-高分子材料的表面张力
聚甲基丙烯酸甲酯结表面张力

聚甲基丙烯酸甲酯结表面张力一、概述聚甲基丙烯酸甲酯(PMMA)是一种常见的有机高分子材料,具有良好的透明度、耐腐蚀性和机械强度等优良性能,在工业生产和科学研究中得到广泛应用。
而表面张力作为表征物质表面性质的重要参数,在PMMA的制备及应用过程中也扮演着重要角色。
本文将从PMMA结构、表面张力的定义及测量方法、PMMA结构对表面张力影响等方面进行探讨。
二、PMMA结构PMMA是由甲基丙烯酸甲酯单体经过自由基聚合反应制得的,其化学式为(C5O2H8)n,其中n为聚合度。
PMMA分子主链由甲基丙烯酸甲酯单体中的丙烯酸部分组成,侧链则是由甲基部分组成。
这种结构使得PMMA具有较高的玻璃转移温度和较低的熔点,同时也使其易于加工和成型。
三、表面张力定义及测量方法1. 定义表面张力是指液体分子间的相互作用力引起的液体表面处产生的张力,其大小决定了液体表面形态和液滴形成等现象。
表面张力与液体种类、温度、压强等因素都有关系。
2. 测量方法常用的测量表面张力的方法有静态法、动态法和悬滴法。
其中静态法是最常用的方法,其原理是在一定条件下测量液体与空气之间形成平衡时所需要施加的最小外力,即为表面张力。
而动态法则是通过测量液体在表面活性剂或固体表面上运动时所受到的阻力来计算表面张力。
四、PMMA结构对表面张力影响PMMA分子结构中含有酯基团,这种化学结构使得PMMA分子在空气中形成一个相对稳定的界面层。
同时,PMMA分子链上还带有甲基基团,这些基团可以与水分子发生一定程度的相互作用。
这些因素共同影响了PMMA材料的表面张力。
实验研究发现,在一定条件下(如温度、湿度等),PMMA材料的表面张力随着甲基丙烯酸甲酯单体聚合度的增加而增大。
这是由于聚合度的增加会使PMMA分子链更加紧密,表面张力也随之增大。
此外,PMMA材料的表面张力还受到环境湿度、温度等因素的影响。
五、结论PMMA作为一种常见的有机高分子材料,在制备和应用过程中都需要考虑其表面张力对物理化学性质和应用效果的影响。
高分子材料的表界面-课件

同时等张比容具有严格的加和性,即物 体的等张比容等于组成该物质分子的原子或 原子团和结构因素的等张比容之和。
1.5 表面张力与内聚能的关系
内聚能是表征物质分子间相互作用力强弱的 一个物理量,摩尔内聚能定义为消除1 摩尔物质全部分子间作用力时其内能的增加, 即:
式中Ecoh为摩尔内聚能 R为气体常数, T为 温度。 △H为汽化热(液体)或升华热(固 体)。
表面张力是材料表界面的最基本性能之一。对于小分子液体,表 面张力的测定已由经典物理化学研究建立了各种测试方法。对于粘稠 的高分子溶液或熔体,虽然其分子仍具有一定的流动性,但要达到热 力学的平衡往往需要很长的时间。这就给表面性能的测试带来了很大 的困难。对于固态高分子材料,由于其表面分子几乎没有流动性,因 此表面张力的测试没有直接的方法,只能通过间接的方法或估算的方 法来求取。
1. 成核-增长机理 成核-增长机理可以得到在母体相中分散的岛 相结构,即形成所谓珠滴/基体型或海岛状结构, 这一过程称为成核增长。在成核-增长相分离过程 中,成核活化能与形成一个核所需的界面能有关, 即依赖于界面张力系数和核的表面积。成核之后, 大分子向成核微区扩散,珠滴增大。珠滴的增长 分为扩散和凝聚粗化两个阶段,每一阶段都决定 于界面能的平衡。因此由成核增长机理所形成的 形态结构主要为珠滴/基体型,即一相为连续相, 另一相以球形颗粒的形式分散在其中,尺寸较小 之间不互相连接。在成核-增长相分离过程中,成 核的原因是局部涨落。这种涨落可以是能量或浓 度波,波的幅度依赖于到达临界条件的距离。当 接近旋节线时,分离机理既可按成核增长机理亦 可按旋节分离机理进行。
