高中数学第二章平面向量22平面向量的线性运算221向量加法运算及其几何意义课后集训.doc

合集下载

高中数学第2章平面向量2.2.1向量加法运算及其几何意义aa高一数学

高中数学第2章平面向量2.2.1向量加法运算及其几何意义aa高一数学

层 作







12/11/2021
第十二页,共五十二页。










新 知
合作
探究
释疑

素 养
















12/11/2021
第十三页,共五十二页。
向量加法(jiāfǎ)的三角形法则和平行四边形法则



主 预
[探究问题]
小 结


探 新
1.求作两个向量和的法则有哪些?这些法则的物理模型是什 素


么?

合 作
提示:(1)平行四边形法则,对应的物理模型是力的合成等.
时 分


究 释
(2)三角形法则,对应的物理模型是位移的合成等.
作 业





12/11/2021
第十四页,共五十二页。

自 主
2.设 A1,A2,A3,…,An(n∈N,且 n≥3)是平面内的点,则一
堂 小


习 探 新
般情况下,A→1A2+A→2A3+A→3A4+…+An→-1An的运算结果是什么?
第二十八页,共五十二页。



主 预 习
(2)①D→G+E→A+C→B=G→C+B→E+C→B=G→C+C→B+B→E=G→B+B→E=
小 结

高中数学第二章平面向量22平面向量的线性运算221向量加法运算及其几何意义同步优化.doc

高中数学第二章平面向量22平面向量的线性运算221向量加法运算及其几何意义同步优化.doc

2. 2. 1向量加法运算及其几何意义5分钟训练(预习类训练,可用于课前)1.如图2-2-1所示,在圆0中,)图2-2-1A.有相同起点的向量B.单位向量C.模相等的向量D.相等的向量解析:指定大小和方向后就可以确定一个向量,不能说某些向量是有相同起点的,A错;本题中没有给定向量的长度是1,所以不能说它们是单位向量,B错;这三个向量的方向是不同的,所以不是相等的向量,D错;这三个向量的模都是圆的半径,所以它们的模相等.答案:C2.(1)把平面上所有单位向量的起点平行移动到同一点P,则这些向量的终点构成的几何图形为 ___________________ .(2)把平行于直线1的所有单位向量的起点平行移动到直线1上的点P,这些向量的终点构成的儿何图形为 _________________ .(3)把平行于直线1的所有向量的起点平行移动到直线1上的点P,这些向量的终点构成的儿何图形为 _________________ •解析:向量是自由向量,根据向量相等,可以把向量的起点平移到同一点.(1)因为单位向量的模都是单位长度,所以同起点时,终点构成单位圆.应填:一个圆.(2)因为平行于直线1的所有单位向量只有两个方向,故这样的单位向量只有两个,起点为P, 则终点应为:直线1上与P的距离相等的两个点.(3)因为平行于直线1的向量只有两个方向,但长度不同,任何长度都有,所以终点应为:直线1上的任意一点.答案:(1)一个圆.⑵直线1上与点P的距离相等的两个点.⑶直线1上的任意一点.3.如图2-2-2,试作出向量a与b的和a+b・(1)⑵⑶图2-2-2解析:如图,首先作04 =a,再作AB=b,则OB =a+b.0 ABO BA(1) ⑵4•若a二“向北走8 km", b=“向东走8 km",贝!j|a+b|= 解析:如图所示.答案:8V2 东北方向10分钟训练(强化类训练,可用于课中)1 •如图2-2-3,正方形ABCD的边长为1,贝】JMB+BC+DC + AD|等于()解析:| AB + BC + DC + AD |=| 2AC |=2| AC |= 2^/2 .答案:D2•如图224,四边形ABCD为菱形,则下列等式中成立的是(C.AC^BA = ADD. AC + AD = DC解析:由三角形法则和平行四边形法,可知AB+BC = AC,A错;BA^AC = BC, B错;CA + AD = DC, D错•只有C是正确的.答案:c3.已知向Sa/7b,且|a|>|b|>0,则向量a+b的方向().A.与向量a方向相同B.与向量a方向相反C.与向量b方向相同D.