2 三视图及展开图
小学六年级立体图形三视图及展开图

立体图形三视图及展开图一、知识点(一)三视图在观察物体的时候,我们往往可以从不同的角度进行观察,角度不同,看到的风景就会不同。
比如:我们可以从正面看、上面看、左面看,看到的图形分别称为正视图、俯视图和左视图,并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是相同的。
对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积(二)正方体的展开图展开后由上、下、左、右、前、后六个正方形面组成,这六个正方形面的面积都相等,我们采用不同的剪开方法,共可以得到下面(三)长方体的展开图:观察上图可以发现,长方体的展开图由6个长方形组成,相对面的面积相等,即S上=S下=长×宽,S左=S右=宽×高,S前=S后=长×高。
(四)判断图形折叠后能否围成长方体或正方体的方法判断一个图形折叠后能否围成正方体或长方体,首先,要依据它们各自展开图的特点判断;其次,可以运用空间想象或实际操作进一步判断。
二、题型(一)展开图与对立面【例1.1】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如下图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。
则“祝”、“你”、“前”分别表示正方体的________________________。
【答案】后面、上面、左面【解析】易知“你”、“程”相对,“前”、“锦”相对,“祝”、“似”相对,因此“祝”、“你”、“前”分别表示正方体的后面、上面、左面。
【例1.2】一个数学玩具的包装盒是正方体,其表面展开图如下。
现在每方格内都填上相应的数字。
已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是___________。
【答案】3、1、2【解析】面上的数是“0”,与“B”相对的面上的数是“2”,与“C"相对的面上的数是“1”。
几何图形的三视图展开图点线面体

三视图展开图需要绘制在坐标系上,因此需要确定好坐标系的方向和比例关系。
绘图工具
绘制三视图展开图需要用到相关的绘图工具,如CAD,因此需要掌握相关的软件技能。
三视图展开图的未来趋势
1 自动化
随着技术的不断进步,三视图展开图的绘制将越来越自动化,可以更快速地得到准确的 结果。
2 增强现实
未来,我们可以通过增强现实技术来更直观地理解物体的形状和尺寸,而不用局限于平 面的三视图展开图。
2
建筑设计
在建筑设计中,三视图展开图可以帮助我们更好地理解建筑物的空间布局和形状, 从而制定更好的设计方案。
3
ቤተ መጻሕፍቲ ባይዱ
制造业
在制造业中,三视图展开图可以帮助我们更好地制造出符合设计的产品,从而提 高产品质量和生产效率。
三视图展开图的注意事项
几何精度
绘制三视图展开图需要非常精确的几何信息,因此需要特别注意几何精度。
三视图展开图的解读
1 阅读方法
如何阅读三视图展开图?需要了解正视图、俯视图和侧视图,以及如何将它们展开到平 面上。
2 信息提取
从三视图展开图中如何提取信息?可以通过几何尺寸、形状等方面来读取相关信息。
三视图展开图的应用实例
1
工程设计
在工程设计中,三视图展开图可以帮助我们更好地理解物体的几何形状和尺寸, 以便我们在制造过程中更加准确地制造出产品。
几何图形的三视图展开图 点线面体
三视图展开图是表现几何图形的一种方式。它可以帮助我们更好地理解物体 的形状和尺寸,并在工程设计、建筑等领域中应用广泛。
三视图展开图定义
概念
什么是三视图展开图?三视图展开图是一个表现几何图形三个视图的二维投影。
优势
三视图和展开图

