FIR数字滤波器设计与实现
FIR数字滤波器设计与软件实现实验报告222

FIR数字滤波器设计与软件实现实验报告222 FIR数字滤波器设计与软件实现实验报告222实验标题:FIR数字滤波器设计与软件实现实验目的:1.学习FIR数字滤波器的基本原理和设计方法;2.掌握使用MATLAB软件进行FIR数字滤波器设计的方法;3.通过实验验证FIR数字滤波器的性能和效果。
实验器材与软件:1.个人计算机;2.MATLAB软件。
实验步骤:1.确定所需的滤波器类型和设计要求;2.根据设计要求选择合适的滤波器设计方法,如窗函数法、最优化方法等;3.使用MATLAB软件进行滤波器设计,并绘制滤波器的频率响应曲线;4.将设计好的滤波器用于信号处理,观察滤波效果。
实验结果与分析:1.进行实验前,首先确定滤波器的类型和设计要求。
例如,我们选择低通滤波器,要求通带频率为1kHz,阻带频率为2kHz,通带最大衰减为1dB,阻带最小衰减为60dB。
2.在MATLAB软件中,我们选择窗函数法进行滤波器设计。
根据设计要求,选择合适的窗函数,如矩形窗、汉宁窗等。
根据设计要求和窗函数的特点,确定滤波器的长度N和窗函数的参数。
3. 使用MATLAB中的fir1函数进行滤波器设计,并绘制滤波器的频率响应曲线。
根据频率响应曲线,可以分析滤波器的性能是否符合设计要求。
4. 将设计好的滤波器用于信号处理,观察滤波效果。
在MATLAB中,可以使用filter函数对信号进行滤波处理,然后绘制原始信号和滤波后的信号的时域波形和频谱图进行对比分析。
实验结论:1.通过本次实验,我们学习了FIR数字滤波器的基本原理和设计方法;2.掌握了使用MATLAB软件进行FIR数字滤波器设计的方法;3.实验结果显示,设计的FIR数字滤波器可以满足设计要求,具有良好的滤波效果。
4.FIR数字滤波器在数字信号处理中具有广泛的应用前景,对于滤除噪声、改善信号质量等方面有重要意义。
数字信号处理实验报告-FIR滤波器的设计与实现

数字信号处理实验报告-FIR滤波器的设计与实现在数字信号处理中,滤波技术被广泛应用于时域处理和频率域处理中,其作用是将设计信号减弱或抑制被一些不需要的信号。
根据滤波器的非线性抑制特性,基于FIR(Finite Impulse Response)滤波器的优点是稳定,易设计,可以得到较强的抑制滤波效果。
本实验分别通过MATLAB编程设计、实现、仿真以及分析了一阶低通滤波器和平坦通带滤波器。
实验步骤:第一步:设计一阶低通滤波器,通过此滤波器对波型进行滤波处理,分析其对各种频率成分的抑制效果。
为此,采用零极点线性相关算法设计滤波器,根据低通滤波器的特性,设计的低通滤波器的阶次为n=10,截止频率为0.2π,可以使设计的滤波器被称为一阶低通滤波器。
第二步:设计平坦通带滤波器。
仿真证明,采用兩個FIR濾波器組合而成的阻礙-提升系統可以實現自定義的總三值響應的設計,得到了自定義的總三值響應函數。
实验结果:1、通过MATLAB编程,设计完成了一阶低通滤波器,并通过实验仿真得到了一阶低通滤波器的频率响应曲线,证明了设计的滤波器具有良好的低通性能,截止频率为0.2π。
在该频率以下,可以有效抑制波形上的噪声。
2、设计完成平坦通带滤波器,同样分析其频率响应曲线。
从实验结果可以看出,此滤波器在此频率段内的通带性能良好,通带范围内的信号透过滤波器后,损耗较小,滞后较小,可以满足各种实际要求。
结论:本实验经过实验操作,设计的一阶低通滤波器和平坦通带滤波器具有良好的滤波特性,均已达到预期的设计目标,证明了利用非线性抑制特性实现FIR滤波处理具有较强的抑制滤波效果。