与向量b方向相反解析:己知a平行于b,如果a和b方向相同,则它们的和的方向应该与a的方向相同;如果它们的方向相反,因为a的模大于b的模,所以它们的和仍然与a的方向相同.A. AB + BC = CA;a+b的方向是AJ B.V2 C.3 D. 2>/2图2-2-3答案:A4•如图225所示,已知向量a, b, c, d,求向量a+b+c+d.图 2-2-5解:在空间中任取一点 0,作 0A 二a, AB =b» BC =c, C£)=d* 则 0D =a+b+c+d.5.如图2-2-6所示,已知向量a 、b 、c,求作向量a+b+c.解:如图,首先作0A=b,再作AB =a, BC =c 则0C 二a+b+c.30分钟训练(巩固类训练,可用于课后)1.已知平行四边形ABCD, S (AB + CD )+( BC4-5A )=a,而b 是一非零向量,则下列结论 正确的有()① a 〃b ② a+b 二 a ③ a+b 二 b ④ |a+b|<|a|+|b|A.①③B.②③C.②④ 解析:在平行四边形ABCD 中,AB + CD=O, BC + DAM ),所以a 为零向量,零向量和 任何向量都平行,零向量和任意向量的和等于这个向量本身,所以①③正确. 答案:A 2.向量a 、b 都是非零向量,下列说法不正确的是()A.向量a 与b 同向, B. 向量a 与b 同向, C. 向量a 与b 反向, D. 向量a 与b 反向,贝1」向量a+b 与a 的方向相同则向量a+b 与b 的方向相同且|a|<|b|,则向量a+b 与a 的方向相同 且|a|>|b|,则向量a+b 与a 的方向相同解析:向量a 与b 反向,且|a|<|b|,则向量a+b 的方向应该和模较大的向量相同,即和b 的方向相同,所以C 错.答案:C3.a 、b 为非零向量,且|a+b|=|a|+|b|,则下列说法正确的是()A.a 〃b ,且a 与b 方向相同B.a 、b 是共线向量D.①②图 2-2-6C.a=-bD.a^ b无论什么关系均可解析:当两个非零向量a与b不共线时,a+b的方向与a>b的方向都不相同,且|a+b|<|a|+|b|;向量a与b同向时,a+b的方向与a、b的方向都相同,且|a+b|=|a|+|b|;向量a与b反向且|a|<|b|时,a+b的方向与b的方向相同(与a方向相反),且|a+b|=|b|-|a|.答案:A4.在平行四边形ABCD中,下列式子:®AD=J B +~BD;@J D =AC+CD; @ + = ;®~AB + ~BC = ~AC;⑤ AD = AB+BC + CD; ®AD=DC + CA.其屮不正确的个数是()A」 B.2 C.4 D.6解析:DC + CA = DA,所以⑥错,其他各项都是正确的.答案:A5.下列命题①如果非零向量a与b的方向相同或相反,那么a+b的方向必与a、b之一的方向相同;②Z\ABC 中,必有AB + BC + G4=0;③若4B + BC + CA=0,则A、B、C为一个三角形的三个顶点;④若a、b均为非零向量,则|a+b|与|a|+|b|—定相等.英中真命题的个数为()A.O B」 C.2 D.3解析:①假命题•当a+b=O时,命题不成立;②真命题;③假命题.当A、B、C三点共线时也可以有AB + BC + CA=O;④假命题.只有当a与b同向时,相等,其他情况均为|a+b| >|a|+|b|.答案:BA. AB = CD , BC = AD6.如图2-2-7所示,在平行四边形ABCD中,0是対角线的交点.下列结论正确的是()C.AO + OD = AC + CDD.AB+ BC-^-CD = DA解析:因为AO + OD = AD, AC + CD = AD,所以AO + OD = AC + CD. 答案:C 7.已知向量a、b,比较|a+b|与|a|+|b|的大小.解:⑴当a、b至少有一个为零向量时,有|a+b|=|a|+|b|;(2)当a、b为非零向量且a、b不共线时,有|a+b|<|a|+|b|;(3)当a、b为非零向量且a、b同向共线时,有|a+b|=|a|+|b|;(4)当a、b为非零向量且a、b异向共线时,有|a+b|<|a|+|b|.&已知四边形ABCD,対角线AC与BD交于点0,且A0=0C, D0=0B.求证:四边形ABCD 是平行四边形.证明:由已知得AO = OC,BO = OD.nV AD = A0 + 0D = BO + OC = BC,且A、D* B、C 不在同一直线上・故四边形ABCD是平行四边形.9.轮船从A港沿东偏北30。