三视图和展开图
汇报人:XXX
目录
CONTENTS
01 三视图 02 展开图
三视图
正视图
正视图是三视 图中的一种, 表示物体正面
看到的形状
正视图通常用 于表示物体的
高度和宽度
正视图可以帮 助我们理解物 体的整体形状
和结构
正视图在工程 制图中广泛应 用,如建筑、 机械、电子等
领域
侧视图
俯视图可以反映物 体的高度和宽度, 但不能反映物体的 深度
俯视图通常用于表 示物体的顶部和底 部结构
俯视图在工程制图 中常用于表示物体 的平面布局和结构 设计
三视图之间的关系
主视图:表示物体的正面形状
俯视图:表示物体的顶部形状
左视图:表示物体的侧面形状
三视图之间的关系:主视图、俯视图和左视图共同构成了物体的三维空间形状,可以相互补充和 验证。
侧视图是三视图 中的一种,表示 物体的侧面形状
侧视图通常与主 视图和俯视图一 起Байду номын сангаас用,以全面 展示物体的形状
侧视图可以帮助 我们理解物体的 高度和宽度,以 及物体的侧面轮 廓
侧视图的绘制需 要遵循一定的规 则和技巧,如使 用平行投影、选 择合适的比例等。
俯视图
俯视图是三视图中 的一种,表示物体 从上向下看的视图
三视图和展开图都可以用于设计和制造过程,但展开图更适用于复杂结构的设计和制造
感谢您的耐心观看
汇报人:XXX
展开图
展开图的定义
展开图是一种 将三维物体投 影到二维平面
上的图形
展开图可以帮 助我们更好地 理解物体的结 构、形状和尺
寸
展开图可以分 为平面展开图 和曲面展开图
正方体展开图和三视图的初步认识

正方体展开图和三视图的初步认识1.认识立体图形和平面图形我们常见的立体图形有长方体、正方体、球、圆柱、圆锥,此外,棱柱,棱锥也是常见的几何体。
我们常见的平面图形有正方形、长方形、三角形、圆2. 立体图形和平面图形关系立体图形问题常常转化为平面图形来研究,常常会采用下面的作法(1)画出立体图形的三视图立体图形的的三视图是指正视图(从正面看)、左视图(从左面看)、俯视图(从上面看)得到的三个平面图形。
(2)立体图形的平面展开图常见立体图形的平面展开图圆柱、圆锥、三棱柱、三棱锥、正方体(共十一种)知识梳理知识梳理1 正方体的侧面展开图(共十一种)分类记忆:第一类,中间四连方,两侧各一个,共六种。
第二类,中间三连方,两侧各有一、二个,共三种。
第三类,中间二连方,两侧各有二个,只有一种。
第四类,两排各三个,只有一种。
知识梳理2 常见立体图形的平面展开图1. 棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。
两个侧面的公共边叫做棱柱的侧棱。
侧面与底的公共顶点叫做棱柱的顶点,不在同一个面上的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高。
棱柱的底面可以是三角形,四边形,五边形……我们把这样的棱柱叫分别叫做三棱柱、四棱柱、五棱柱……棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面)2. 棱锥:一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
棱锥中的多边形叫做棱锥的底面。
棱锥中除底面以外的各个面都叫做棱锥的侧面。
相邻侧面的公共边叫做棱锥的侧棱。
棱锥中各个侧面的公共顶点叫做棱锥的顶点。
棱锥的顶点到底面的距离叫做棱锥的高。
棱锥中过不相邻的两条侧棱的截面叫做对角面。
棱锥的底面可以是三角形、四边形、五边形……我们把这样的棱锥分别叫做三棱锥、四棱锥、五棱锥……棱锥的展开图是由一个多边形(作底)和几个三角形(作侧面)组成的。
三视图和展开图的认识