本实验既有助于深入理解FIR滤波器的设计原理,也为其他应用系统的设计和开发提供了指导,进而提高信号的处理水平和质量。
fir数字滤波器设计与软件实现数字信号处理实验原理

fir数字滤波器设计与软件实现数字信号处理实验原理FIR数字滤波器设计的基本原理是从理想滤波器的频率响应出发,寻找一个系统函数,使其频率响应尽可能逼近滤波器要求的理想频率响应。
为了实现这一目标,通常会采用窗函数法进行设计。
这种方法的基本思想是,将理想滤波器的无限长单位脉冲响应截断为有限长因果序列,并用合适的窗函数进行加权,从而得到FIR滤波器的单位脉冲响应。
在选择窗函数时,需要考虑其频率响应和幅度响应。
常见的窗函数包括矩形窗、三角形窗、汉宁窗、汉明窗、布莱克曼窗和凯泽窗等。
每种窗函数都有其特定的特性,如主瓣宽度、旁瓣衰减等。
根据实际需求,可以选择合适的窗函数以优化滤波器的性能。
在软件实现上,可以使用各种编程语言和信号处理库进行FIR滤波器的设计和实现。
例如,在MATLAB中,可以使用内置的`fir1`函数来设计FIR滤波器。
该函数可以根据指定的滤波器长度N和采样频率Fs,自动选择合适的窗函数并计算滤波器的系数。
然后,可以使用快速卷积函数`fftfilt`对输入信号进行滤波处理。
此外,还可以使用等波纹最佳逼近法来设计FIR数字滤波器。
这种方法的目标是找到一个最接近理想滤波器频率响应的实数序列,使得在所有可能的实
数序列中,该序列的误差平方和最小。
通过优化算法,可以找到这个最优序列,从而得到性能更优的FIR滤波器。
总的来说,FIR数字滤波器设计与软件实现数字信号处理实验原理是基于对理想滤波器频率响应的逼近和优化,通过选择合适的窗函数和算法,实现信号的滤波处理。
FIR数字滤波器设计与软件实现

实验二J FIR 数字滤波器设计与软件实现 一、实验指导1.实验目的掌握用等波纹最佳逼近法设计FIR 数字滤波器的原理和方法。
掌握F1R 滤波器的快速卷积实现原理。
学会调用MATLAB 函数设计与实现FIR 滤波器。
2.实验内容及步骤(1) 认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR 数 字滤波器的原理;(2) 调用信号产生函数xtg 产生具有加性噪声的信号XI,并自动显 示xt 及其频谱,如图1所示;(3) 请设计低通滤波器,从髙频噪声中提取xt 中的单频调幅信号, 要求信号幅频失真小于,将噪声频谱衰减60dBo 先观察xt 的频谱, 确定滤波器指标参数。
(1) 掌握用窗函数法设计FIR 数字滤波器的原理和方法。
(町彳書号力口喋声漩形0 0.05 0.1 OJS 0.2 0.250.3 0.35 0 4 0,45 0.5t/3 图1具有加性噪声的信号x(t)及其频谱如图1O5务°•6(4)根据滤波器指标选择合适的窗函数.计算窗函数的长度N,调用MATLAB函数firl设计一个FIR低通滤波器。
并编写程序,调用MATLAB快速卷积函数fftmt实现对xt的滤波。
绘图显示滤波器的频响特性曲线.滤波器输出信号的幅频特性图和时域波形图。
(4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。
并比较两种设计方法设计的滤波器阶数。