2019-2020学年高中数学第二章平面向量2.2.1向量加法运算及其几何意义

2019-2020学年高中数学第二章平面向量2.2.1向量加法运算及其几何意义

③当两个非零向量a与b反向且|a|<|b|时(如图2),则a+b与b方向相同 (与a方向相反),且|a+b|=||a|-|b||. ④当两个向量a与b中至少有一个为0时,则必有|a+b|=|a|+|b|=||a||b||. 综上可知任意两个向量a,b恒有||a|-|b||≤|a+b|≤|a|+|b|.
uuur uuur 则飞机飞行的路程指的是| AB |+| BC |;
uuur uuur uuur 两次飞行的位移的和指的是 AB + BC = AC .
uuur uuur 依题意,有| AB |+| BC |=800+800=1 600(km), 又α=35°,β=55°,∠ABC=35°+55°=90°,
新知导学 课堂探究
新知导学·素养养成
1.向量加法的定义 定义:求两个向量 和 的运算,叫做向量的加法. 对于零向量与任一向量a,规定0+a=a+ 0 = a .
2.向量求和的法则
三角形 法则
法则
前提 作法
结论
已知非零向量a,b,在平面内任取一点A
uuur uuur
uuur
作 AB =a, BC =b,再作向量 AC
uuur uuur uuur uuur uuur uuur uuur uuur (1)解析:a=( AB + CD )+( BC + DA )= AB + BC + CD + DA =0, 所以 0∥b,①正确;0+b=b,③正确;|0+b|=|0|+|b|,⑤正确.故选 C.
uuur uuur uuur (2)化简:① AB + CD + BC ;

高中数学第二章平面向量2.2.1向量加法运算及其几何意义课件3新人教A必修4

高中数学第二章平面向量2.2.1向量加法运算及其几何意义课件3新人教A必修4

【即时小测】
1.思考下列问题.
(1)两个向量相加结果可能是一个数量吗? 提示:不能,实数相加结果是数,而向量具有方向,所以相加的结果 是向量. (2)两个向量相加实际上就是两个向量的模相加,这种说法对吗? 提示:这种说法是不正确的.向量既有大小又有方向,在进行向量相 加时,不仅要确定长度还要确定向量的方向.
答案:CF
知识点1 向量的加法
【知识探究】
观察图形,回答下列问题:
问题1:三角形法则和平行四边形法则的使用条件有何不同? 问题2:共线向量怎样进行求和? 问题3:当涉及多个向量相加时,运用哪个法则求解?
【总结提升】 1.对向量加法的三角形法则和平行四边形法则的三点说明 (1)两个法则的使用条件不同. 三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于 两个不共线的向量求和. (2)当两个向量不共线时,两个法则是一致的. (3)在使用三角形法则时要注意“首尾相连”,在使用平行四边形法 则时需要注意两个向量的起点相同.
3.如图,在正六边形ABCDEF中BuuAur
uuur CD
uur EF
=______.
【解析】根据正六边形的性质,对边平行且相等,我们容易得到
uuur uuur uur uuur uuur uur uur uuur uur BA CD EF BA AF EF BF CB CF.
uur
【解题探究】典例图1中a与b有何关系,图2两向量相加可采用哪种方
法进行?图3三向量相加可采用哪种方法进行? 提示:图1中向量a与向量b共线,图2中两向量相加可采用三角形法则 或平行四边形法则进行.图3中三向量相加可采用三角形法则或平行四 边形法则进行.
【解析】如图中(1),(2)所示, 首先作OuuAu=r a,然后作 Auu=Burb,则 Ou=uBura+b.

