习题册重积分答案

合集下载

数学分析21.1二重积分的概念(含习题及参考答案)

数学分析21.1二重积分的概念(含习题及参考答案)

第二十一章 重积分 1二重积分的概念一、平面图形的面积引例:若构成平面图形P 的点集是平面上的有界点集, 即存在矩形R ,使P ⊂R ,则称平面图形P 有界. 用某一平行于坐标轴的一组直线网T 分割P(如图),这时直线网T 的网眼——小闭矩形△i 可分为三类: (1)△i 上的点都是P 的内点;(2)△i 上的点都是P 的外点,即△i ∩P=Ø; (3)△i 上含有P 的边界点.将所有属于直线网T 的第(1)类小矩形(图中阴影部分)的面积加起来, 记和数为s p (T),则有s p (T)≤△R (矩形R 的面积);将所有第(1)类与第(3)类小矩形(图中粗线所围部分)的面积加起来, 记作S p (T),则有s p (T)≤S p (T). 由确界存在定理知,对于平面上所有直线网,数集{s p (T)}有上确界,数集{S p (T)}有下确界, 记Tp I sup ={s p (T)} ,Tp I inf ={S p (T)}. 显然有0≤p I ≤p I .p I 称为内面积,p I 称为外面积.定义1:若平面图形P 的内面积p I 等于它的外面积p I , 则称P 为可求面积,并称其共同值I p =p I =p I 为P 的面积.定理21.1:平面有界图形P 可求面积的充要条件是:对任给ε>0, 总存在直线网T ,使得S p (T)-s p (T)< ε.证:[必要性]设P 的面积为I p , 由面积的定义知, I p =p I =p I . ∀ε>0, 由p I 及p I 的定义知,分别存在直线网T 1与T 2,使得 s p (T 1)>I p -2ε, S p (T 2)<I p +2ε, 记T 为由T 1与T 2合并所成的直线网,则 s p (T 1)≤s p (T), S p (T 2)≥S p (T),∴s p (T)>I p -2ε, S p (T)<I p +2ε, 从而S p (T)-s p (T)<ε. [充分性]设对任给的ε>0, 存在某直线网T ,使得S p (T)-s p (T)<ε. 但s p (T)≤p I ≤p I ≤S p (T),∴p I -p I ≤S p (T)-s p (T)<ε. 由ε的任意性知,p I =p I ,∴平面图形P 可求面积.推论:平面有界图形P 的面积为零的充要条件是它的外面积p I =0,即对任给的ε>0, 存在某直线网T ,使得S p (T)<ε,或 平面图形P 能被有限个其面积总和小于ε的小矩形所覆盖.定理21.2:平面有界图形P 可求面积的充要条件是:P 的边界K 的面积为0.证:由定理21.1,P 可求面积的充要条件是:∀ε>0, ∃直线网T , 使得S p (T)-s p (T)<ε. 即有S K (T)=S p (T)-s p (T)<ε, 由推论知,P 的边界K 的面积为0.定理21.3:若曲线K 为定义在[a,b]上的连续函数f(x)的图象,则曲线K 的面积为零.证:∵f(x)在闭区间[a,b]上连续,从而一致连续. ∴∀ε>0, ∃δ>0, 当把区间[a,b]分成n 个小区间[x i-1,x i ] (i=1,2,…,n, x 0=a,x n =b)并满足 max{△x i =x i -x i-1 |i=1,2,…,n }<δ时,可使f(x)在每个小区间[x i-1,x i ]上的振幅都有ωi <ab -ε.把曲线K 按自变量x=x 0,x 1,…,x n 分成n 个小段,则 每一个小段都能被以△x i 为宽, ωi 为高的小矩形所覆盖,又 这n 个小矩形面积的总和为i ni i x ∆∑=1ω<ab -ε∑=∆ni ix1<ε,由定理21.1的推论即得曲线K 的面积为零.推论1:参数方程x=φ(t), y=ψ(t), t ∈[α,β]所表示的光滑曲线K 的面积为零.证:由光滑曲线的定义,φ’(t),ψ’(t)在[α,β]上连续且不同时为0. 对任意t 0∈[α,β],不妨设φ’(t 0)≠0,则存在t ’的某邻域U(t 0), 使得 x=φ(t)在此邻域上严格单调,从而存在反函数t=φ-1(x). 又 由有限覆盖定理,可把[α,β]分成有限段:α=t 0<t 1<…<t n =β, 在每一小区间段上,y=ψ(φ-1(x))或x=ψ(φ-1(y)),由定理21.3知, 每小段的曲线面积为0,∴整条曲线面积为零.推论2:由平面上分段光滑曲线所围成的有界闭区域是可求面积的.注:并非平面中所有的点集都是可求面积的.如D={(x,y)|x,y ∈Q ∩[0,1]}. 易知0=D I ≤D I =1, 所以D 是不可求面积的.二、二重积分的定义及其存在性 引例:求曲顶柱体的体积(如图1).设f(x,y)为定义在可求面积的有界闭区域D 上的非负连续函数. 求以曲面z=f(x,y)为顶,以D 为底的柱体体积V.用一组平行于坐标轴的直线网T 把D 分成n 个小区域σi (i=1,2,…,n). ∵f(x,y)在D 上连续,∴当每个σi 都很小时, f(x,y)在σi 上各点的函数值近似相等; 可在σi 上任取一点(ξi ,ηi ),用以f(ξi ,ηi )为高, σi 为底的小平顶柱体的体积f(ξi ,ηi )△σi 作为V i 的体积△V i ,即△V i ≈f(ξi ,ηi )△σi .把这些小平顶柱体的体积加起来, 就得到曲顶柱体体积V 的近似值: V=∑=∆n i i V 1≈i ni i i f σηξ∆∑=1),(.当直线网T 的网眼越来越细密,即分割T 的细度T =di ni ≤≤1max →0(di 为σi 的直径)时,i ni i i f σηξ∆∑=1),(→V.概念:设D 为xy 平面上可求面积的有界闭区域,f(x,y)为定义在D 上的函数. 用任意的曲线把D 分成n 个可求面积的小区域σ1, σ2,…, σn . 以△σi 表示小区域△σi 的面积,这些小区域构成D 的一个分割T , 以d i 表示小区域△σi 的直径,称T =di ni ≤≤1max 为分割T 的细度.在每个σi 上任取一点(ξi ,ηi ),作和式ini iif σηξ∆∑=1),(,称为函数f(x,y)在D 上属于分割T 的一个积分和.定义2:设f(x,y)是定义在可求面积的有界闭区域D 上的函数. J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于D 的任何分割T ,当它的细度T <δ时,属于T 的所有积分和都有J f ini ii-∆∑=σηξ1),(<ε,则称f(x,y)在D 上可积,数J 称为函数f(x,y)在D上的二重积分,记作:J=⎰⎰Dd y x f σ),(.注:1、函数f(x,y)在有界可求面积区域D 上可积的必要条件是f 在D 上有界.2、设函数f(x,y)在D 上有界,T 为D 的一个分割,把D 分成n 个可求面积的小区域σ1, σ2,…, σn . 令M i =iy x σ∈),(sup f(x,y), m i =iy x σ∈),(inf f(x,y), i=1,2,…,n.作和式S(T)=i n i i M σ∆∑=1, s(T)=i ni i m σ∆∑=1. 它们分别称为函数f(x,y)关于分割T 的上和与下和.定理21.4:f(x,y)在D 上可积的充要条件是:0lim →T S(T)=0lim →T s(T).定理21.5:f(x,y)在D 上可积的充要条件是:对于任给的正数ε,存在D 的某个分割T ,使得S(T)-s(T)<ε.定理21.6:有界闭区域D 上的连续函数必可积.定理21.7:设f(x,y)在有界闭域D 上有界,且不连续点集E 是零面积集,则f(x,y)在D 上可积.证:对任意ε>0, 存在有限个矩形(不含边界)覆盖了E ,而 这些矩形面积之和小于ε. 记这些矩形的并集为K ,则 D\K 是有界闭域(也可能是有限多个不交的有界闭域的并集). 设K ∩D 的面积为△k ,则△k <ε. 由于f(x,y)在D\K 上连续, 由定理21.6和定理21.5,存在D\K 上的分割T 1={σ1, σ2,…, σn }, 使得S(T 1)-s(T 1)<ε. 令T={σ1, σ2,…, σn , K ∩D},则T 是D 的一个分割,且 S(T)-s(T)=S(T 1)-s(T 1)+ωK △k <ε+ωε, 其中ωK 是f(x,y)在K ∩D 上的振幅,ω的是f(x,y)在D 上的振幅. 由定理21.5可知f(x,y)在D 上可积.三、二重积分的性质1、若f(x,y)在区域D 上可积,k 为常数,则kf(x,y)在D 上也可积,且⎰⎰Dd y x kf σ),(=k ⎰⎰Dd y x f σ),(.2、若f(x,y), g(x,y)在D 上都可积,则f(x,y)±g(x,y)在D 上也可积,且[]⎰⎰±Dd y x g d y x f σσ),(),(=⎰⎰Dd y x f σ),(±⎰⎰Dd y x g σ),(.3、若f(x,y)在D 1和D 2上都可积,且D 1与D 2无公共内点,则⎰⎰21),(D D d y x f σ=⎰⎰1),(D d y x f σ+⎰⎰2),(D d y x f σ.4、若f(x,y)与g(x,y)在D 上可积,且f(x,y)≤g(x,y), (x,y)∈D ,则⎰⎰Dd y x f σ),(≤⎰⎰Dd y x g σ),(.5、若f(x,y)在D 上可积,则函数|f(x,y)|在D 上也可积,且⎰⎰Dd y x f σ),(≤⎰⎰Dd y x f σ),(.6、若f(x,y)在D 上都可积,且m ≤f(x,y)≤M, (x,y)∈D ,则 mS D ≤⎰⎰Dd y x f σ),(≤MS D , 其中S D 是积分区域D 的面积.7、(中值定理)若f(x,y)在有界闭区域D 上连续,则存在(ξ,η)∈D , 使得⎰⎰Dd y x f σ),(=f(ξ,η)S D , 其中S D 是积分区域D 的面积.注:中值定理的几何意义:以D 为底,z=f(x,y) (f(x,y)≥0)为曲顶的曲顶柱体体积等于一个同底的平顶柱体的体积,这个平顶柱体的高等于f(x,y)在区域D 中某点(ξ,η)的函数值f(ξ,η).习题1、把重积分⎰⎰Dxydxd σ作为积分和的极限,计算这个积分值,其中D=[0,1]×[0,1],并用直线网x=n i, y=nj , (i,j=1,2,…,n-1)分割D 为许多小正方形,每个小正方形取其右顶点作为其节点.解:⎰⎰Dxydxd σ=2111lim n n j n i nj ni n ⋅⋅∑∑==∞→=21121lim n n j n nj n ⋅⋅+∑=∞→=224)1(lim n n n +∞→=41.2、证明:若函数f(x,y)在有界闭区域D 上可积,则f(x,y)在D 上有界. 证:若f 在D 上可积,但在D 上无界,则对D 的任一分割T={σ1, σ2,…, σn }, f 必在某个小区域σk 上无界. 当i ≠k 时,任取p i ∈σi ,令G=∑≠nki i i p f σ)(, I=⎰⎰Ddxdy y x f ),(.∵f 在σk 上无界,∴存在p k ∈σk ,使得|f(p k )|>kG I σ∆++1, 从而∑=ni iip f 1)(σ=∑≠∆+nki k k i i p f p f σσ)()(≥|f(p k )·△σk |-∑≠nki i i p f σ)(>|I|+1.又f 在D 上可积,∴存在δ>0,对任一D 的分割T={σ1, σ2,…, σn }, 当T <δ时,T 的任一积分和∑=nk k k p f 1)(σ都满足∑=-nk k k I p f 1)(σ<1,即∑=nk k k p f 1)(σ<|I|+1,矛盾!∴f 在D 上可积,则f 在D 上有界.3、证明二重积分中值定理:若f(x,y)在有界闭区域D 上连续,则存在(ξ,η)∈D ,使得⎰⎰Df =f(ξ,η)S D , 其中S D 是积分区域D 的面积.证:∵f 在有界闭区域D 上连续,∴f 在D 上有最大值M 和最小值m, 对D 中一切点有m ≤f ≤M ,∴mS D ≤⎰⎰Df ≤MS D , 即m ≤⎰⎰DDf S 1≤M.由介值性定理知,存在(ξ,η)∈D ,使得⎰⎰Df =f(ξ,η)S D .4、证明:若f(x,y)为有界闭区域D 上的非负连续函数,且在D 上不恒为零,则⎰⎰Dd y x f σ),(>0.证:由题设知存在p 0(x 0,y 0)∈D ,使f(p 0)>0,令δ=f(p 0),由连续函数的局部保号性知:∃η>0使得对一切p ∈D 1(D 1=U(p 0,η)∩D), 有f(p)>2δ. 又f(x,y)≥0且连续,∴⎰⎰Df =⎰⎰1D f +⎰⎰-1D D f ≥2δ·△D 1>0.5、证明:若f(x,y)在有界闭区域D 上连续,且在D 内任一子区域D ’⊂D 上有⎰⎰'D d y x f σ),(=0,则在D 上f(x,y)≡0.证:假设存在p 0(x 0,y 0)∈D ,使得f(p 0)≠0, 不妨设f(p 0)>0. 由连续函数的保号性知,∃η>0使得对一切p ∈D ’(D ’=U(p 0,η)∩D), 有f(p)>0,由第4题知⎰⎰'D f >0,矛盾! ∴在D 上f(x,y)≡0.6、设D=[0,1]×[0,1],证明: 函数f(x,y)=⎩⎨⎧内非有理点为皆为有理数即内有理点为D y x y x D y x ),(,0),(),(,1在D 上不可积.证: 设D 的任一分割T={σ1, σ2,…, σn }, 则每一个小区域σi 内必同时含有D 内有理点和非有理点,从而 M i =iy x σ∈),(sup f(x,y)=1, m i =iy x σ∈),(inf f(x,y)=0, i=1,2,…,n.∴S(T)=i n i i M σ∆∑=1=1, s(T)=i ni i m σ∆∑=1=0,由T 的任意性知:lim →T S(T)=1≠0=0lim →T s(T). ∴f 在D 上不可积.7、证明:若f(x,y)在有界闭区域D 上连续,g(x,y)在D 上可积且不变号,则存在一点(ξ,η)∈D ,使得⎰⎰Dd y x g y x f σ),(),(=f(ξ,η)⎰⎰Dd y x g σ),(.证:不妨设g(x,y)≥0, (x,y)∈D ,则⎰⎰Dd y x g σ),(≥0. 令M,m 分别为f 在D 上的最大、最小值,则 m ⎰⎰Dd y x g σ),(≤⎰⎰Dd y x g y x f σ),(),(≤M ⎰⎰Dd y x g σ),(.若⎰⎰Dd y x g σ),(=0, 则⎰⎰Dd y x g y x f σ),(),(=0,任取(ξ,η)∈D ,得证!若⎰⎰Dd y x g σ),(>0, 则m ≤⎰⎰⎰⎰DDd y x g d y x g y x f σσ),(),(),(≤M. 由介值性定理知,存在一点(ξ,η)∈D ,使得f(ξ,η)=⎰⎰⎰⎰DDd y x g d y x g y x f σσ),(),(),( ,即⎰⎰Dd y x g y x f σ),(),(=f(ξ,η)⎰⎰Dd y x g σ),(.8、应用中值定理估计积分:I=⎰⎰++Dyx d 22cos cos 100σ的值, 其中D={(x,y)||x|+|y|≤10}. 解:∵f(x,y)=yx 22cos cos 1001++ 在D={(x,y)||x|+|y|≤10}上连续,根据中值定理知:存在(ξ,η)∈D ,使得I=ηξ22cos cos 100++∆D, 从而102D ∆≤I ≤100D ∆, △D 为D 的面积,∴51100≤I ≤2.9、证明:若平面曲线x=φ(t), y=ψ(t), α≤t ≤β光滑 (即φ(t),ψ(t)在[α,β]上具有连续导数且φ’2(t)+ψ’2(t)≠0),则 此曲线的面积为0.证法1:该平面曲线L 的长度为l=dt t t ⎰'+'βαψϕ)()(22为有限值.对∀ε>0, 将L 分成n=⎥⎦⎤⎢⎣⎡εl +1段:L 1,L 2,…,L n , 在每段L i 上取一点P i , 使P i 与其一端点的弧长为nl 2,以P i 为中心作边长为的ε正方形△i , 则L i ⊂△i (i=1,2,…,n), 从而L ⊂n i 1= △i ,记△=ni 1= △i ,则△为一多边形.设△的面积W ,则W ≤n ε2=⎪⎭⎫ ⎝⎛+1εlε=(1+ε)ε,∴L 的面积W L ≤W ≤(1+ε)ε. 即此曲线的面积为0.证法2:在曲线上任取参数t 的点M ,∵φ’2(t)+ψ’2(t)≠0, 由隐函数存在定理知,存在σ=(t-δ,t+δ)使曲线上对应的一段可以表示成显式方程.应用有限覆盖定理,[α,β]被开区间集{σ}有限覆盖,得出有限个区间, 使曲线分成有限部分,每一部分可以表示成显式方程y=f(x)或x=g(y), 其中f,g 为连续函数,由定理21.3知光滑曲线的面积为0.。