1.1 表面张力与温度的关系
表面张力的本质是分子间的相互作用。因为分子间的 相互作用力因温度的上升而变 弱,所以表面张力一般随温度的上升而下降。 液态高聚物的表面张力随温度变化也呈线性关系, 其-(dσ/dT)值约为0.05×10-3N/mc, 因为-(dσ/dT) 是表面熵,所以高聚物的-(dσ/dT)值较小的原因是大 分子链的构象受阻,一些聚合物的表面张力与温度关系 如图所示。常温度范围内,表面张力与温度的关系呈直 线关系 :
高分子合金(界面)

g r
g d dT g r
d dT r
d n dT
因为:
r g
所以:
d d dT g dT r
(2)相转变的影响
结晶型聚合物随着温度的升高会发生结晶的熔融,这是一 级热力学相转变,此时,聚合物的表面张力和表面张力的温度系 数均发生不连续变化,且转变前后的表面张力有如下关系:
二、表面张力与温度的关系
温度是决定一个体系表面张力的重要因素,温度对表 面张力的影响比较复杂,对于绝大多数小分子体系,表面 张力随温度升高而线性下降,对于大多数高分子体系也有 同样的变化规律,但下降幅度要小于小分子体系,温度系 数-d/dT一般在0.1dyn/cm.K左右 [1~3],而高分子体系一 般为0.05~0.08dyn/cm.K[4~6]。因为-d/dT相当于表面熵, 长链分子的构型限制使高分子的-d/dT值较小。
表面张力随温度升高而线性下降的聚合物
全氟代烷体系的表面张力与温度的关系很好地符合二 次方程 [1] 。对于高分子体系,表面张力与温度的关系偏离 线性关系的情况很多,人们建立起了很多适用于不同体系 的方程,例如:
T 1 T c
0
11 9
用来描述表面张力和温度的关系的方程很多,但应用 最广泛的是MacLeod方程: 对于小分子液体n=4, 0 n
n 0
高分子体系n=3.0~4.4
P M
P为等张比容(parachor)与分 子量有关
[1] R. H. Dettre, R. E. Johnson Jr.
J. Colloid Interface Sci., 1969, 31, 568
聚四氟表面张力

聚四氟表面张力一、引言聚四氟乙烯(PTFE)是一种非常特殊的高分子材料,具有很多优异的性能,其中之一就是其表面张力非常低,因此在工业生产和科学研究中得到了广泛应用。
本文将从以下几个方面来探讨聚四氟表面张力的相关问题。
二、聚四氟表面张力的概念表面张力是指液体表面上分子间存在的相互作用力,这些作用力使得液体表面呈现出一定的弹性和稳定性。
而聚四氟乙烯由于其化学结构中含有大量的氟原子,使得其分子间极度稳定,因此表面张力非常低。
三、聚四氟表面张力与润湿性由于聚四氟乙烯表面张力极低,因此它对大多数物质都具有很强的抗黏附性和抗吸附性。
这也意味着它对水等液体也具有很弱的润湿性。
因此,在实际应用中,在处理PTFE时需要采取特殊措施来改善其润湿性。
四、聚四氟表面张力与涂层技术由于聚四氟乙烯表面张力低,因此在涂覆其表面时需要采用特殊的技术。
例如,在使用PTFE作为涂层材料时,需要先进行表面处理,使其能够更好地附着在被涂物表面上。
同时,还需要控制涂层厚度和均匀性,以确保其性能稳定。
五、聚四氟表面张力与防粘由于聚四氟乙烯具有很强的抗黏附性和抗吸附性,因此它被广泛应用于防粘领域。
例如,在食品加工和医疗器械制造等领域中,常常使用PTFE作为防粘材料。
此外,在高温环境下,PTFE也可以作为防粘材料来保护设备和工具。
六、聚四氟表面张力与自清洁由于聚四氟乙烯表面张力低,因此它的表面很容易自清洁。
当污垢或油脂等物质附着在其表面上时,只需轻微清洗即可将其彻底去除。