高中数学第二章平面向量2.2平面向量的线性运算2.2.1向

高中数学第二章平面向量2.2平面向量的线性运算2.2.1向


则.对于零向量与任一向量 a 的和有 a+0
= 0+a =量 平行 作A→B=a,A→D=b,则 A、B、D 求和 四边 三点不共线,以 AB , AD 为邻边 的法 形法 作 平行四边形 ABCD .
则 则 则对角线上的向量A→C=a+b,如图,这种作两个向量 和的方法叫作两个向量加法的 平行四边形 法则.
课时作业
一、向量加法的定义 求两个向量 和的运算
[自主梳理] ,叫作向量的加法.
二、向量加法的运算法则
已知非零向量 a,b,在平面上任取一点 A,作
向量
A→B=a.B→C=b,则向量A→C 叫作 a 与 b 的和,
求和 三角形 记作 a+b,即 a+b=A→B+B→C=A→C . 的法 法则 这种求两个向量和的方法,称为向量加法的三角形 法
探究三 向量加法的应用 [典例 3] 在某地抗震救灾中,一架飞机从 A 地按北偏东 35°的方向飞行 800 km 到达 B 地接到受伤人员,然后又从 B 地按南偏东 55°的方向飞行 800 km 送往 C 地医院,求这架飞机飞行的路程及两次位移的和. [解析] 如图所示,设A→B,B→C分别表示飞机从 A 地 按北偏东 35°的方向飞行 800 km,从 B 地按南偏东 55° 的方向飞行 800 km. 则飞机飞行的路程指的是|A→B|+|B→C|;两次飞行的位移 的和指的是A→B+B→C=A→C.
依题意,有|A→B|+|B→C|=800+800=1 600(km). 又 α=35°,β=55°,∠ABC=35°+55°=90°. 所以|A→C|= |A→B|2+|B→C|2= 8002+8002=800 2(km). 其中∠BAC=45°,所以方向为北偏东 35°+45°=80°. 从而飞机飞行的路程是 1 600 km,两次飞行的位移和的大小为 800 2 km,方向 为北偏东 80°.

高中数学第二章平面向量2.2平面向量的线性运算2.2.1向量加法运算及其几何意义课件新人教A版必修4 (1)

高中数学第二章平面向量2.2平面向量的线性运算2.2.1向量加法运算及其几何意义课件新人教A版必修4 (1)

12
知识拓展1.向量加法的多边形法则:n个向量经过平移,顺次使前 一个向量的终点与后一个向量的起点重合,组成一组向量折线,这n 个向量的和等于从折线起点到终点的向量.这个法则叫做向量加法 的多边形法则.多边形法则的实质就是三角形法则的连续应用.
2.三角形法则和平行四边形法则就是向量加法的几何意义. (4)规定:a+0=0+a=a. (5)结论:|a+b|≤|a|+|b|.
A.3
B.4
答案:D
C.7
D.5
【做一做 1-3】在边长为 1 的正方形 ABCD 中,|������������ + ������������ + ������������|
等于( )
A.0
B.1
C. 2D. 3
解析: |������������ + ������������ + ������������| = |������������ + ������������| = |������������| = 1.
∴(a+b)+c=a+(b+c).
(3)运算的意义:向量加法的几何意义是向量加法的三角形法则和 平行四边形法则;实数加法的意义是实数的加法法则.
由此可见,向量的加法与实数的加法不相同,其根本原因是向量 不仅有大小而且还有方向,而实数仅有大小,是数量,所以向量的运 算不能按实数的运算法则来进行.
题型一
图①
图②
再以 OD,OC 为邻边作▱ODEC,连接 OE,则������������ = ������������ +
������������ =a+b+c 即为所求.