西工大高数答案重积分

西工大高数答案重积分

第九章 重积分第一节 重积分的概念与性质1.选择 设21()d DI x y =+σ⎰⎰,32()d DI x y =+σ⎰⎰, 1若D 由x 轴、y 轴与直线1x y +=围成,则在D 上B . A .23()()x y x y +≤+; B .23()()x y x y +≤+; 由二重积分的性质可知,A .A .12I I ≥;B .12I I ≤;C .12I I =; 2若D 由圆周22(2)(1)2x y -+-=围成,则B . A .12I I ≥; B .12I I ≤; C .12I I =; 2.填空 设(,)d DI f x y =σ⎰⎰,1若(,)1f x y x y =++,域D 为01x ≤≤,02y ≤≤,则在D 上,(,)f x y 的最小值为1,最大值为4;由二重积分的性质可知,28I ≤≤;2若22(,)49f x y x y =++,域D 为224x y +≤,则在D 上,(,)f x y 的最小值为9,最大值为25,因此36100I π≤≤π.3.设12231()d D I xy =+σ⎰⎰,其中1D 是矩形闭区域:11x -≤≤,22y -≤≤;22232()d D I x y =+σ⎰⎰,其中2D 是矩形闭区域:01x ≤≤,02y ≤≤,试利用二重积分的几何意义说明1I 与2I 之间的关系.解 设函数223(,)()f x y x y =+,则积分1(,)d D f x y σ⎰⎰的几何意义是在矩形域1D 上以曲面(,)z f x y =为曲顶的曲顶柱体体积. 由于域1D 关于0x =即y 轴对称,而函数(,)f x y 是x 的偶函数即曲面(,)z f x y =关于yOz 面对称,因此1(,)d D f x y σ⎰⎰=2(,)d D f x y *σ⎰⎰ ,其中域D *为01x ≤≤,2y ≤. 同理,D *关于0y =对称,(,)f x y 是y 的偶函数,因此,(,)d D f x y *σ⎰⎰=22(,)d D f x y σ⎰⎰于是1(,)d D f x y σ⎰⎰=42(,)d D f x y σ⎰⎰,即124II =.第二节 二重积分的计算1.填空 1改变积分次序e ln 1d (,)d x x f x y y ⎰⎰=14d (,)d y ey f x y x ⎰⎰.2改变积分次序 I =2220d (,)d x x f x y y ⎰⎰+2(,)d x f x y y ⎰⎰2 若(,)f x y xy =,则I =103. 3设D :15y ≤≤,5y x ≤≤,则应把二重积分d d ln Dx yI y x=⎰⎰化为先对y 后对x 的二次积分I =5111d d ln x x y y x⎰⎰=4. 4二重积分20d xx f y ⎰⎰=π2sec 3π04d ()d f r r r θθ⎰⎰.5二重积分211222d ()d xxx x y y -+⎰⎰=2πsin 4cos 01d d r r rθθθ⋅⎰⎰=π420sin d cos θθθ⎰1. 2.画出积分区域,并计算下列二重积分. 122()d Dxy -σ⎰⎰,其中D 是闭区域0sin y x ≤≤,0πx ≤≤.解 原式=πsin 22d ()d x x x y y -⎰⎰=3π2sin (sin )d 3xx x x -⎰=2πππ3π000011cos 2sin 2cos [cos cos ]33x x x x x x x -+++-=240π9-.2d Dx y ⎰⎰,其中D 是由直线y x =,1x =-,1y =所围成的闭区域.解 将D 视为X -型区域,则D :1x y ≤≤,11x -≤≤. 原式=111d xx y -⎰⎰=31222111(1)d 3xx y x --+-⎰=1302(1)d 3x x --⎰=12. 3e d d x yDx y +⎰⎰,其中D 是由不等式1x y +≤,0x ≥所确定的闭区域.解 原式=1101d ed x x yx x y -++-⎰⎰=111d x y y x y x ex +=-+=-⎰=1210(e e )d x x --⎰=e 122e+.易犯的错误是:认为积分区域D 是关于x 轴对称的,因此原积分等于在域D 内第一象限 部分域上积分的2倍,即原式=21e d x yD +σ⎰⎰ , 1D =01,01.x y x ≤≤⎧⎨≤≤-⎩ 此解错在没有被积函数的奇偶性,只有积分区域的对称性,就乱用对称性简化计算. 4cos d Dx x σ⎰⎰,其中D 是由曲线0y =,y x =和π6x =围成的闭区域. 解 cos d Dx x σ⎰⎰=π600cos d d x x x y x ⎰⎰=π60cos d x x ⎰=12. 3.计算积分222d ed y x x y -⎰⎰的值.解 由于函数2e y -的原函数不是初等函数,故需交换积分次序,积分区域D 为由0,2,x y y x ===所围成的区域,故原式=2e d d y Dx y -⎰⎰=2200d e d y y y x -⎰⎰=220e d y y y -⎰=221e 2y --=41(1e )2--. 4.设D 为以点(1,1),(1,1),(1,1)---为顶点的三角形,1D 为D 在第一象限部分,试将(cos sin )d d Dxy x y x y +⎰⎰化为1D 上的积分.解 如图所示,将积分区域分为1D '与2D '两部分,其中1D '为三角形AOB ,2D '为三角形BOC .显然1D '关于y 轴对称,2D '关于x 轴对称,又因为 函数xy 关于x ,y 均为奇函数,所以1d d D xy x y '⎰⎰=0, 2d d D xy x y '⎰⎰=0.故d d Dxy x y ⎰⎰=1d d D xy x y '⎰⎰+2d d D xy x y '⎰⎰=0.又函数cos sin x y 关于x 为偶函数,关于y 为奇函 数, 所以1cos sin d d D x y x y '⎰⎰=21cos sin d d D x y x y ⎰⎰,2cos sin d d D x y x y '⎰⎰=0.综上所述,(cos sin )d d Dxy x y x y +⎰⎰=21cos sin d d D x y x y ⎰⎰.5.证明:()0d e ()d a y m a x y f x x -⎰⎰=()0()e ()d am a x a x f x x --⎰.分析 因为欲证等式的左端为累次积分,等式右端为定积分,因此,应从左端出发证明, 作一次积分,化为定积分,使之与右端定积分相等. 但原累次积分的被积函数含有抽象函数,无法关于x 先积分,故考虑改变积分次序.解()0d e ()d a y m a x y f x x -⎰⎰=()0e ()d d a a m a x xf x x y -⎰⎰=()0()e ()d am a x a x f x x --⎰.6.求下列空间域Ω的体积.1由四个平面0,0,1,1x y x y ====所围成的柱体被平面0z =及236x y z ++=截得的立体.解 曲顶柱体以{(,)|01,01}D x y x y =≤≤≤≤为底,以623z x y =--为顶面,故所求立体体积 (623)d d DV x y x y =--⎰⎰=1100d (623)d x x y y --⎰⎰=103(62)d 2x x --⎰=6-1-32=72. 2由曲面222z x y =+及2262z x y =--围成的立体. 解 两曲面的交线满足方程组 消去z ,得222x y +=.所求立体的体积 21()d DV z z =-σ⎰⎰=2222[(62)(2)]d Dx y x y ---+σ⎰⎰ =322(2)d Dx y --σ⎰⎰=32π20d )d θ-ρρρ⎰⎰=426π(4ρ⋅ρ-=6π.7.画出积分区域,并且把积分(,)d d Df x y x y ⎰⎰表示为极坐标形式的二次积分,其中积分区域D 是:图1 20y x ≤≤, 01x ≤≤;解 积分区域如图a 所示,其边界曲线2y x =及1x =在极坐标下的方程分别为2sin cos θρ=θ及1cos ρ=θ. 原积分=2π14cos sin 0cos d (cos ,sin )d f θθθθρθρθρρ⎰⎰易犯的错误是:积分区域如图b 所示.原积分=π14cos 0d (cos ,sin )d f θθρθρθρρ⎰⎰.此错误是由作图不准确造成的.2由曲线22y a x =-,2y ax x =-及y x =-围成的闭区域0a >.解 积分区域如图所示,曲线22y a x =-及2y ax x =-在极坐标下的方程分别为r a =及cos r a =θ. 原积分=π20cos d (cos ,sin )d a a f θθρθρθρρ⎰⎰+3π4π02d (cos ,sin )d af θρθρθρρ⎰⎰.易犯的错误是:原积分=3π40cos d (cos ,sin )a a f d θθρθρθρρ⎰⎰.8.计算()d d DI x y x y =+⎰⎰,其中D :224xy +≤.解 积分区域关于x 轴,y 轴均对称,被积函数x y +关于x ,y 均为偶函数,故 I =41()d d D x y x y +⎰⎰1D 为D 位于第一象限的部分图 a图 b图=4π2220d (cos sin )d θθ+θρρ⎰⎰=643. 9.选择适当的坐标计算下列各题. 122sin d d Dx y x y +⎰⎰,其中D 是圆环形闭区域:2222π4πx y ≤+≤. 解 原式=2π2ππd sin d θρ⋅ρρ⎰⎰=2ππ2[cos sin ]π-ρρ+ρ=26π-.22d d yDxe x y -⎰⎰,其中D 是由曲线24y x =和29y x =在第一象限所围成的区域. 解2d d y Dxex y -⎰⎰=2203d d y y y y xe x +∞-⎰⎰=201()d 249y y y e y +∞--⎰ =205d 72y ye y +∞-⎰=5144. 3arctan d d Dy x y x ⎰⎰,D 是由圆周22224,1x y x y +=+=,及直线0,y y x ==所围成的在第一象限内的区域.