提示:①MATLAB函数firl的功能及其调用格式请查阅教材;②采样频率Fs=iOOOHz,釆样周期T=l/Fs;◎根据图1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp二120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止频率iyp=2VpT = 0247r,通带最大衰为,阻带截至频率迅=2龙£丁 = 0・3兀,阻带最小衰为60dBo④实验程序框图如图2所示,供读者参考。
fir滤波器实验报告

fir滤波器实验报告fir滤波器实验报告引言:滤波器是信号处理中常用的工具,它可以对信号进行频率选择性处理。
在数字信号处理中,FIR(Finite Impulse Response)滤波器是一种常见的滤波器类型。
本实验旨在通过设计和实现FIR滤波器,探索其在信号处理中的应用。
一、实验目的本实验的主要目的有以下几点:1. 了解FIR滤波器的基本原理和特性;2. 掌握FIR滤波器的设计方法;3. 实现FIR滤波器并对信号进行处理,观察滤波效果。
二、实验原理1. FIR滤波器的原理FIR滤波器是一种非递归滤波器,其输出仅依赖于输入和滤波器的系数。
它的基本原理是将输入信号与滤波器的冲激响应进行卷积运算,得到输出信号。
FIR滤波器的冲激响应是有限长度的,因此称为有限脉冲响应滤波器。
2. FIR滤波器的设计方法FIR滤波器的设计方法有很多种,常用的包括窗函数法、频率采样法和最小二乘法。
在本实验中,我们将使用窗函数法进行FIR滤波器的设计。
具体步骤如下:(1)选择滤波器的阶数和截止频率;(2)选择适当的窗函数,如矩形窗、汉宁窗等;(3)根据选择的窗函数和截止频率,计算滤波器的系数;(4)利用计算得到的系数实现FIR滤波器。
三、实验步骤1. 确定滤波器的阶数和截止频率,以及采样频率;2. 选择合适的窗函数,并计算滤波器的系数;3. 利用计算得到的系数实现FIR滤波器;4. 准备待处理的信号,如音频信号或图像信号;5. 将待处理的信号输入FIR滤波器,观察滤波效果;6. 调整滤波器的参数,如阶数和截止频率,观察滤波效果的变化。
四、实验结果与分析在实验中,我们选择了一个音频信号作为待处理信号,设计了一个10阶的FIR滤波器,截止频率为1kHz,采样频率为8kHz,并使用汉宁窗进行滤波器系数的计算。
经过滤波处理后,观察到音频信号的高频部分被有效地滤除,保留了低频部分,使得音频信号听起来更加柔和。
通过调整滤波器的阶数和截止频率,我们可以进一步调节滤波效果,使得音频信号的音色发生变化。
实验四FIR数字滤波器设计与软件实现

实验四FIR数字滤波器设计与软件实现
实验目的:
掌握FIR数字滤波器的设计与软件实现方法,了解滤波器的概念与基
本原理。
实验原理:
FIR数字滤波器全称为有限脉冲响应数字滤波器,其特点是具有有限
长度的脉冲响应。
滤波器通过一系列加权系数乘以输入信号的延迟值,并
将这些值相加得到输出信号。
FIR滤波器的频率响应由滤波器系数所决定。
实验步骤:
1.确定所需的滤波器的设计规格,包括截止频率、通带波纹、阻带衰
减等。
2.选择适当的滤波器设计方法,如窗函数、最佳近似法、最小二乘法等。
3.根据所选方法,计算滤波器的系数。
4.在MATLAB环境下,使用滤波器的系数实现滤波器。
5.输入所需滤波的信号,经过滤波器进行滤波处理。
6.分析输出的滤波信号,观察滤波效果是否符合设计要求。
实验要求:
1.完成FIR数字滤波器的设计和软件实现。
2.对比不同设计方法得到的滤波器性能差异。
3.分析滤波结果,判断滤波器是否满足设计要求。
实验器材与软件:
1.个人电脑;
2.MATLAB软件。
实验结果:
根据滤波器设计规格和所选的设计方法,得到一组滤波器系数。
通过
将滤波器系数应用于输入信号,得到输出滤波信号。