这种自清洁性质使得PTFE在一些特殊的应用场合中具有很大的优势。
七、聚四氟表面张力与电学性能由于聚四氟乙烯表面张力低,因此它对电场的干扰也很小。
这使得PTFE在电子器件制造和电气绝缘等领域中得到了广泛应用。
例如,在高压电力设备中,常常使用PTFE作为绝缘材料来保证设备的安全性能。
八、总结聚四氟乙烯表面张力低是其优异性能之一,使得其在工业生产和科学研究中得到了广泛应用。
然而,在实际应用中,需要注意其润湿性和涂层技术等问题,并根据不同的需求选择合适的处理方法和材料。
高分子材料工程

高分子材料工程高分子材料工程是一门新兴的学科,它涉及到高分子合成、加工、制备及应用等多个方面。
随着高分子材料的广泛应用,高分子材料工程已成为一门重要的学科。
本文将介绍高分子材料的定义、特性、分类、应用以及相关领域的研究进展等内容。
一、高分子材料的定义和特性高分子材料,是由大量重复单元组成的,具有高分子结构的材料。
它们是复杂有机化合物,具有多种特性和优点。
高分子材料具有以下特性:1. 高分子材料结构复杂,其分子量可达数百万,分子链长且连续。
2. 高分子材料的界面与颗粒相互作用力很低,表面张力很小,吸水性强。
3. 高分子材料有较好的可塑性和可加工性,可以通过多种方式制备得到多种形状的材料。
4. 高分子材料的性质千差万别,可以根据其结构设计制备。
二、高分子材料的分类高分子材料可以根据它们的来源和性质进行分类。
根据来源,高分子材料可以分为合成高分子、天然高分子和改性高分子。
根据结构和性质,可以将高分子材料分为聚合物、共聚物、交联聚合物、高分子合金、复合材料等。
1. 聚合物:是由同一单体组成的长链分子。
如聚乙烯、聚乙烯醇、聚酯等。
2. 共聚物:是由两种或更多种不同单体结构组成的长链分子。
如丙烯酸酯-甲基丙烯酸酯共聚物、丙烯酸酯-丙烯酸共聚物等。
3. 交联聚合物:是由单体组成的三维网络结构,形成稳定的空间结构。
如硅氧烷、聚四氟乙烯、聚氨酯等。
4. 高分子合金:是不同聚合物或共聚物在相容剂作用下形成的铸造材料。
如PC/ABS(聚碳酸酯-丙烯腈-丁二烯-苯乙烯共聚物)、PC/PVC(聚碳酸酯-聚氯乙烯复合材料)等。
5. 复合材料:是由两种或两种以上的不同材料组合而成的新材料。
如碳纤维增强塑料、金属基复合材料、陶瓷基复合材料等。
三、高分子材料的应用高分子材料广泛应用于人们的日常生活和各种工业领域。
它们的应用范围已经涉及到了几乎所有领域。
1. 医疗和健康领域:可制备人工器官、医用材料等。
2. 包装和容器:可以制备塑料袋、塑料包装、塑料容器等。
高分子材料的表面性质与应用研究

高分子材料的表面性质与应用研究在当今的材料科学领域,高分子材料凭借其独特的性能和广泛的应用,已经成为了不可或缺的一部分。
高分子材料的表面性质,作为决定其性能和应用的关键因素之一,一直以来都是研究的热点。
高分子材料的表面性质主要包括表面能、表面粗糙度、表面化学组成以及表面的物理形态等方面。
这些性质相互作用,共同影响着高分子材料与外界环境的相互作用和性能表现。
首先,表面能是衡量高分子材料表面活性的重要指标。
表面能较低的高分子材料,如聚四氟乙烯(PTFE),往往具有良好的自润滑性和抗粘性,在不粘锅涂层、管道内衬等领域得到了广泛应用。
而表面能较高的高分子材料,则更容易与其他物质发生相互作用,例如,一些表面能较高的聚合物在胶粘剂和涂层领域表现出色。
表面粗糙度对高分子材料的性能也有着显著的影响。
粗糙的表面可以增加材料的表面积,从而提高其与外界的接触面积和相互作用。
在生物医学领域,具有一定粗糙度的高分子材料表面有助于细胞的附着和生长,有利于组织工程和医疗器械的研发。
例如,人工关节表面的适当粗糙度可以提高其与骨组织的结合强度,延长使用寿命。