解 arctan d d Dy x y x ⎰⎰=2401d d πθθ⋅ρρ⎰⎰=23π64.422()d d Dx y x y +⎰⎰,其中D 是由直线y x =,y x a =+,y a =,3(0)y a a =>所围成的闭区域. 解 原式=322d ()d a y ay ay x y x -+⎰⎰=232d []3a a y a ax y y x -+⎰=23321[()]d 33a ay y a y a y --+⎰=4433()[]12123aa y y a a y --+ =414a . 易犯的错误时:认为积分区域如图 所示. 原式=220d ()d a x a ax x y y ++⎰⎰+3322d ()d a aaxx x y y +⎰⎰.此错误是由画图不准确造成的. 5d d Dy x y ⎰⎰,其中D 是直线2x =-,0y =,2y =及曲线22x y y =--所围成的平面图区域.解1 区域D 及1D 如图所示,有d d Dy x y ⎰⎰=1d d D D y x y +⎰⎰-1d d D y x y ⎰⎰ =02π2sin π22d d d sin x y y d θ--θρθ⋅ρρ⎰⎰⎰⎰=4-428sin d 3ππθθ⎰=4-2811cos 4(1cos 2)d 342ππ+θ⋅-θ+θ⎰ =4-2π. 解2 如图所示,{(,)|22}D x y x y =-≤≤≤≤,d d Dy x y ⎰⎰=202d y y x -⎰⎰=222d y y y -⎰⎰=4-2y ⎰令y-1=s i nt π22π24(1sin )cos d t t t --+⎰=4-π2.10.求由圆2ρ=和心形线2(1cos )ρ=+θ所围图形在圆外部分的面积.解 由2(1cos )2ρ=+θ⎧⎨ρ=⎩得交点:0π2θ=±,02ρ=.面积A =d d Dρρθ⎰⎰=π2(1+cos θ)2π22d d -θρρ⎰⎰=π22π22[cos θ+2cos ]d -θθ⎰=1π4[2]22⋅+=8π+.11.设平面薄片所占的闭区域D 是由螺线2ρ=θ上一段弧π(0)2≤θ≤与直线π2θ=所围成,它的面密度22(,)x y x y μ=+.求此薄片的质量.解 质量M =(,)d Dx y μσ⎰⎰=22()d Dxy +σ⎰⎰=π2320d d θθρρ⎰⎰=π4204d θθ⎰=5π40.第三节 三重积分的计算1.化(,,)d d d I f x y z x y z Ω=⎰⎰⎰为三次积分,其中积分区域Ω分别是:图1由双曲抛物面xy z =及平面10x y +-=,0z =所围成的闭区域. 2由曲面22z x y =+,2y x =及平面1y =,0z =所围成的闭区域.解 1由0z xy z =⎧⎨=⎩消去z ,得0xy =,即0x =或0y =.因此空间域是以0z =为下曲面,z xy =为上曲面,侧面是柱面0x =,0y =,10x y +-=.因此原式=110d d (,,)d x xy x y f x y z z -⎰⎰⎰.2积分区域Ω可表示为220z x y ≤≤+,21x y ≤≤,11x -≤≤ 所以222111(,,)d d d d d (,,)d x y xf x y z x y z x y f x y z z +-Ω=⎰⎰⎰⎰⎰⎰.2.计算cos()d d d y x z x y z Ω+⎰⎰⎰,其中Ω由y =0y =,0z =和π2x z +=所围成的闭区域.解 将积分区域Ω向xOy 平面投影得xy D :π02x ≤≤,0y ≤≤则Ω可表示成π02z x ≤≤-,(,)xy x y D ∈,故 cos()d d d y x z x y z Ω+⎰⎰⎰=π20d d cos()d xyx D x y y x z z -+⎰⎰⎰=(1sin )d d xyD y x x y -⎰⎰=π20d (1sin )d x y x y -⎰⎰=π201(1sin )d 2x x x -⎰=2π1162-.3.计算d d d z x y z Ω⎰⎰⎰,其中Ω是由锥面z =(0,0)z h R h =>>所围成的闭区域.解1 积分区域Ω如图所示,用竖 坐标为z 的平面截域Ω,得圆域22222():R z D z x y h+≤,其面积为222πR z h,采用“先二后一法”计算.d d d z x y z Ω⎰⎰⎰=0()d d h D z z z σ⎰⎰⎰=2220πd h R z z z h⋅⎰=242π4hR z h ⋅=22π4R h .解2 积分域Ω的边界曲面在柱面坐标下的方程分别为z h =及h z R=ρ. 利用柱面坐标计算.原式=2π0d d d R h h R z z ρθρρ⎰⎰⎰=2222012π[]d 2R h h Rρ-ρρ⎰=224202π[]24R h h R ρρ-⋅=22π4R h . 易犯的错误是: 1在柱面坐标下,原式=2π0d d d hRR z z ρθρρ⎰⎰⎰.关于z 的积分上、下限错误.2采用“先二后一法”.d d d z x y z Ω⎰⎰⎰=222d d d hx y R z zx y +≤⎰⎰⎰=2d h Rz z π⎰=222R h π. 关于x ,y 积分的积分域错误,积分域应为22222R z x y h +≤. 特别注意,将被积函数z用表达式z =. 4.计算d d d xz x y z Ω⎰⎰⎰,其中Ω是由平面0z =,z y =,1y =以及抛物柱面2y x =所围成的闭区域.解1 按先z 再x 后y 积分. 原式=10d d d 0yy x z z =⎰⎰⎰其中⎰为奇函数再对称区间上的积分,其值为0.解2 按先x 再y 后z 积分. 原式=110d d d 0zz z y x x =⎰⎰⎰其中d 0x =⎰.解3 按先x 再z 后y 积分.图原式=10d d d 0y y z z x =⎰⎰⎰5填空题.设Ω由球面z =与锥面z =围成,则三重积分在三种坐标系下分别可化为三次积分如下: 直角坐标系下: 柱面坐标系下: 球面坐标系下:π2π240d d sin d I f r r θϕϕ=⎰⎰⎰.6.利用柱面坐标计算下列三重积分. 122e d d d x y x y z --Ω⎰⎰⎰,其中Ω为由221x y +≤,01z ≤≤所确定.解22e d d d xy x y z --Ω⎰⎰⎰=22π11ρ0d ρd ρd ez θ-⎰⎰⎰=21ρ02πρd ρe-⎰=21ρ20πe d ρ-⎰=21ρ0πe --=1π(e 1)---=1π(1)e-.2d z v Ω⎰⎰⎰,其中Ω为由曲面z =及223x y z +=所围成的闭区域.解由223z x y z⎧⎪=⎨+=⎪⎩z ,得223x y +=,zdv Ω⎰⎰⎰=d ρd d zr z θΩ⎰⎰⎰=22π03d d ρd r z z θ⎰⎰⎰=4212π(4ρ)d ρ29r ⋅--⎰=13π4.3d d x y z Ω⎰⎰⎰, 其中Ω为由曲面y =,0z =,z a = (0)a >,0y =所围成的闭区域.解 原式=π2cos 220d ρd ρd a z z θθ⎰⎰⎰=π23204cos d 3a θθ⎰=289a .7.利用球面坐标计算下列三重积分:1d d x y z Ω,其中Ω是由球面222x y z z ++=所围成的闭区域.解 球面222x y z z ++=在球面坐标下的方程为cos r ϕ=.原式=π2πcos 320d sin d d r r ϕθϕϕ⎰⎰⎰=π420πsin cos d 2ϕϕϕ⎰=π520πcos 10ϕ-=π10. 2d d d z x y z Ω⎰⎰⎰,其中Ω是由不等式:2222()xy z a a ++-≤,22x y +2(0)z a ≤>所确定.解 曲面2222()x y z a a ++-=及222(0)x y z a +=>在球面坐标下的方程分别为2cos r a ϕ=及π4ϕ=. 原式=π2π2cos 340d sin d cos d a r r ϕθϕϕϕ⎰⎰⎰=π45402π4cos sin d a ϕϕϕ⎰=π640cos 8π6ϕ-⋅=47π6a . 8.选择适当的坐标计算下列三重积分. 12(1)d x v Ω+⎰⎰⎰,其中Ω是由曲面222x z y =+,2x =,4x =所围成的闭区域. 解 采用“先二后一法”计算.2(1)d x v Ω+⎰⎰⎰=422d (1)d d Dxx x y z +⎰⎰⎰=422(1)d d d Dxx x y z +⎰⎰⎰=4222(1)(π)d x x x +⎰=3256π15.2d d x y z Ω⎰⎰⎰,其中Ω由不等式:2221x y z ++≤,z ≥定.解1 曲面2221x y z ++=及z =在球面坐标下的方程分别为1r =及π6ϕ=.原式=π2π12600d sin d r cos r r dr θϕϕϕ⋅⋅⎰⎰⎰=π125600sin ρ2π25ϕ⋅⋅π20=. 解2 曲面2221x y z ++=及z =z =z =.原式=12π20d rdr z θ⎰⎰=120r 2π2⎰π20=.32d d d z x y z Ω⎰⎰⎰,其中Ω是2222xy z R ++≤和2222(0)x y z Rz R ++≤>的公共部分.解1 球面2222x y z R ++=及2222x y z Rz ++=在球面坐标下的方程分别为r R =及2cos r R ϕ=.由2cos r R r Rϕ=⎧⎨=⎩解得 3πϕ=.原式=π2π22230d d cos sin d Rr r r θϕϕϕ⋅⎰⎰⎰+π2π2cos 2222π03d d cos sin d R r r r ϕθϕϕϕ⋅⎰⎰⎰=ππ525732π03232cos dcos 2πcos dcos 55R R πϕϕϕϕ--⋅⎰⎰=557ππ60160R R +559π480R =. 解2 采用“先二后一法”计算. 原式=2222222222022d d d d d d RRR x y Rz z x y R z z zx y z zx y +≤-+≤-+⎰⎰⎰⎰⎰⎰=22222202π(2)d π()d R RR z Rz z z z R z z -+-⎰⎰559π480R =. 第四节 重积分的应用1.