三视图和展开图的认识1.定义:三视图是指一个物体在三个不同方向上的投影,包括正视图、俯视图和侧视图。
2.作用:通过三视图可以全面了解物体的形状和结构,是工程制图和建筑设计中必不可少的一部分。
3.绘制方法:(1)正视图:物体正面朝向观察者,投影在水平面上。
(2)俯视图:物体上方朝向观察者,投影在垂直于水平面的竖直面上。
(3)侧视图:物体左侧或右侧朝向观察者,投影在垂直于水平面和俯视图所在平面的斜面上。
4.定义:展开图是将一个立体图形展开成平面图形,以便于观察和计算。
(1)矩形展开图:最常见的展开图类型,适用于各种矩形容器、包装盒等。
(2)圆形展开图:适用于圆形或近似圆形的物体,如圆筒、圆盘等。
(3)三角形展开图:适用于三角形的物体,如三角尺、三角形的包装盒等。
(4)其他多边形展开图:适用于各种多边形的物体,如六边形、八边形等。
5.绘制方法:(1)矩形展开图:将立体图形的侧面沿着高展开,得到一个长方形或正方形。
(2)圆形展开图:将立体图形的侧面沿着直径展开,得到一个扇形。
(3)三角形展开图:将立体图形的侧面沿着高展开,得到一个三角形。
(4)其他多边形展开图:根据立体图形的形状和结构,选择合适的方法将其展开。
三、三视图与展开图的相互关系1.展开图可以转化为三视图:通过观察展开图,可以确定物体的正视图、俯视图和侧视图。
2.三视图可以转化为展开图:根据三视图,可以绘制出物体的展开图。
3.展开图中的信息可用于三视图的绘制:展开图中的边长、角度等信息可以用于确定三视图中的尺寸和形状。
四、实际应用1.工程制图:在建筑设计、机械设计等领域,三视图和展开图是表达物体形状和结构的重要手段。
2.制造业:在制造过程中,通过三视图和展开图可以方便地切割、加工和组装物体。
3.教育:在三视图和展开图的教学中,有助于培养学生的空间想象能力和逻辑思维能力。
4.日常生活中:展开图在包装、折叠等方面有广泛应用,如纸箱、衣物等。
五、注意事项1.准确绘制:在绘制三视图和展开图时,要注意尺寸、形状和位置的准确性。
4.1.2三视图&展开图导学案

班级:姓名:化工中学七年级导学案(2012~2013学年度第一学期)学科:数学编号:编制日期:
二、立体图形的展开图:
1、立体图形是由平面图形围成的.观察你身边的长方体形状的包装盒,看一看它有几个
面,每个面分别是怎样的平面图形?并给每个面作上记号(如前、后等)
、用剪刀把手中的正方体纸盒按任意方式沿棱展开,你能得到多少种不同的展开图?
5、下面图形是正方体平面展开图的是
A B C D
5、若右图是某几何体的三种不同方向的图,则这个几何体是
E F G H
6题图
、如图,为一个多面体的表面展开图,每个面内都标注了数字.若数字为所标注的数字为()
5 B.4 C.3 D.
4、分别从正面、左面、上面观察这个图形,画出得到的平面图形
5、下面哪个图形经过折叠可以围成一个棱柱(8、如图,下面三个正方体的六个面按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么涂黄色、白色、红色的对面分别是()
9、有一个正方体,在它的各个面上分别涂了白、红、黄、兰、绿、黑六种颜色。
甲、乙、丙三位同学从三个不同的角度去观察此正方体,结果如下图,问这个正方体各个面的对面的颜色是什么?黄对;绿对
甲乙丙
10、下边的4个图形中,哪一个是由左边的盒子展开而成的。
几何图形的三视图展开图点线面体

目 录
• 几何图形的三视图 • 展开图 • 点线面体 • 三视图与点线面体的关系 • 实例分析
01
几何图形的三视图
主视图
01
02
03
定义
从物体的正前方观察,所 得到的视图称为主视图。
特点
主要反映物体的长度和高 度的尺寸。
注意事项
在绘制主视图时,应注意 物体的轮廓线和结构线的 表示,以便清晰地表达物 体的形状。
在三视图展开图中,线表示物体的轮 廓和交线。
线可以分为直线、曲线和折线等类型。
线在平面几何中可以用来表示长度、 角度和形状,在立体几何中可以用来 表示空间长度、角度和形状。
面
面是由无数条线按照一定方式 排列而成的,有长度、宽度和
高度。
面可以分为平面、曲面和平行 面等类型。
在三视图展开图中,面表示物 体的表面和截面。
05
实例分析
实例一:立方体的三视图与展开图
正视图
显示立方体的正面,为矩形。
侧视图
显示立方体的侧面,也为矩形。
俯视图
显示立方体的顶部,为矩形。
展开图
立方体的展开图是将立方体展开成平面图形,通常为六个矩形。
实例二:圆柱体的三视图与展开图
正视图
显示圆柱体的正面,为矩形。
侧视图
显示圆柱体的侧面,为圆形。
03
点线面体
点
01
02
03
04
点是几何图形中最基本的元素 ,没有大小和形状,只有位置
。
点可以用来表示物体的位置和 方向,也可以用来构成线和面
。
在三视图展开图中,点表示物 体的顶点和交点。
点在平面几何中可以用来确定 位置和方向,在立体几何中可 以用来确定空间位置和方向。
4.1.1(2)三视图与展开图(教案)