根据输出信号的频率
响应、通带波纹、阻带衰减等指标,评估滤波器的性能。
实验注意事项:
1.在选择设计方法时,需要根据滤波器要求和实际情况进行合理选择。
2.在滤波器实现过程中,需要注意滤波器系数的计算和应用。
3.在实验过程中,注意信号的选择和滤波结果的评估方法。
FIR滤波器的MATLAB设计与实现

FIR滤波器的MATLAB设计与实现FIR滤波器(Finite Impulse Response Filter)是一种数字滤波器,其特点是其响应仅由有限长度的序列决定。
在MATLAB中,我们可以使用信号处理工具箱中的函数来设计和实现FIR滤波器。
首先,需要明确FIR滤波器的设计目标,包括滤波器类型(低通、高通、带通、带阻)、通带和阻带的频率范围、通带和阻带的增益等。
这些目标将决定滤波器的系数及其顺序。
在MATLAB中,我们可以使用`fir1`函数来设计FIR滤波器。
该函数的使用方式如下:```matlabh = fir1(N, Wn, type);```其中,`N`是滤波器长度,`Wn`是通带边缘频率(0到0.5之间),`type`是滤波器的类型('low'低通、'high'高通、'bandpass'带通、'stop'带阻)。
该函数会返回一个长度为`N+1`的滤波器系数向量`h`。
例如,如果要设计一个采样频率为10kHz的低通滤波器,通带截止频率为2kHz,阻带频率为3kHz,可以使用以下代码:```matlabfc = 2000; % 通带截止频率h = fir1(50, fc/(fs/2), 'low');```上述代码中,`50`表示滤波器的长度。
注意,滤波器的长度越大,滤波器的频率响应越陡峭,但计算成本也更高。
在设计完成后,可以使用`freqz`函数来分析滤波器的频率响应。
例如,可以绘制滤波器的幅度响应和相位响应曲线:```matlabfreqz(h);```除了使用`fir1`函数外,MATLAB还提供了其他函数来设计FIR滤波器,如`fir2`、`firpm`、`firls`等,具体使用方式可以参考MATLAB的文档。
在实际应用中,我们可以将FIR滤波器应用于音频处理、图像处理、信号降噪等方面。
例如,可以使用FIR滤波器对音频信号进行去噪处理,或者对图像进行锐化处理等。
实验四FIR数字滤波器的设计

实验四FIR数字滤波器的设计
FIR数字滤波器也称作有限脉冲响应数字滤波器,是一种常见的数字滤波器设计方法。
在设计FIR数字滤波器时,需要确定滤波器的阶数、滤波器的类型(低通、高通、带通、带阻)以及滤波器的参数(截止频率、通带波纹、阻带衰减、过渡带宽等)。
下面是FIR数字滤波器的设计步骤:
1.确定滤波器的阶数。
阶数决定了滤波器的复杂度,一般情况下,阶数越高,滤波器的性能越好,但计算量也越大。
阶数的选择需要根据实际应用来进行权衡。
2.确定滤波器的类型。
根据实际需求,选择低通、高通、带通或带阻滤波器。
低通滤波器用于去除高频噪声,高通滤波器用于去除低频噪声,带通滤波器用于保留一定范围内的频率信号,带阻滤波器用于去除一定范围内的频率信号。
3.确定滤波器的参数。
根据实际需求,确定滤波器的截止频率、通带波纹、阻带衰减和过渡带宽等参数。
这些参数决定了滤波器的性能。
4.设计滤波器的频率响应。
使用窗函数、最小二乘法等方法,根据滤波器的参数来设计滤波器的频率响应。
5.将频率响应转换为滤波器的系数。
根据设计的频率响应,使用逆快速傅里叶变换(IFFT)等方法将频率响应转换为滤波器的系数。
6.实现滤波器。
将滤波器的系数应用到数字信号中,实现滤波操作。