求锥面z =被柱面22z x =所割下部分的曲面面积.解由22z z x⎧⎪=⎨=⎪⎩消去z ,得D 的边界:222x y x +=.所求曲面面积DS σ=⎰⎰=d Dx yd Dσ.2.求底圆半径相等的两个直交圆柱面222x y R +=及222x z R +=所围成立体的表面积.解1 所求曲面在第一卦限内的图形如图所示.面积为2016d 16R Rx R ==⎰⎰.解2 由222222x y R x z R⎧+=⎨+=⎩消去x ,得z y =±.对于曲面x =y x =,0z x =,所求曲面的面积为图8d 8R y R Ry z R y -==⎰⎰⎰12222082()|16RR R y R =-⋅-=.3.设平面薄片所占的闭区域D 由曲线2y x =,2x y +=围成,求该均匀薄片的重心. 解 y M x M=,xM y M=. 212120000229d d d (2)d 2x x DM x y x x x ρσρρρ---===--=⎰⎰⎰⎰⎰,212120000229d d d (2)d 4x y x DM x x x y x x x x ρσρρρ---===--=-⎰⎰⎰⎰⎰,2121240002236d d [(2)]d 25x x x M x y y x x x ρρρ---==--=⎰⎰⎰, 因此,12yM x M ==-,85x M y M ==,故重心坐标为(,)x y =18(,)25-. 4.设平面薄片所占的闭区域D 由直线2x y +=,y x =和x 轴所围成,它的面密度22(,)x y x y ρ=+,求该薄片的质量.解 质量为1222220()d d ()d y yDM xy y x y x σ-=+=+⎰⎰⎰⎰12323410088842(44)d [2]33333y y y y y y y y =-+-=-+-⎰43=. 5.利用三重积分计算.1由曲面z =224x y z +=所围成的立体体段.解 采用柱面坐标计算232242002π2π(5ρ)ρπ4)383=---=.2由曲面z =,0)z A a =>>,0z =所围匀质物体的重心.解 匀质物体的重心即形心,且形心在对称轴-z 轴上,因此0x =,0y =,d d z vz vΩΩ=⎰⎰⎰⎰⎰⎰.其中332d π()3v A a Ω=-⎰⎰⎰.d z v Ω⎰⎰⎰=π2π320d cos sin d d A ar r θϕϕϕ⎰⎰⎰=π24420sin 2π24A a ϕ-⋅⋅=44π()4A a -. 于是44333()8()A a z A a -=-.重心坐标为44333()0,0,8()A a A a --. 6.求半径为R 、高为h 的均匀圆柱体绕过中心而垂直于母线的轴的转动惯量设密度1ρ=.解 建立坐标系,使圆柱体的对称轴在z 轴上,且原点在其中心.则所求转动惯量为 y I =2π22222202()d d ρd ρ(ρcos )d hRh x y v z z θθ-Ω+=+⎰⎰⎰⎰⎰⎰4322π20[cos ]d 424hR h R θθ=+⎰=342ππ412h h R R + 22()43M h R =+ 其中2πM R h =为圆柱体质量 第九章 重积分总习题1.计算d D I x y =,22222:,D x y a x y ay +≤+≥.解1 2()d ρd D D I ρθ=+⎰⎰⎰⎰下上π2π220sin πd ρd ρd ρd ρa aa θθθ=+⎰⎰⎰⎰33π3(1sin )d π33a a θθ=-+⎰π3333202222πsin d (π)3333a a a θθ=+=-⎰.解222222x y a x y ayI σσ+≤+≤=-⎰⎰⎰⎰3π3330222πsin d (π)3333a a a θθ=-=-⎰. 2.计算()d DI x y σ=+⎰⎰,其中D 由2y x =,24y x =及1y =围成. 解11100d )d d )d I y x y x y x y x =+++⎰⎰13/202d 5y y ==⎰. 解2 ()()d D D I x y σ=-+⎰⎰⎰⎰大小14212221121116[(1)]d [(14)]d 22x x x x x x x x ----=-+--+⎰⎰25=.3.计算2101d d x y I y x x y ≤≤≤=-⎰⎰解1 1222()d ()d D D I y x x y σσ=-+-⎰⎰⎰⎰ 图 221112211d ()d d ()d x xx y x y x x y y --=-+-⎰⎰⎰⎰4411224111[(1)]d []d 22x x x x x x x ---=--+-⎰⎰1115=. 亦可利用对称性简化计算.由于1D 、2D 均关于0x =即y 轴对称,又(,)f x y 关于x 为偶函数即(,)(,)f x y f x y -=,因此 221112202d ()d 2d ()d x xI x y x y x x y y =-+-⎰⎰⎰⎰.4.计算2(369)d Dy x y σ+-+⎰⎰,其中D 是闭区域222x y R +≤. 解 原式222200d ρ[ρsin 3ρcos 6ρsin ]d ρ9πRR πθθθθ=+-+⎰⎰442π2229πsin d 009ππ44R R R R θθ=+++=+⎰.亦可利用对称性简化计算.由于积分Dxd σ⎰⎰及Dyd σ⎰⎰均为零,故原积分再利用极坐标计算.5.计算22()d d d y z x y z Ω+⎰⎰⎰,其中Ω是由xOy 平面上曲线22y x =绕x 轴旋转而成的曲面与平面5x =所围成的闭区域.解 Ω在yOz 面投影域yz D 为:2210y z +≤,所以22()d d d yz x y z Ω+⎰⎰⎰=22π522d ρd ρd r x θ⋅⎰⎰⎰51150010002502π[1001000]2ππ412123-=⨯-⨯==. 6.计算d d x y z Ω,其中Ω为由2221x y z ++≤,1z ≥所确定.解 投影区域D :2224()5x y +≤,用柱面坐标得d d x y z Ω=42π50212d ρd ρd ρr z z θ-⎰⎰⎰图42250642π[1ρ(2ρ1)]d ρπ75=---=⎰. 7.计算()d d d x z x y z Ω+⎰⎰⎰,其中Ω是由曲面z =与z =所围成的区域.解d d d 0x x y z Ω=⎰⎰⎰因为被积函数是x 的奇函数,积分区域Ω关于0x =对称,所以有()d d d x z x y z Ω+⎰⎰⎰=d d d z x y z Ω⎰⎰⎰;又由于d d d z x y z Ω⎰⎰⎰的被积函数只是z 的函数,用平面z z =去截Ω所得闭区域()D z 的面积很容易求,因此可选用“先二后一”方法求解.()d d d x z x y z Ω+⎰⎰⎰=d d d z x y z Ω⎰⎰⎰=1210()()d d d d d d D z D z z zx y z zx y +⎰⎰⎰⎰⎰=1220πd π(1)d z z z z z z +-⎰=π8.8.计算22()d I x y v Ω=+⎰⎰⎰,其中Ω是由222x y z +=,2z =,8z =围成的闭区域. 解1 22()()d I x y v ΩΩ=++⎰⎰⎰⎰⎰⎰外柱22π282π48330222d ρd ρd d ρd ρd z z ρθθ=+⎰⎰⎰⎰⎰⎰2432ρ62π42πρ(8)d ρ2=⋅⋅+-⎰48π288π336π=+=.解2 22()()d I xy v ΩΩ=-+⎰⎰⎰⎰⎰⎰大小222π482π2222ρρ022d ρd ρρd d ρd ρρd z z θθ=-⎰⎰⎰⎰⎰⎰42353500112π(8ρρ)d ρ2π(2ρρ)d ρ22=---⎰⎰336π=. 解3 采用“先二后一法”计算. I=22882π223222d ()d d d d d ρx y zzx y x y z θ+≤+=⎰⎰⎰⎰⎰⎰=8222πd z z ⎰336π=.易犯的错误是:将222x y z +=代入被积表达式,得 388222π2d 4π|672π3z z z z =⋅⋅==⎰.9.计算2221d xy z v Ω++-⎰⎰⎰,其中Ω是球体2224x y z ++≤.解 被积函数含有绝对值2221x y z ++-,用曲面22210x y z ++-=将Ω分成1Ω和2Ω,其中1Ω:2221x y z ++≤ ,2Ω:22214x y z ≤++≤. 于是采用球面坐标计算1222(1)d x y z v Ω---⎰⎰⎰=2ππ1220d d (1)sin d r r r θϕϕ-⎰⎰⎰=8π15, 2222(1)d x y z v Ω++-⎰⎰⎰=2ππ22201d d (1)sin d r r r θϕϕ-⎰⎰⎰=232π15, 所以2221d x y z v Ω++-⎰⎰⎰=8π15+232π15=16π. 10.半球面z =220x y Ry +-=,22x y +0(0)Ry R +=>割出两个窗口,求在这半球面上剩下部分的面积.解d d S x y σ==.sin 4d R R Rθθ=-⎰=π2204cos d 4R R R θθ=⎰.11.在底半径为R ,高为H 的圆柱体上面,拼加一个同半径的半球体,使整个立体的重心 位于球心处,求R 和H 的关系设体密度1μ=.解 建立坐标系如图所示,由题意知,物体重心的竖坐标 d 0d z vZ vΩΩ==⎰⎰⎰⎰⎰⎰,222π(2)02R R H =-=.R =.12.设一个上、下底半径各为b 、a ,高为H 的圆锥台,轴的转动惯量b a <. 解1 建立坐标系下如图432π2πρ(ρ)d ρ4a b b H H a a b=⋅⋅+--⎰=55π()10()H a b a b --.解2 采用“先二后一法”.用竖坐标为z 的平面截闭区域Ω,得到 圆域()D z ,设其半径为()z ρ,则ρ()z b H z a b H --=-,ρ()a bz a z H-=-.原式=2π2230()d ()d d d ρd ρa bH Ha z HD z z x y z σθ--+=⎰⎰⎰⎰⎰⎰45540π1π[()]d ()210()H H aH a b z z a b H a b =--=--⎰.。