表面化学组成则决定了高分子材料的化学稳定性、耐腐蚀性和表面反应活性。
通过对高分子材料表面进行化学修饰,可以引入特定的官能团,从而赋予材料新的性能。
例如,在塑料表面引入羟基或羧基等官能团,可以提高其亲水性和印染性能;对高分子材料进行氟化处理,可以增强其耐腐蚀性和抗污性能。
高分子材料表面的物理形态,如结晶度和取向度,同样会影响其性能。
具有较高结晶度的高分子材料表面通常具有更好的机械强度和耐磨性;而具有特定取向结构的高分子材料表面,则可能表现出各向异性的性能,如光学性能或电学性能。
在实际应用中,高分子材料的表面性质发挥着至关重要的作用。
在包装领域,要求高分子材料具有良好的阻隔性能,以防止气体、水分和溶质的渗透。
这就需要对材料的表面进行处理,降低其表面的渗透性。
通过在高分子材料表面涂覆一层阻隔性能优异的涂层,或者采用多层共挤出技术制备具有特殊结构的高分子复合材料,可以有效地提高包装材料的阻隔性能,延长食品和药品的保质期。
材料表界面 作业答案

πA=RT
表面压较小的情况下成立
pv=RT
忽略了分子间互相作用力,利用理想化模型推导公式 低压、高温条件下成立
总结: 界面化学四大ຫໍສະໝຸດ 律 Laplace 方程 Kelvin 公式
p (1/ r1 1/ r2 )
P 2 V 2 M P0 r r
求出表面张力σ,即:
(2)修正的原因:①把凹凸月面当作球面近似处理。②只有在凹月面的最低点毛细上升的高 度才是h ,凸月面的最高下降才为h ,其余各点均大于h 。
6.试用Kelvin公式解释空气中水蒸汽过饱和的原因。在20℃下水的密度ρ =998.2kg/M3,表面张力为72.8*10(-3)N/m,若水滴半径为10(-6)cm,求水的 过饱和度。 答:(1)由Kelvin公式: P 2 V 2 M RT ln (2-40) P0 r r P0 为平液面的蒸汽压,P 为弯液面的蒸汽压,V 为液体摩尔体积,r 为弯液面的 曲率半径。 由上式可知,液滴的半径越小,其蒸气压越大。下面图示为根据 Kelvin 公式得 出的正常液体(平面)与小液滴的饱和蒸气压曲线。
5. 毛细管法测定液体表面张力的原理是什么?为什么要对毛细管法进行修正? 答:原理:液体在毛细管中易产生毛细现象。由Laplace方程推广到一般情况:
gh=2 /r (2-20) 其中△ρ 为气液两相密度之差, θ 为液体与管壁之间的接触角
,r为毛细管的半径,由上式,从毛细管上升或下降高度h可以
v a3 a v1/ 3 0.00951/ 3
其表面积为: A=6a =6*0.0095 =
2 2/3
比表面积=
表面积 6*0.00952/3 = (cm 2/g) 质量 0.1
聚丙烯酰胺凝胶的表面张力

聚丙烯酰胺凝胶的表面张力1. 引言1.1 概述聚丙烯酰胺凝胶是一种具有广泛应用前景的材料,在医学、生物技术和环境工程等领域中发挥着重要作用。
其独特的凝胶性质和可调控的物理化学性能使其成为各种应用领域中的理想选择。
表面张力作为液体界面上分子间相互作用力的一种表征,对聚丙烯酰胺凝胶的性能具有重要影响。
1.2 文章结构本文将首先介绍聚丙烯酰胺凝胶的基础知识,包括聚丙烯酰胺的定义与特性以及凝胶的概念与分类。
接下来将介绍表面张力的基本理论和测定方法,包括表面张力的定义与起因、测定方法及原理,以及影响表面张力的因素和调控方法。
然后,本文将详细研究聚丙烯酰胺凝胶的表面张力特性,并介绍实验材料与方法、测试结果与分析讨论以及影响聚丙烯酰胺凝胶表面张力的因素探究。
最后,本文将总结主要发现并展望聚丙烯酰胺凝胶表面张力研究的未来发展方向。
1.3 目的本文旨在深入探究聚丙烯酰胺凝胶的表面张力特性,并揭示影响其表面张力的因素。