7.优化滤波器性能。
根据需要,可以对滤波器进行进一步优化,如调整滤波器的阶数、参数等,以达到较好的滤波效果。
以上是FIR数字滤波器的设计步骤,根据实际需求进行相应的调整,可以得到理想的滤波器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FIR 数字滤波器设计与实现一.摘要:数字滤波器是一种具有频率选择性的离散线性系统,在信号数字处理中有着广泛的应用。
其中FIR 滤波器是一种常用的滤波器,它在保证幅度特性满足技术要求的同时,很容易做到严格的线性相位特性,在语音分析、图像处理、雷达监测等对信号相位要求高的领域有着广泛的应用,能实现IIR 滤波器不能实现的许多功能。
二.关键词:FIR 窗函数系统函数MATLAB 三.内容提要:数字滤波器的功能就是把输入序列通过一定的运算变换成输出序列,因此数字滤波器的结构系统中就必须包括一定数量和性能的运算器件和运算单元,而运算器件和运算单元的配置必须由数字滤波器的结构特点和性能特点来决定,因此在进行FIR 数字滤波器的设计之前,有必要介绍和总结FIR 数字滤波器的基本结构和相关特性(包括频响曲线(幅度和相位),单位冲激响应等),在介绍完其基本结构和相关特性后,就进行FIR 数字滤波器的设计和实现。
(一)FIR 滤波器的基本结构在讨论任何一种滤波器时,都要着重分析其系统函数,FIR 滤波器的系统函数为:n N n z n h z H ∑-==10)()(。
从该系统函数可看出,FIR 滤波器有以下特点:1)系统的单位冲激响应h(n)在有限个n 值处不为零;2)系统函数H(z)在|z|>0处收敛,极点全部在z=0处(稳定系统);3)结构上主要是非递归结构,没有输出到输入的反馈,但有些结构中(例如频率抽样结构)也包含有反馈的递归部分。
1.FIR 滤波器实现的基本结构有:1) 横截型(卷积型、直接型)a.一般FIR 滤波器的横截型(直接型、卷积型)结构: 若给定差分方程为:。
则可以直接由差分方程得出FIR 滤波器结构如下图所示:这就是FIR 滤波器的横截型结构,又称直接型或卷积型结构。
b .线性相位FIR 滤波器的横截型结构若h(n)呈现对称特性,即此FIR 滤波器具有线性相位,则可以简化成横截型结构,下面分情况讨论:①N 为奇数时线性相位FIR 滤波器实现结构如图所示: ②N 为偶数时线性相位FIR 滤波器实现结构如图所示我们知道IIR 滤波器的优点是可利用模拟滤波器设计的结果,缺点是相位是非线性的,若需要线性相位,则要用全通网络进行校正,比较麻烦,而FIR 滤波器的优点是可以方便地实现线性相位。
2)、级联型将H (z )分解为若干个实系数一阶或二阶因子相乘: 实现结构如下图所示:该结构图中有2L =M 个延迟器,2L +1=M +1个乘法器,2L =M 个加法器。
分析H (z )及结构图可以得出级联型的特点:①每个基本节控制一对零点,便于控制滤波器的传输零点。
②系数比直接型多,所需的乘法运算多。
3)频率取样型若FIR 滤波器的冲激响应为有限长(N 点)序列h(n),则有如图所示的关系: 因此,对h(n)可以利用DFT 得到H(k),然后利用内插公式: 来表示系统函数,这就为FIR 滤波器提供了另外一种结构:频率抽样结构,这种结构由两部分级联而成:分析系统函数其中级联的第一部分为:这是一个梳状滤波器,它滤掉了频率及其各次谐波。
级联的第二部分为N 个一阶网络并联而成,第k 个一阶网络为:它在单位圆上有一个极点:2L =M 个延迟器,2L +1=M +1个乘法器,2L =M 个加法器11β21βL1βL 2β12β22βx [k ]y [k ]1-z 1-z h [0]1-z 1-z 1-z 1-z这是一个谐振频率的无损耗谐振器。