数学分析21.6重积分的应用(含习题及参考答案)

数学分析21.6重积分的应用(含习题及参考答案)

第二十一章 重积分 6重积分的应用一、曲面的面积问题:设D 为可求面积的平面有界区域,函数f(x,y)在D 上具有连续的一阶偏导数,讨论由方程z=f(x,y), (x,y)∈D 所确定的曲面S 的面积.分析:对区域D 作分割T ,把D 分成n 个小区域σi (i=1,2,…,n). 曲面S 同时也被分割成相应的n 个小曲面片S i (i=1,2,…,n). 在每个S i 上任取一点M i , 作曲面在这一点的切平面πi , 并 在πi 上取出一小块A i , 使得A i 与S i 在xy 平面上的投影都是σi . 现在M i 附近,用切平面A i 代替小曲面片S i . 则当T 充分小时,有 △S=∑=∆ni i S 1≈∑=∆ni i A 1, 这里的△S, △S i , △A i 分别表示S, S i 和A i 的面积.∴当T →0时,可用和式∑=∆ni i A 1的极限作为S 的面积.建立曲面面积计算公式:∵切平面πi 的法向量就是曲面S 在点M i (ξi ,ηi ,ζi )处的法向量, 记其与z 轴的夹角为γi , 则|cos γi |=),(),(1122i i yi i xf f ηξηξ++.∵A i 在xy 平面上投影为σi , ∴△A i =iiγσcos ∆=i i i y i i x f f σηξηξ∆++),(),(122. 又和数∑=∆ni i A 1=∑=∆++ni i i i y i i x f f 122),(),(1σηξηξ是连续函数),(),(122y x f y x f y x ++在有界闭区域D 上的积分和,∴当T →0时,有△S=∑=→∆++ni i i i y i i x T f f 1220),(),(1lim σηξηξ=⎰⎰++Dy x dxdy y x f y x f ),(),(122, 或△S=∑=→∆ni i iT 1cos limγσ=⎰⎰∧Dz n dxdy ),cos(,其中),cos(∧z n 为曲面的法向量与z 轴正向夹角的余弦.例1:求圆锥z=22y x +在圆柱体x 2+y 2≤x 内那一部分的面积. 解:由x 2+y 2≤x, 得D={(r,θ)|0≤r ≤21, 0≤θ≤2π}, 又z x =22y x x +=r r θcos =cos θ, z y =22yx y+=r r θsin =sin θ, ∴△S=⎰⎰++Dyxdxdy z z 221=⎰⎰πθ202102rdr d =π42.例2:设平面光滑曲线的方程为y=f(x), x ∈[a,b] (f(x)>0). 求证:此曲线绕x 轴旋转一周得到的旋转曲面的面积为: S=⎰'+ba dx x f x f )(1)(22π.证:由上半旋转面方程为z=22)(y x f -, 得 z x =22)()()(yx f x f x f -', z y =22)(yx f y --. 即有221yxz z ++=2222222)()()()(1yx f y y x f x f x f -+-'+=2222)())(1)((yx f x f x f -'+. ∴S=⎰⎰--'+b a x f x f dy y x f x f x f dx )()(222)()(1)(2=⎰⎰-'+b a x f dyy x f dx x f x f )(0222)(1)(1)(4=⎰⎰---'+ba x f x yf d x f y dx x f x f )(01222))(()(11)(1)(4=⎰⎰-'+b a dt tdx x f x f 102211)(1)(4=⎰'+b adx x f x f )(1)(22π.注:若空间曲面S 由参量方程:x=x(u,v),y=y(u,v),z=z(u,v),(u,v)∈D 确定, 其中x(u,v), y(u,v), z(u,v)在D 上具有连续一阶偏导数,且),(),(v u u y x ∂,),(),(v u u z y ∂,),(),(v u u x z ∂中至少有一个不等于0,则 曲面S 在点(x,y,z)的法线方向数为⎝⎛∂),(),(v u u z y ,),(),(v u u x z ∂,⎪⎪⎭⎫∂),(),(v u u y x , 则 它与z 轴的夹角的余弦的绝对值为:),cos(∧z n =222),(),(),(),(),(),(),(),(⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂∂v u u y x v u u x z v u u z y v u u y x=2222222)())((),(),(v u v u v u vvvuuuz z y y x x z y x z y x v u u y x ++-++++∂=21),(),(FEG v u u y x -∂,其中E=222u u u z y x ++,G=222v v v z y x ++,F=v u v u v u z z y y x x ++.当),(),(v u u y x ∂≠0,则有△S=⎰⎰∧Dz n dxdy ),cos(=dudv z n v u u y x D ⎰⎰'∧∂),cos(),(),(=dudv F EG D ⎰⎰'-2.例3:求球面上两条纬线和两条经线之间 的曲面的面积(图中阴影部分). 解:设球面方程为:(R 为球的半径). x=Rcos ψcos φ,y=Rcos ψsin φ, z=Rsin ψ.由E=222ψψψz y x ++=R 2, G=222ϕϕϕz y x ++=R 2cos 2ψ, F=ϕψϕψϕψz z y y x x ++=0, 得2F EG -=R 2cos ψ. ∴△S=⎰⎰2121cos 2ψψϕϕψψϕd R d =R 2(φ2-φ1)(sin ψ2-sin ψ1).二、质心引例:设V 是密度函数为ρ(x,y,z)的空间物体,ρ(x,y,z)在V 上连续. 为求得V 的质心坐标公式,先对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则小块v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 若把每一小块看作质量集中在(ξi ,ηi ,ζi )的质点时,整个物体就可用这n 个质点的质点系来近似代替. 由于质点系的质心坐标公式为:∑∑==∆∆=ni iiiini iiiiin v v x 11),,(),,(ζηξρζηξρξ, ∑∑==∆∆=ni iiiini iiiiin v v y 11),,(),,(ζηξρζηξρη, ∑∑==∆∆=n i iiiini ii i i in v v z 11),,(),,(ζηξρζηξρζ.当T →0时,n x , n y , n z 的极限x , y , z 就定义为V 的质心坐标,即⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x x x ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x y y ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x z z ),,(),,(ρρ.当物体V 的密度均匀即ρ为常数时,则有⎰⎰⎰∆=VxdV Vx 1, ⎰⎰⎰∆=VydV Vy 1, ⎰⎰⎰∆=VzdV Vz 1, 这里△V 为V 的体积.又密度分布为ρ(x,y)的平面薄板D 的质心坐标为:⎰⎰⎰⎰=DDd y x d y x x x σρσρ),(),(, ⎰⎰⎰⎰=DDd y x d y x y y σρσρ),(),(. 当平面薄板的密度均匀时,即ρ为常数时,则有⎰⎰∆=Dxd D x σ1, ⎰⎰∆=D yd D y σ1, △D 为薄板D 的面积.例4:求密度均匀的上半椭球体的质心.解:设椭球体由不等式a x 2+by 2+c z 2≤1表示.由对称性知x =0, y =0, 又由ρ为常数,得z =⎰⎰⎰⎰⎰⎰VVdVdVz ρρ=abc abc ππ3242=83c .三、转动惯量质点A 对于轴l 的转动惯量J 是质点A 的质量m 和A 与转动轴l 的距离r 的平方的乘积,即J=mr 2.设ρ(x,y,z)为空间物体V 的密度分布函数,它在V 上连续. 对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 当以质点系{(ξi ,ηi ,ζi ), i=1,2,…, n}近似替代V 时,质点系对于x 轴的转动惯量为:i i i i ni i i x v J n∆+=∑=),,()(122ζηξρζη.当T →0时,上述积分和的极限就是物体V 对于x 轴的转动惯量 J x =⎰⎰⎰+VdV z y x z y ),,()(22ρ. 类似地,V 对于y 轴与z 轴的转动惯量分别为:J y =⎰⎰⎰+VdV z y x x z ),,()(22ρ, J z =⎰⎰⎰+VdV z y x y x ),,()(22ρ.同理,V 对于坐标平面的转动惯量分别为:J xy =⎰⎰⎰VdV z y x z ),,(2ρ, J yz =⎰⎰⎰VdV z y x x ),,(2ρ, J xz =⎰⎰⎰VdV z y x y ),,(2ρ.平面薄板对于坐标轴的转动惯量分别为:J x =⎰⎰Dd y x y σρ),(2, J y =⎰⎰Dd y x x σρ),(2. 以及有J l =⎰⎰Dd y x y x r σρ),(),(2,其中l 为转动轴, r(x,y)为D 中点(x,y)到l 的距离函数.例5:求密度均匀的圆环D 对于垂直于圆环面中心轴的转动惯量. 解:设圆环D 为R 12≤x 2+y 2≤R 22, 密度为ρ, 则D 中任一点(x,y)与转轴的距离平方为x 2+y 2, 于是转动惯量为:J=⎰⎰+Dd y x σρ)(22=⎰⎰21320R R dr r d πθρ=2πρ(R 24-R 14)=例6:求均匀圆盘D 对于其直径的转动惯量.解:设D 为x 2+y 2≤R 2, 密度为ρ, D 内任一点(x,y)与y 轴的距离为|x|, 于是转动惯量为:(m 为圆盘质量) J=⎰⎰Dd x σρ2=⎰⎰Rdr r d 02320cos θθρπ=⎰πθθρ2024cos 4d R =44R ρπ=42mR .例7:设某球体的密度与球心的距离成正比,求它对于切平面的转动惯量.解:设球体由x 2+y 2+z 2≤R 2表示,密度为k 222z y x ++, k 为比便常数. 