通过对表面张力进行测定和分析,可以更好地理解聚丙烯酰胺凝胶在不同应用领域中的性能和潜在应用价值。
同时,本文还将为进一步研究和开发具有优异表面张力特性的聚丙烯酰胺凝胶提供参考和指导。
2. 聚丙烯酰胺凝胶基础知识2.1 聚丙烯酰胺的定义与特性聚丙烯酰胺(Polyacrylamide,简称PAM)是一种由丙烯酰胺单体聚合而成的高分子化合物。
它具有线性结构和无色透明的外观。
主要特性包括:具有良好的水解稳定性、可溶于水和多种有机溶剂、不易发生结晶、呈现为无定形固体或可逆软化凝胶状态。
2.2 凝胶的概念与分类凝胶是一种由连续的液态相中网络结构组成的三维空间几何结构。
通常,凝胶被认为是由高分子聚合物在溶液中形成交联网络所产生的。
根据其制备方法和组成成分,凝胶可以分为化学凝胶、物理凝胶和生物凝胶等。
2.3 聚丙烯酰胺凝胶的应用领域聚丙烯酰胺凝胶由于其优异的特性,在众多领域中被广泛应用。
其中包括但不限于以下几个方面:- 水净化:聚丙烯酰胺凝胶可作为高效的絮凝剂和沉淀剂,用于水处理过程中的悬浮物去除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Mn×104 1.6
聚集数n 32
25
2.55
52
38
7.10
144
43
18.4
372
注:C7H15COO(CH2CH2O)7.6CH3的分子量M0=492.4
-高分子材料的表面张力
10
本章小结
掌握表面活性剂的基本概念、分子结构特点、 溶液中的分布特征;
掌握表面活性剂的分类(按亲水基类型分 类);
-高分子材料的表面张力
6
(2)电解质的影响
加入电解质到离子型表面活性剂溶液中会使胶团的 聚集数增加. 电解质对聚氧乙烯型非离子表面活性剂胶团聚集数 的影响无一定规律,有时增加聚集数,有时减少聚 集数,但总的来说影响不大。
-高分子材料的表面张力
7
有机添加剂的影响: 有机物的加入能使表面活性剂 水溶液胶束聚集数增加。(增溶)
V 2 /3K (T C T )
温度TC时表面张 力为零。
(6 -1 )
式中V为摩尔体积,TC为临界温度,K为常数。
临界温度就是某种气体能压缩成液体的最高温度,高于这个温度,无论多大
压力都不能使它液化。超临界流体(SCF)是指在临界温度和临界压力以上的
流体。SCF兼有气、液两相的双重特点,既具有与气体相当的高扩散系数和
上次课内容回顾
5.3 表面活性剂的物理、化学性质
✓ 相转型温度(PIT)、 ✓ 临界胶束浓度(CMC)及其影响因素、 ✓ 溶解度(K.P.点、C.P.点)、 ✓ 表面活性剂在溶液表面上的吸附, ✓ 胶束的结构、形状和大小
-高分子材料的表面张力
1
课后思考题 p93 6、 7、 8、 9、
-高分子材料的表面张力
-高分子材料的表面张力
18
• 液态高聚物的表面张力随温度变化也呈线性 关系,其-(dσ/dT) 值约为0.05×10-3 N/m˚C。 • 因为-(dσ/dT)是表面熵,所以高聚物的 -(dσ/dT)值较小的原因是大分子链的构象受阻。 • 常温度范围内,表面张力与温度的关系呈直 线关系 :
-高分子材料的表面张力
2
3 胶束的大小
n=Mn/M0
n 为胶束的平均聚集数, Mn为胶束的表观分子量, M0为表面活性剂的分子量。
-高分子材料的表面张力
3
影响胶束分子量的因素:
(1)表面活性剂分子结构的影响 (2)电解质的影响 (3)有机添加剂的影响 (4)温度的影响
-高分子材料的表面张力
4
(1)表面活性剂分子结构的影响
-高分子材料的表面张力
15
第6章 高分子材料的表面张力
-高分子材料的表面张力
16
6.1.1 表面张力与温度的关系
●表面张力的本质是分子间的相互作用。因为分子间的