高中数学第二章平面向量22平面向量的线性运算221向量加法运算及其几何意义课件新人教A版必修

高中数学第二章平面向量22平面向量的线性运算221向量加法运算及其几何意义课件新人教A版必修

图2-2-1
一级达标重点名校中学课件
[合 作 探 究·攻 重 难]
向量加法运算法则的应用
[探究问题]
1.求作两个向量和的法则有哪些?这些法则的物理模型是什么? 提示:(1)平行四边形法则,对应的物理模型是力的合成等. (2)三角形法则,对应的物理模型是位移合成等. 2.设 A1,A2,A3,…,An(n∈N,且 n≥3)是平面内的点,则一般情况下, A→1A2+A→2A3+A→3A4+…+An→-1An的运算结果是什么? 提示:将三角形法则进行推广可知A→1A2+A→2A3+A→3A4+…+An→-1An=A→1An.
如图2-2-5,用两根绳子把重10 N的物体W吊在
水平杆子AB上,∠ACW=150°,∠BCW=120°,求A和B处
所受力的大小(绳子的重量忽略不计)
[思路探究]
【导学号:84352181】
作出对应的几何 图形,构造有关 向量

利用三角形法则或 平行四边形法则运算

图2-2-5 回答实际问题
一级达标重点名校中学课件
一级达标重点名校中学课件
[跟踪训练] 1.已知正方形ABCD的边长等于1,则|A→B+A→D+B→C+D→C|=________. 2 2 [|A→B+A→D+B→C+D→C|=|A→B+B→C+A→D+D→C|=|A→C+A→C|=2|A→C|= 2 2.]
一级达标重点名校中学课件
向量加法的实际应用
一级达标重点名校中学课件
(1)如图2-2-2,在△ABC中,D,E分别是AB,AC上的点,F为线段
DE延长线上一点,DE∥BC,AB∥CF,连接CD,那么(在横线上只填上一个向
量):
①A→B+D→F=________;