切平面方程为x=R, 则球体对于平面x=R 的转动惯量为: J=k ⎰⎰⎰-++VdV x R z y x 2222)(=k ⎰⎰⎰-ππϕθϕϕθ003220sin )cos sin (Rdr r r R d d=kR 6⎰⎰⎪⎭⎫ ⎝⎛+-ππϕθϕθϕθ023220cos sin 61cos sin 5241d d =⎰πθθ2026cos 911d kR =911k πR 6.四、引力求密度为ρ(x,y,z)的立体对立体外质量为1的质点A 的引力.设A 的坐标为(ξi ,ηi ,ζi ),V 中点的坐标用(x,y,z)表示. V 中质量微元dm=ρdV 对A 的引力在坐标轴上的投影为 dF xyz其中K 为引力系数, r=222)()()(ζηξ-+-+-z y x 是A 到dV 的距离,于是 力F 在三个坐标轴上的投影分别为: F x =K ⎰⎰⎰-VdV r x ρξ3, F y =K ⎰⎰⎰-V dV r y ρη3, F z =K ⎰⎰⎰-VdV r z ρζ3, 所以F=F x i+F y j+F z k.例8:设球体V 具有均匀的密度ρ, 求V 对球外一点A(质量为1)的引力(引力系数为k).解:设球体为x 2+y 2+z 2≤R 2,球外一点坐标为(0,0,a) (R<a). 则F x =F y =0,F z =k ⎰⎰⎰-++-V dV a z y x a z ρ2/3222])([=k ρ⎰⎰⎰-++--zD R R a z y x dxdydz a z 2/3222])([)(, 其中D z ={(x,y)|x2+y2≤R 2-z 2}. 运用极坐标计算得: F z =k ρdr a z r rd dz a z z R RR ⎰⎰⎰---+-2202/32220])([)(πθ =2πk ρ⎰-+----R R dz aaz R a z )21(22=2πk ρ⎪⎪⎭⎫⎝⎛+--++-+-⎰-R R dz a az R R a a az R a R 22222222212= 2πk ρ⎥⎦⎤⎢⎣⎡-+----+---⎰⎰--RRRRaz d a az R a R a az d a az R a R )2(214)2(241222222222=2πk ρ⎥⎦⎤⎢⎣⎡+---+-----RRRRa az R a R a a az R a R 22222322222)2(612 =2πk ρ⎥⎦⎤⎢⎣⎡-++----222233)(6)()(2a R a R a a R R a R=2πk ρ⎪⎪⎭⎫⎝⎛-+++-232332a R R a R R R =2334a R k ρπ-. (注:z ≤R<a)习题1、求曲面az=xy 包含在圆柱x 2+y 2=a 2内那部分的面积.解:∵z x =a y, z y =ax , D={(r,θ)|0≤r ≤a, 0≤θ≤2π}, ∴曲面面积为: S=⎰⎰⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+Ddxdy a x a y 221=⎰⎰+a dr a r r d 022201πθ=)122(322-a π.2、求锥面z=22y x +被柱面z 2=2x 所截部分的曲面面积. 解:且面在xy 平面的投影区域为:D={(r,θ)|0≤r ≤1, 0≤θ≤2π}, 且z x =22yx x +, z y =22yx y +, ∴曲面面积为:S=⎰⎰⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++Ddxdy y x y y x x 2222221=⎰⎰10202rdr d πθ=π2.3、求下列均匀密度的平面薄板质心:(1)半椭圆2222by a x +≤1, y ≥0;(2)高为h, 底分别为a 和b 的等腰梯形.解:(1)设质心位置为(x ,y ), 由对称性得x =0.y =⎰⎰⎰⎰DDd yd σρσρ=⎰⎰⎰⎰DDd yd σσ=⎰⎰Dyd ab σπ2=dr r ab d ab ⎰⎰πθθπ122sin 2=π34b . (2)不妨设a 为下底,以下底中点为原点建立直角坐标系,则 D={(x,y)|l 1(y)≤x ≤l 2(y),0≤y ≤h}.设质心位置为(x ,y ), 由对称性得x =0.又等腰三角形的面积为2)(hb a +, ∴y =⎰⎰+D yd h b a σ)(2=⎰⎰+h y l y l dx ydy h b a 0)()(21)(2=⎰⎥⎦⎤⎢⎣⎡+---+--+h ydy a h y h a b a h y h b a h b a 02)(22)(2)(2=⎰⎥⎦⎤⎢⎣⎡+--+h ydy a h y h b a h b a 0)()(2=⎰⎪⎭⎫ ⎝⎛+-+h dy by y h b a h b a 02)(2=h b a a b )(32++. 其中:l 1(y): x=2)(2a h y h a b ---; l 2(y): x=2)(2ah y h b a +--.4、求下列均匀密度物体的质心.(1)z ≤1-x 2-y 2, z ≥0;(2)由坐标面及平面x+2y-z=1所围的四面体. 解:(1)设质心为(x ,y ,z ), 由对称性x =y =0, 应用柱面坐标变换有,z =⎰⎰⎰⎰⎰⎰VVdV dV z ρρ=⎰⎰⎰⎰⎰⎰--221020110201r r dz r d r d zdz r d r d ππθθ=dr r r dr r r )1()1(212102210--⎰⎰=31. (2)设质心为(x ,y ,z ),∵V=⎰⎰⎰VdV =121, ∴x =⎰⎰⎰--+21001211x y x dz dy xdx V =⎰⎰---2101)21(12x dy y x xdx =⎰-1024)1(12dx x x =41. y =⎰⎰⎰--+yy x dz dx ydy V 210122101=⎰⎰---ydx x y ydy 210210)21(12=⎰-21022)21(12dy y y =81. z =⎰⎰⎰--+yy x zdz dx dy V21012211=⎰⎰--+-ydx y x dy 2102210)12(6=⎰--21033)21(6dy y =41-.5、求下列均匀密度的平面薄板的转动惯量: (1)半径为R 的圆关于其切线的转动惯量;(2)边长为a 和b, 且夹角为φ的平行四边形,关于底边b 的转动惯量.解:(1)设切线为x=R, 密度为ρ.则对任一点P(x,y)∈D, P 到x=R 的距离为R-x ,从而转动惯量 J=ρ⎰⎰-Dd x R σ2)(=ρ⎰⎰+-Rdr r Rr R r d 022220)cos cos 2(θθθπ=ρ⎰+-πθθθ2024)cos 41cos 3221(d R= R 4. (2)设密度为ρ. 以底边为x 轴,左端点为原点,则转动惯量 J=⎰⎰Dd y σ2=ρ⎰⎰+by y a dx dy y ϕϕϕcot cot sin 02=3sin 33ϕρb a .6、计算下列引力:(1)均匀薄片x 2+y 2≤R 2, z=0对于轴上一点(0,0,c) (c>0)处的单位质量的引力;(2)均匀柱体x 2+y 2≤a 2, 0≤z ≤h 对于点P(0,0,c) (c>h)处的单位质量的引力;(3)均匀密度的正圆锥体(高h, 底半径R)对于在它的顶点处质量为m 的质点的引力.解:(1)根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρ⎰⎰++Ddxdy c y x c 2/3222)(=kc ρ⎰⎰+R dr c r r d 02/32220)(πθ=2k .∴F={0,0,2k }.(2)根据对称性知引力方向在z 轴上,∴F z =0, F y =0. F z =k ρ⎰⎰⎰-++-VdV c z y x c z 2/3222])([=k ρ⎰⎰⎰-+-a h dr c z r rd dz c z 02/322200])([)(πθ=-2k πρdz c z a c z h⎰⎥⎥⎦⎤⎢⎢⎣⎡-+-+022)(1=2k πρ[]h c h a c a --+-+2222)(. ∴F={0,0,2k πρ[]h c h a c a --+-+2222)(}.(3)以圆锥体的顶点为原点, 对称轴为z 轴建立xyz 三维直角坐标系. 根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρm ⎰⎰⎰++V dV z y x z 2/3222)(=k ρm ⎰⎰⎰+R hrR dz z r zrdr d 02/322020)(πθ=2k πR ρm ⎪⎪⎭⎫⎝⎛++-22221R h R h R . ∴F={0,0, 2k πR ρm ⎪⎪⎭⎫ ⎝⎛++-22221R h R h R }.7、求曲面⎪⎩⎪⎨⎧=+=+=ψϕψϕψsin sin )cos (cos )cos (a z a b y a b x (0≤φ≤2π, 0≤ψ≤2π) 的面积,其中常数a,b 满足0≤a ≤b.解:∵x φ=-(b+acos ψ)sin φ, y φ=(b+acos ψ)cos φ, z φ=0; x ψ=-asin ψcos φ, y ψ=-asin ψsin φ, z ψ=acos ψ.∴E=222ϕϕϕz y x ++=(b+acos ψ)2, G=222ψψψz y x ++=a 2, F=ψϕψϕψϕz z y y x x ++=0. ∴S=σd F EG D ⎰⎰'-2=σψd a b a D ⎰⎰'+)cos (=⎰⎰+ππψψϕ2020)cos (d a b d a =4ab π2.8、求螺旋面⎪⎩⎪⎨⎧===ϕϕϕb z r y r x sin cos (0≤r ≤a, 0≤φ≤2π) 的面积.解:∵x r =cos φ, y r =sin φ, z r =0; x φ=-rsin φ, y φ=rcos φ, z φ=b.∴E=222r r r z y x ++=1, G=222ϕϕϕz y x ++=r 2+b 2, F=ϕϕϕz z y y x x r r r ++=0.∴S=σd F EG D ⎰⎰'-2=σd b r D ⎰⎰'+22=⎰⎰+πϕ20022d dr b r a=π⎪⎪⎭⎫⎝⎛++++b b a a b b a a 22222ln .9、求边长为a 密度均匀的正方体关于其任一棱边的转动变量. 解:以正方体的一个顶点为原点,顶点上方的棱为z 轴,使 正方体处于第一卦限中,则正方体对z 轴上的棱的转动变量为: J z =ρ⎰⎰⎰+V dV y x )(22=ρ⎰⎰⎰+aaadz y x dy dx 00220)(=a ρ⎰⎰+aady y x dx 0220)(=a ρ⎰+adx a ax 032)31(=32a 5ρ. (ρ为正方体密度)。

