款服装的进价:
(2)“双十一”当天,该网店对此款服装进行更大折扣的打折销售,每件服装的售价在原来售价的基础上降 低00m ,结果当天的销量在原来每天销量的基础上增加了
003
20m ,最终该淘宝店当天销售此款服装的利润为 1500元,同时顾客也得到了最大的实惠,求m 的值。
24.如图,正方形ABCD 中,E 、F 为边BC 上的点,且CF BE =,连结BD 、
DE ,过点C 作DE CH ⊥于G ,交BD 于H ,连结FH 。
(1)若AB =3,BE =1,求CG 的长度:
(2)求证:HFB DEC ∠=∠。
五、解答题(本大题2个小题,每小题12分,共24分)解答时每小题都必须写出必要的演算
过程或推理步骤,请将解答过程书写在答卷中对应的位置上。
25.如图,抛物线62++=bx ax y 与x 轴交于A 、B 两点,与y 轴交于点C ,
已知()、,01-A ()03,B 。
(1)求抛物线及直线BC 的解析式;
(2)若P 为抛物线上位于直线BC 上方的一点,求△PBC 面积S 的最大值,
并求出此时点P 的坐标:
(3)直线BC 与抛物线的对称轴交予点D ,M 为抛物线上一动点,点N 在x
轴上,若以点D 、A 、M 、N 为顶点的四边形是平行四边形,求出所有满足条件
的点M 的坐标。
26.如图1,ABC ∆中,点D 、E 分别在边AB 、AC 上,且DE ∥BC ,己知BC =35,CE =15,DE =20, 5
3cos =C 。
动点P 从C 出发,沿射线CB 方向以每秒l 个单位长度的速度运动,直到点P 与点B 重合时停止。
过点P 作BC PQ ⊥交折线DB ED CE --于点Q ,以PQ 为边在其左侧作正方形PQMN 。
设运动时间为t 秒。
(1)=BD ,当点M 与点D 重合时t = 秒;
(2)在整个运动过程中,设正方形PQMN 与四边BCED 的重合部分面积为S ,请直接写出S 与t 之间 的函数关系式和相应的自变量t 的取值范围:
(3)如图2,将△ADE 沿DE 翻折,得到DE A '∆,连接DM 、M A ',是否存在这样的时间t ,使DM A '
∆ 是直角三角形,若存在,求出对应t 值:若不存在,请说明理由。