3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三视图与展开图的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些视图的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.创新与实践:在展开图的制作过程中,鼓励学生创新思考,将理论知识与实践操作相结合,提高动手能力和创新设计能力,激发学生主动探索的学习兴趣。
4.团队协作与表达交流:通过小组合作完成三视图与展开图的绘制任务,加强学生之间的沟通与协作,提升表达和交流能力,培养合作精神和社会责任感。
三、教学难点与重点
1.教学重点
-难点举例:确定展开图中各面的相对位置和连接方式,确保展开图能够准确还原立体图形。
-创新与实践的结合:学生在实际操作中可能难以将理论知识应用到创新设计中。
-难点举例:如何引导学生在制作展开图时进行创新设计,而不是简单模仿或复制。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“4.1.1(2)三视图与展开图”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要从不同角度观察物体的情况?”例如,当我们看到一个复杂的立体积木时,如何仅凭眼睛观察就能知道它的内部结构?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三视图与展开图的奥秘。
-展开图的制作方法:指导学生理解展开图的概念,并掌握将立体图形展开为平面图形的技巧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
猜一猜
把下列立体图形展开后,猜猜 看它的平面展开图是什么。
圆柱
长方体
五棱柱
圆锥
圆 柱
展开
长方体
展开
棱柱
展开
圆锥
展开
做一做 想一想 用剪刀把正方体纸盒按任意方式沿棱展开, 你能得到哪些不同的展开图?比比哪一小 组的展开图更与众不同。
正方体的展开图有11种基本情况:
一四一型
二三一型
二二二型
下面的图形中,是三棱柱的展开图的为 ( )
有一个正方体,在它的各个面上分别涂了 白、红、黄、兰、绿、黑六种颜色。甲、乙、 丙三位同学从三个不同的角度去观察此正方体, 结果如下图,问这个正方体各个面的对面的颜 色是什么?
黑 红
白
兰
绿
红
黄
兰
黄
甲
乙
丙
从正面看
从左面看
从上面看
1、小明从左面观察下图所示的两个物体, 看到的是( D )
2.如图是几个相同的立方体组成的 几何图形,这个几何图形从上面 看是( D )
A、
B、
C、
D、
课本第117页探究 请画出其三视图
下面各立体图形的表面中包含哪些平面图形?试指 出这些平面图形在立体图形中的位置。
比一比
坚
持
就
胜 利
是
下图是一个正方体的展开图,标注了字母 A的面是正方体的正面,如果正方体的左面与 右面所标注代数式的值相等,求 x 的值.
-2
3
-4
1
A 3 x-2
1、学会了从不同方向观察立体图形。 2、 学会了简单几何体(如棱柱,正方体 等)的平面展开图,知道按不同的方式展 开会得到不同的展开图。 3、学会了动手实践,与同学合作。 4、友情提醒:不是所有立体图形都有平面展 开图,比如球体。
三三型
试一试
下面六个正方形连在一起的图形,经折 叠后能围成正方体的图形有哪几个?(动手试 试)
A
B
C
D
E
F
G
比比你的想象力
下列图形能折叠成什么立体图形?
圆 柱
棱 柱
圆 锥
棱 柱
找朋友
考考你
1、如果“你”在前面,那么谁在后面? 了 太 你 们 棒 !
棒
2、“坚持就是胜利”中,如果“坚”在下, “就”在后,胜利在哪里?