重积分习题参考答案Word版

重积分习题参考答案Word版

重积分习题参考答案习题11-11.(,)DQ x y d μσ=⎰⎰.3.(1)0; (2)0; (3)124I =I4.(1)12I ≥I ; (2) 12I ≤I ; (3)12I ≥I ; (4) 12I ≤I .5.(1)02≤I ≤; (2)20π≤I ≤; (3)28≤I ≤; (4)36100ππ≤I ≤.习题11-2(A)1.(1)40(,)xdx f x y dy ⎰⎰或2404(,)yy dy f x y dx ⎰⎰;(2)12220122(,)(,)x xx x dx f x y dy dx f x y dy +⎰⎰⎰⎰或21220122(,)(,)y y y y dy f x y dx dy f x y dx +⎰⎰⎰⎰;(3)101(,)xdx f x y dy -⎰或11(,)ydy f x y dx -⎰;(4)224(,)x xf x y dy -⎰或2402(,)(,)dy f x y dx dy f x y dx +⎰⎰.2.(1)402(,)x dx f x y dy ⎰⎰; (2) 101(,)ydy f x y dx ⎰⎰;(3)1102(,)y dy f x y dx -⎰⎰; (4)1(,)y eedy f x y dx ⎰⎰.3.(1)203; (2)32π-; (3)655; (4)6415; (5)1e e -- 4.(1)92; (2)21122e e -+.5.335. 6.(1)20(cos ,sin )ba d f r r rdr πθθθ⎰⎰; (2)2cos 202(cos ,sin )d f r r rdr πθπθθθ--⎰⎰; (3)1(cos sin )20(cos ,sin )d f r r rdr πθθθθθ-+⎰⎰;(4)3sec tan cot 444(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθθπθθθθθθ+++⎰⎰⎰⎰sec tan 304(cos ,sin )d f r r rdr πθθπθθθ+⎰⎰;7.(1)sec csc 440002(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθπθθθθθθ+⎰⎰⎰⎰;(2)23cos 04()d f r rdr πθπθ⎰⎰;(3)1210cos sin (cos ,sin )d f r r rdr πθθθθθ+⎰⎰;(4)sec 40sec tan (cos ,sin )d f r r rdr πθθθθθθ⎰⎰. 8.(1)434a π; 1. 9.(1)2364π; (2)(2ln 21)4π-; (3)34()33R π-; (4)a .10.4332a π. 习题11-2(B)1.(1)120(,)yy dy f x y dx -⎰⎰; (2) 110(,)dy f x y dx ⎰;(3)10121101(,)(,)(,)xf x y dy dx f x y dy dx f x y dy --++⎰⎰⎰⎰⎰;(4)02420(,)(,)y dy f x y dx dy f x y dx +-+⎰⎰⎰.2.(1)0; (2)430; (3)8)3(4)1sin1-. 3.(1)2sec 41arctan4(cos ,sin )d f r r rdr πθθθθ⎰;(2)4cos 202cos (cos ,sin )d f r r rdr πθθθθθ⎰⎰;4.(1)38π; (2)52π.5.(1)2π; (2)49 (3)22π-; (4)414a ; (5)2π.6.(1) 232a π; (2)22a ; (3)23π7.(1)43π; (2)7ln 23; (3)12e -; (4)2ab π. 8.6π.习题11-3(A)1.(1)22111(,,)x y dx f x y z dz -+⎰⎰;(2)2221212(,,)x x y dx f x y z dz --+⎰⎰;(3)2211(,,)x y dx f x y z dz -+⎰;(4)1111(,,)dx f x y z dz -⎰⎰.2.32;3.15(ln 2)28-; 4.21162π-; 5.(1)1(1)e π--; (2)712π; (3)163π; (4)289a . 6.(1)45π; (2)476a π; (3)552()15R a π-; (4)1330π.7.(1)18; (2)8π; (3)10π; (4)ln 3ln 2)3π-. 8.4k R π习题11-3(B)1.(1)(,,)aa dx f x y z dz -⎰;200(cos ,sin ,)ad rdr f r r z dz πθθθ⎰⎰;2220sin (cos sin ,sin sin ,cos )ad d f d ππθϕϕρθϕρθϕρϕρρ⎰⎰⎰;(2)11(,,)dx f x y z dz -⎰;21(cos ,sin ,)rd rdr f r r z dz πθθθ⎰⎰;22400sin (cos sin ,sin sin ,cos )d d f d ππθϕϕρθϕρθϕρϕρρ⎰⎰.(3)2211(,,)x y dx f x y z dz +-⎰⎰;2200(cos ,sin ,)rr d rdr f r r z dz πθθθ⎰⎰⎰;2csc 220csc cot 4sin (cos sin ,sin sin ,cos )d d f d ππϕπϕϕθϕϕρθϕρθϕρϕρρ⎰⎰⎰;2. 222241()3x y x y f dz --+⎰;2224103r r d f dz πθ-⎰⎰,6π3.20200Rd rdr dr πθI =⎰⎰⎰; 23402sin Rd d d πππθϕϕρρI =⎰⎰⎰, 5415R π. 4.(1)835; (2)2845; (3)0; (4)559480R π. 5.336π; 6.π; 7.45π.习题11-4(A)2.1)6π.3.22(2)R π-.4.320. 5.(1)0033(,)58x y ; (2)4(0,)3bπ; (3)22(,0)2()a ab b a b +++. 6.(1)34y a b πI =; 220()4ab a b πI =+(2)725x I =, 967y I =;(3) )33x ab I =, 33y a bI =;7.(1)3(0,0)4; (2)44333()(0,0,)8()A B A B --; (3)2227(,,)5530a a a .8.(1)483a ; (2)27(0,0,)60a ; (3) 611245a . 9.649k R π.习题11-4(B). 2.216R . 3.3535(,)4854.. 5.44()32b a πρ-.6.43512a π. 7.368105ρ. 8.(0,0,54a ).9.222(3)12a h a h π+. 10.2432;327r R R π=.11.2x F G μ=;0y F =; z F Ga πμ=.12.0x y F F ==; 2)z F G h πρ=-.总复习题十一一、1.B 2.C 3.C 4.A 5.B 6.A二、1.(1)()x f x -; 2.(1,1)y y --; 3.54π;4.41(1)2e --; 5.42211()4R a b π+. 三、1.2409π-; 2.314()33R π-; 3.0; 4.2503π;5.200(,)(,)f x y dx f x y dx +-22(,)(,)f x y dx f x y dx -.6.42π-.7.212A .8.8π. 9.5144. 10.以球心O 及0P 的连线作为x 轴正方向建立直角坐标系(,0,0)4R -友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。