这个谐振器的极点正好与梳状滤波器的一个零点(i=k)相抵消,从而使这个频率上的频率响应等于H(k)。
这样,N个谐振器的N个极点就和梳状滤波器的N个零点相抵消,从而在N个频率抽样点上的频率响应就分别等于N个H(k)值。
有上叙的理论分析基础可以得到FIR滤波器的频率抽样结构。
FIR滤波器的频率抽样结构如图所示:频率抽样结构的特点是它的系数H(k)就是滤波器在处的响应,因此控制滤波器的频率响应很方便。
频率抽样结构存在问题的问题是:在有限长情况下,系数量化后极点不能和零点抵消,使FIR 系统不稳定。
解决方法:在r圆上进行(r<1但近似等于1)取样,即用r1-z代替1-z,使极点和相应的零点移到单位圆内。
(a)当N为偶数时的频率取样型结构如图所示。
(b)当N为奇数时频率抽样型结构如图所示。
4)快速卷积结构若FIR滤波器的单位冲激响应h(n)是一个N1点有限长序列,输入x(n)是一个N2点有限长序列,那么输出y(n)是x(n)与h(n)的线性卷积,它是一个L=N1+N2-1点的有限长序列。
我们知道,将x(n)补上L-N2个零值点,将h(n)补上L-N1个零值点,然后进行L点圆周卷积,就可以代替原x(n)与h(n)的线性卷积。
而圆周卷积可以用DFT和IDFT的方法来计算,这样我们得到FIR滤波器的快速卷积结构:这里DFT和IDFT都将采用快速傅里叶变换算法,当N1和N2足够长时,比直接计算线性卷积要快得多。
2.线性相位FIR滤波器的特点从以上的讨论中可以看出,我们最感兴趣的是具有线性特性的FIR滤波器,因此在设计FIR滤波器时,需要着重研究线性相位FIR滤波器的特点和性质,在上述已经介绍了线性相位FIR滤波器的横截型结构,现在介绍它的频响特性。
FIR滤波器的单位冲激响应h(n)是有限长的(0≤n≤N-1),其Z变换为:其傅立叶变换为:其中H(ω)是幅度函数,是一个纯实数,可正可负,θ(ω)是相位函数。
可以证明,线性相位FIR 滤波器的冲激响应满足对称条件:h(n)=±h(N-1-n) 和)()(1)1(---±=z H z z H N(1)、线性相位FIR 滤波器的幅度函数和相位函数:(a )当h(n)是偶对称时,其幅度函数和相位函数分别为:特点:幅度函数H(ω)包括正负值,相位函数是严格线性相位,滤波器有(N-1)/2个抽样周期的延时,它等于单位抽样响应h(n)长度N 的一半。
(b )当h(n)是奇对称时,其幅度函数和相位函数分别为: 特点:相位函数是严格线性相位,但在零频率(ω=0)处有π/2的相移。
仍有(N-1)个抽样周期的延时。
因此当h(n)为奇对称时,FIR 滤波器将是一个具有准确相位的正交变换网络。
(2)、FIR 滤波器的线性相位特性FIR 滤波器的线性相位特性如图所示。
(3)、任何一种线性相位FIR 滤波器的群延时都为: (4)FIR 滤波器幅度函数的特点分四种情况分别讨论H (ω)的特点: (a )当h(n)偶对称,N 为奇数时: 幅度函数的特点:H (ω)对ω=0,,呈偶对称。
(b )当h(n)偶对称,N 为偶数 时 :幅度函数的特点: 当时,,在z =-1处有一个零点,对是奇对称;如果滤波器在处幅度不为零(如高通滤波器),则不能用这种滤波器。
(c )当h(n)奇对称,N 为奇数时幅度函数的特点:H (ω)在ω=0,,处都为零,也就是H(z)在处为零;H (ω)对ω=0,,都成奇对称。