高中数学必修四 第2章 平面向量课件 2.2.1 向量加法运算及其几何意义

高中数学必修四 第2章 平面向量课件 2.2.1 向量加法运算及其几何意义

③A→B+A→D+C→D=________; ④A→C+B→A+D→A=________. [思路探索] 首先观察各向量字母的排列顺序,再进行恰当的组 合,利用向量加法法则运算求解. 解 (1)C→D+B→C+A→B=(A→B+B→C)+C→D=A→C+C→D=A→D. (2)A→B+D→F+C→D+B→C+F→A =(A→B+B→C)+(C→D+D→F)+FA =A→C+C→F+F→A=A→F+F→A=0.
(3)①A→D+A→B=A→C,
②C→D+A→C+D→O=C→O+A→C=A→O,
③A→B+A→D+C→D=A→C+C→D=A→D,
④A→C+B→A+D→A=D→C+B→A=0.
答案
→ (1)AD
(2)0
(3)①A→C
②A→O
③A→D
④0
[规律方法] (1)解决该类题目要灵活应用向量加法运算,注意各 向量的起、终点及向量起、终点字母排列顺序,特别注意勿将0 写成0. (2)运用向量加法求和时,在图中表示“首尾相接”时,其和向量 是从第一个向量的起点指向最后一个向量的终点.
类型一 向量的加法运算 【例 1】 化简或计算:(1)C→D+B→C+A→B=________. (2)A→B+D→F+C→D+B→C+F→A=________.
(3)在平行四边形 ABCD 中(如图),对角线 AC、BD 交于点 O. 则①A→D+A→B=________; ②C→D+A→C+D→O=________;
类型二 利用向量证明几何问题 【例 2】 在平行四边形 ABCD 的对角线 BD 的延长线及反向延长线上,取点 F、E,使 BE=DF(如图).用向量的方法证明:四边 形 AECF 也是平行四边形.
[思路探索] 本题主要考查利用向量方法证明几何问题,只需证明 一组对边对应的向量相等即可.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 2.1向量加法运算及其几何意义
课后集训
基础达标
1 •在四边形ABCD 中,CB + AD + BA 等于( )
解析:CB + AD + BA= (CB + BA ) AD = CA +AD = CD,故选 C.
答案:C
2. 在AABC 中,必有AB + C4 + BC 等于( )
A.O
B.O
C.任一向量
D.与三角形形状有关 解析:AB + G4 + BC = AC + C4=0.故应选 B.
答案:B
3. 如右图,在厶ABC 中,D 、E 、F 分别为AB 、BC 、CA 的屮点,则乔十丽( ) 解析:由于D 、E 、F 分别是AABC 三边的中点,
A AF = D£贝0乔+丽二丽+旋二庞,故应选D.
答案:D
4.
已知正方形ABCD 的边长为1 (如右图),AB=a f AC=c, BC =b,则|a+b+c|等于( )
A.O
B. 3 解析:如右图所示,a+b 二c,
| a+b+c | =21 c | = 2V2 . A. DB B. CA C. CD D. DC A. FD B. FC D. BE
c. V2 D. 2V2
・・・应选D.
答案:D
5.如
右图所示,0是四边形ABCD对角线的交点,若a+d二c+b则四边形ABCD形状为()A.等腰梯形 B.菱形 C.平行四边形 D.矩形
解析:c+b= CB , a+d=d+a= DA ・•・DA = CB. A ABCD为平行四边形.
答案:C
6.(1) + + ____________________________ ;
(2)OB + AO + OC + CO= _______________ ;
(3)(AC + BA ) +CB= ______________ ;
(4)( AB + CB) +BD + DC= _______________ .
解析:(1) CD^BC^AB = CD^ ( AB + BC) =CD^AC = AC^CD = AD.
(2)OB + AO + OC + CO二+ =
(3)( AC + BA ) +CB = AC^BA + CB = AC+ (CB + BA) =AC + C4=0.
(4)(AB + CB) +BD +5C= ( AB + BD) +5C + CB = AD + DB = AB.
答案:(1) AD (2) ~\B(3) 0 (4) ~\B
综合运用
7.下列各式中不能化简为乔的是( )
A. ( AB + CD) +BC
B. (AD^MB ) + (BC + CM )
C. MB + AD + MB
D. 0C + A0 + CD
答案:C
&向量a、b满足|a|=6, |b|=10,则|a+b|的最大值是__________________________ ,最小值是
解析:当a 、b 不共线时,如右图,作AB =a, BC=b,则AC 二a+b.由向量加法的几何意义知 Ia+b | < |a| + |b |=16.
当a. b 共线同向时,如下图,作AB -a, BC 二b,则AC 二a+b,由向量加法的几何意义可 知 | AC | = |a+b| = |a| + |b|=16.
A a
B b c