相互作用力因温度的上升而变弱,所以表面张力一般
随温度的上升而下降。
●对于液体的表面张力经验公式:
理解表面活性剂的典型的物理、化学性质及 其影响规律:
亲疏平衡值(HLB)、相转型温度(PIT)、临界胶束浓 度(CMC)、溶解度,胶束的结构、形状和大小。
-高分子材料的表面张力
11
第6-7章 高分子材料的表界面
-高分子材料的表面张力
12
高分子材料表界面特性
合成纤维 表面的染色
高聚物对其他 材料的粘接
有机添加剂对胶团大小的影响
表面活性剂
介质
聚集数
C10H21O(C2H4O)8CH3 C10H21O(C2H4O)8CH3 C10H21O(C2H4O)8CH3 C10H21O(C2H4O)8CH3 C10H21O(C2H4O)8CH3 C10H21O(C2H4O)8CH3
水 水+2.3% 癸烷 水+4.9% 癸烷 水+3.4% 癸醇 水+8.5% 癸醇 水+16.6% 癸醇
低粘度,又具有与液体相近的密度和对物质良好的溶解能力。
-高分子材料的表面张力
17
● Ramsay和Shields的修正: 以( TC -6 )来代替TC ,即:
V 2 /3 K (T C T 6 ) (6 -2 )
对于许多液体来说,常数K基本上不变,其值约为 2.1×10-7J/℃
对于液态聚合物,σ与T的关系?
在水溶液中,表面活性剂与溶剂的不相似性越大,则形 成胶束的聚集数也越大。 在水溶液中,若表面活性剂的烃链增长,即碳原子数增 加,则表面活性剂分子与溶剂水分子的不相似性增大, 胶团的聚集数n增大,特别是非离子表面活性剂,n的 增加趋势更大。 对聚氧乙烯型非离子表面活性剂,在相同烃链长度下, 聚氧乙烯链增长,对溶剂水的亲和性增大,聚集数n减 小。
(6-4)
T/Tc《1
d 常数
dT
正常温度范围内,表面张力与温度的关系呈直线 关系. 利用表面张力与温度的线性关系,外推该直线到 -高室分子温材,料的可表间面张接力地测试固态聚合物的表面张力。21
-高分子材料的表面张力
5
25℃下烷基硫酸钠的聚集数 n
表面活性剂 聚集数n 表面活性剂 聚集数n
C6H13SO4Na 17 C7H15SO4Na 22 C8H17SO4Na 27 C9H19SO4Na 33 C10H21SO4Na 41
C11H23SO4Na 52 C12H25SO4Na 64 C14H27SO4Na 80 C16H33SO4Na 100
83 90 105 89 109 351
温度:30℃
-高分子材料的表面张力
8
(4)温度的影响
离子型表面活性剂水溶液中,温度升高会 导致胶束聚集数降低,但影响不太大。 非离子型表面活性剂,则温度升高,聚集 数急剧增大,尤其在浊点附近。
-高分子材料的表面张力
9
温度对胶团量及聚集数的影响
温 度/ ℃ 10
意义
涂料对金 属或木材 表面的涂 覆
塑料薄膜 的印刷
-高分子材料的表面张力
塑料表面 的喷金
13
高分子材料的表面处理
光化学改性
电晕
射线辐照
表面处理
火焰处理
等离子
化学改性
-高分子材料的表面张力
14
高分子材料的表界面特性具有重要意义
表面张力是材料表界面的最基本性能之一。液体的表 面张力测定可由经典物理化学方法测定。固体材料表面 分子没有流动性;其表面张力测定没有直接的方法,只 能通过间接的方法或估算求取。
19
液态高聚物的表面张力随温度的变化也呈线性关系
-高分子材料的表面张力
20
● Guggenheim曾提出表面张力与温度的关系的经验式:
11
=0
T 1Tc
9
微分
(6-3)
σ0为T= 0K时的表面 张力,Tc为临界温度
公式适用于有机液体,但发 现也适用于高聚物体系
- d110(1T)9 2
dT 9Tc Tc