(d )当h(n)奇对称,N 为偶数时:幅度函数的特点:H (ω)在ω=0,处为零,即H(z)在z=1处为零点; H (ω)对ω=0,呈奇对称,对ω=呈偶对称。
(5)、零点位置:线性相位FIR 滤波器的系统函数有以下关系:可见,若i z z =是H(z)的零点,则i z z /1=也一定是H(z)的零点。
又由于当h(n)是实数时,H(z)的零点必成共轭对出现,所以i z z =及i z z /1=也一定是H(z)的零点。
因而线性相位FIR 滤波器的零点必是互为倒数的共轭对。
其有四种可能性:(1)既不在实轴上,也不在单位园上,则是互为倒数的两组共轭对。
(2)不在实轴上,但是在单位园上,则共轭对的倒数是它们本身,故只有一组共轭对。
(3)在实轴上而不在单位园上,只有倒数部分,无复共轭部分。
(4)既在实轴上又在单位园上,有两种可能,z =1或z =-1。
(二)FIR 数字滤波器的设计在介绍和总结完FIR 数字滤波器的基本结构和相关特性(包括频响曲线(幅度和相位),单位冲激响应等)后,就是FIR 数字滤波器的设计和实现,FIR 数字滤波器的设计步骤有: 1.技术要求(预期性能指标)技术要求是由实际用途决定的,它可由理想滤波器的系统函数Hd(z)、脉冲响应h(n)和差分方程描述。
2.逼近(近似)在数字滤波器性能分析的基础上,利用已经学过的概念和数学知识提供数字滤波器的表述,它是理想滤波器的一种近似。
3.实现上面一步的结果是一个滤波器的表述,它既可能是一个系统函数、也可能为差分方程,或者是单位脉冲响应h(n),依据这个结果进行数字滤波器结构的实际和软硬件的实现。
下面重点介绍目前最主要的三种FIR数字滤波器的设计方法:(1).窗函数设计法(时间窗口法)这种方法也称为傅立叶级数法。
其设计是在时域进行的,先用傅氏反变换求出理想数字滤波器的单位抽样响应h d(n),然后时域移位并加时间窗w(n)对其截断,从而求得FIR滤波器的单位抽样响应h(n);在设计过程中,将无限长序列变为有限长是通过时域加矩形窗乘积实现数据的截断的。
时域乘积对应了频域卷积,从而对频响特征发生的改变。
常见的窗函数有:矩形窗、三角形(Bartlertt)窗、汉宁(Hanning)窗。
海明(Hamming)窗、布拉克曼(Blackman)窗、凯泽(kaiser)窗等,下面介绍几种常用的窗函数:矩形窗例:用矩形窗设计低通数字滤波器程序及运行结果如下:omegac=0.37;N=81;m=(N-1)/2;n=0:2*m+10;h=omegac/pi*sinc(omegac*(n-m)/pi);w=[ones(1,N)zeros(1,length(n)-N)];hd=h.*w;omega=-pi:2*pi/300:pi;Hd=freqz(hd,1,omega);plot(omega,abs(Hd));汉宁窗(升余弦窗)=0.5利用傅氏变换的移位特性,汉宁窗频谱的幅度函数W(ω)可用矩形窗的幅度函数表示为:三部分矩形窗频谱相加,使旁瓣互相抵消,能量集中在主瓣,旁瓣大大减小,主瓣宽度增加1倍。
汉明窗(改进的升余弦窗)对汉宁窗的改进,在主瓣宽度(对应第一零点的宽度)相同的情况下,旁瓣进一步减小,可使99.96%的能量集中在主瓣内。
布莱克曼窗(三阶升余弦窗)增加一二次谐波余弦分量,可进一步降低旁瓣,但主瓣宽度进一步增加,增加N可减少过渡带。
频谱的幅度函数为:凯塞窗以上四种窗函数,都是以增加主瓣宽度为代价来降低旁瓣。
凯塞窗则可自由选择主瓣宽度和旁瓣衰减。
I(x)是零阶贝塞尔函数,参数β可自由选择,决定主瓣宽度与旁瓣衰减。
β越大,w(n)窗越窄,0其频谱的主瓣变宽,旁瓣变小。