当a 、b 共线反向时:如下图所示,作AB=a t BC=b,则疋二a+b 由向量加法的几何意义可 知 |a+b | = b -1 a| =10-6=4, /. | a+b | 的最大值为 16,最小值为 4.
C A
答案:16 4
9. 某人从点A 向东位移60 m 到达点B,又从点B 向东偏北30°方向位移50 m 到达点C,又 从点C 向北偏酋60°方向位移30 m 到达点I),选用适当的比例尺作图,求点D 相对于点* 的位置.
在 RtACFB 中,|CF|二50Xsin30° =25, | BF |=50Xcos30° =25^3 .
在 RtACED 中,| CE |=30Xcos30° =15V3 , | DE |=30Xsin30° =15.
| DM | = | DE | + | EM 1=15+25=40.
~BM | = | BF\-\~MF\ = \ ~BF |-| EC 1 = 25^3-15^3 = 10^3.
・••在 RtADMA 中,| 而 |二40, | 而 |二60+10
・•・ I AD | = 7402 +(60 + 10V3)2 ^87.
由计算器计算得ZDAM 二27° 18’ .
tanZDAM= \ DM \_ 40
\AM\ 60 +10徭 〜0. 517 3.
・・・D在A点东偏北27° 18’且距A87米处.
拓展探究
10.一架执行任务的飞机从A地按北偏西30°的方向飞行300 km后到达B地,然后向C地飞行,已知C地在A地东偏北30°的方向处,且A、C两地相距300 km,求飞机从B地到C地E 行的方向及B、C间的距离.
解:如右图,+ ZBAC=90° , | AB | = | AC |=300,所以| BC | = 300血(km). 又因为ZABC二45°,且A地在B地的东偏南60°的方向处,可知C地在B地的东偏南15°的方向处.
答:飞机从B地向C地飞行的方向是东偏南15° ,B、C两地间的距离为300^2 km.
备选习题
11.(1)若a、b为非零向量,且| a+b | = |a | +1b |,则a的方向与b的方向必定________ .(2) _________________________________________________ 向量a与向量b反向,则a+b 与a的方向是 ________________________________________ .
(3) _________________________________________ 向量a、b满足关系式a+b二b,则a二, |a+b|= .
答案:⑴相同(2)同向或反向(3) 0 |b|
12.设a表示“向东走了2 s千米”,b表示“向南走了2 s千米”,c表示向西走了2 s 千米,d表示向北走了2 s千米,则
(1)a+d表示向_________ 方向走了___________ 千米.
(2) ____________________ b+c表示向__________ 方向走了千米.
(3) ______________________ a+c+d表示向________ 方向走了千米.
(4) ______________________ b+c+d表示向________ 方向走了千米.
答案:(1)东北22 s (2)西南22 s (3)北2 s (4)西2 s
13.如图1所示,己知0是线段AB的中点,M是平面上任意一点,试证明
MA^MB = MO + MO.
证法1:如图2,过A、B分别作MB、MA的平行线交于W易知MO + MO二+ . 证法2:因为MO二MB十BO , MO = MA + AO ,而AO + BO =0 ,所以易得
MO + MO = MA^MB.
14. 如下图甲所示,在重300 N 的物体上拴两根绳子,这两根绳子在铅垂线的两侧,与铅垂 线的夹角分别为30°、60° ,求当整个系统处于平衡状态时,两根绳子拉力的大小•
甲 乙
解:如上图乙所示,作出OOACB 的图形,使ZA0C=30° , ZB0C=60o ,在ZX0AC 中, ZAC0=ZB0C-60° , Z0AC=90° •
OB | = | AC |=150 N. 则可得与铅垂线成30°角的绳子的拉力是150巧N,与铅垂线成60°角的绳子的拉力是 150 N.
15. 己知下图中电线A0与天花板的夹角为60。

,电线A0所受拉力Fi 二24N;绳B0与墙壁垂直,
解:如右图,根据向量加法的平行四边形法则,得到合力F 二N+F 尸OC.
在ZXOCA 中,|F :|=24, | AC |=12, Z0AC=60° ,
A AOAC 为直角三角形.
| OC |=24Xsin60° =24X —= 12V3 ・ ・・・F 】与F2的合力为12侖N 与F2成90°角竖直向上.
16. 如图(1) (2),一条河的两岸平行,河的宽度4500 m. —艘船从A 处出发到河对岸.已知 船的速度"I 二10 km/h,水流速度|v2〔二2 km/h,问行驶航程最短时,所用时间是多少(精确到 0. 1 min )
?
OA\ = \OC
• cos30°
图(1)
解:IV |二yj\ Vj I 2 -| v 2 I 2 = V% km/h, d 0.5 • • t = ---- = —.— X 60=3 ・ 1 min. Iv| V96
答:行驶航程最短时,所用时间是3. 1 min.
B D
A。

相关文档
最新文档