数学分析课本-习题及答案第二十一章

数学分析课本-习题及答案第二十一章

第十一章 重积分§1 二重积分的概念1.把重积分⎰⎰D xydxdy 作为积分和的极限,计算这个积分值,其中D=[][]1,01,0⨯,并用直线网x=n i ,y=nj (i,j=1,2,…,n-1)分割这个正方形为许多小正方形,每一小正方形取其右上顶点为其界点.2.证明:若函数f 在矩形式域上D 可积,则f 在D 上有界.3.证明定理:若f 在矩形区域D 上连续,则f 在D 上可积.4.设D 为矩形区域,试证明二重积分性质2、4和7.性质2 若f 、g 都在D 上可积,则f+g 在D 上也可积,且()⎰+D g f =⎰⎰+D D g f . 性质4 若f 、g 在D 上可积,且g f ≤,则 ⎰⎰≤D Dg f , 性质7(中值定理) 若f 为闭域D 上连续函数,则存在()D ,∈ηξ,使得()D ,f f D∆ηξ=⎰. 5.设D 0、D 1和D 2均为矩形区域,且210D D D =,∅=11D int D int , 试证二重积分性质3.性质3(区域可加性) 若210D D D =且11D int D int ∅=,则f 在D 0上可积的充要条件是f 在D 1、D 2上都可积,且⎰0D f =⎰⎰+21D D f f , 6.设f 在可求面积的区域D 上连续,证明:(1)若在D 上()0y ,x f ≥,()0y ,x f ≠则0f D>⎰; (2)若在D 内任一子区域D D ⊂'上都有⎰'=D 0f ,则在D 上()0y ,x f ≡。

.7.证明:若f 在可求面积的有界闭域D 上连续,,g 在D 上可积且不变号,则存在一点()D ,∈ηξ,使得()()⎰⎰D dxdy y ,x g y ,x f =()ηξ,f ()⎰⎰Ddxdy y ,x g .8.应用中值定理估计积分⎰⎰≤-++10y x 22ycos x cos 100dxdy 的值§2 二重积分的计算1.计算下列二重积分:(1)()⎰⎰-Ddxdy x 2y ,其中D=[][]2,15,3⨯;(2)⎰⎰D2dxdy xy ,其中(ⅰ)D=[][]3,02,0⨯,(ⅱ)D=[]3,0 []2,0⨯; (3)()⎰⎰+Ddxdy y x cos ,其中D=[]π⨯⎥⎦⎤⎢⎣⎡π,02,0; (4)⎰⎰+D dx dy x y 1x ,其中D=[][]1,01,0⨯. 2. 设f(x,y)=()()y f x f 21⋅为定义在D=[]⨯11b ,a []22b ,a 上的函数,若1f 在[]11b ,a 上可积,2f 在[]22b ,a 上可积,则f 在D 上可积,且⎰D f =⎰⎰⋅1122b a b a 21f f . 3.设f 在区域D 上连续,试将二重积分()⎰⎰Ddxdy y ,x f 化为不同顺序的累次积分:(1)D 由不等式x y ≤,a y ≤,b x ≤()b a 0≤≤所确的区域:(2)D 由不等式222a y x ≤+与a y x ≤+(a>0)所确定的区域;(3)D=(){}1,≤+y x y x .4.在下列积分中改变累次积分的顺序:(1) ()⎰⎰20x 2x dy y ,x f dx ; (2) ()⎰⎰----11x 1x 122dy y ,x f dx ; (3)()⎰⎰10x 02dy y ,x f dy +()()⎰⎰-31x 3210dy y ,x f dx .5.计算下列二重积分:(1)⎰⎰D2dxdy xy ,其中D 由抛物线y=2px 与直线x=2p (p>0)所围的区域; (2)()⎰⎰+D 22dxdy y x,其中D=(){1x 0y ,x ≤≤, y x ≤ }x 2≤; (3)⎰⎰-D x a 2dx dy (a>0),其中D 为图(20—7)中的阴影部分; (4)⎰⎰Ddxdy x ,其中D=(){}x y x y ,x 22≤+; (5)⎰⎰D dxdy xy ,其中为圆域222a y x ≤+.6.写出积分()⎰⎰ddxdy y ,x f 在极坐标变换后不同顺序的累次积分:(1)D 由不等式1y x 22≤+,x y ≤,0y ≥所确定的区域;(2)D 由不等式2222b y x a ≤+≤所确定的区域;(3)D=(){}0x ,y y x y ,x 22≥≤+.7.用极坐标计算二重积分: (1) ⎰⎰+D22dxdy y x sin ,其中D=(){222y x y ,x +≤π }24π≤; (2)()⎰⎰+Ddxdy y x ,其中D=(){}y x y x y ,x 22+≤+; (3)()⎰⎰+'D22dxdy y x f ,其中D 为圆域222R y x ≤+.8.在下列符号分中引入新变量后,试将它化为累次积分:(1) ()⎰⎰--20x 2x 1dy y ,x f dx ,其中u=x+y,v=x-y;(2) ()dxdy y ,x f D⎰⎰,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x=v cos U 4, v sin U y 4=.(3)()⎰⎰dxdy y ,x f ,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x+y=u,y=uv.9.求由下列曲面所围立体V 的体积:(1) v 由坐标平面及x=2,y=3,x+y+Z=4所围的角柱体;(2) v 由z=22y x +和z=x+y 围的立体; (3) v 由曲面9y 4x Z 222+=和2Z=9y 4x 22+所围的立体.11.试作适当变换,计算下列积分:(1)()()⎰⎰-+Ddxdy y x sin y x ,D=(){π≤+≤y x 0y .x }π≤-≤y x 0;(2)⎰⎰+D y x y dxdy e,D=(){1y x y ,x ≤+,0x ≥,}0y ≥.12.设f:[a,b]→R 为连续函数,应用二重积分性质证明:()≤⎥⎦⎤⎢⎣⎡⎰2b a dx x f ()()⎰-b a 2dx x f a b , 其中等号仅在f 为常量函数时成立。

高数第六章重积分课堂练习题及答案

高数第六章重积分课堂练习题及答案

r O
图3
D {(r, ) | 0 r r( ), 0 2}
f
(r cos , r sin )rdrd
2
0
d r( ) 0
f
(r cos , r sin )rdr
D
2o 极点在区域 D 的边界上,如图 8-10 所示.
O
r
图4
D {(r, ) | 0 r r( ), }
r( )
D
D
大小. 先判断 f (x, y) 和 g(x, y) 在 D 上的大小关系,再应用二重积分的比较性质比较两个二
重积分的大小.
解: 由 (x 1)2 ( y 1)2 2 ,可得
y
x y 1 (x2 y2 2x 3) 1 [(x 1)2 y2 ] 1 1
2
2
x
如图 8-22.
o
图 8-22
成的在第一卦限内的立体体积. R3 arctan K
y
3
z x2 y2 z2 1
y
O Dxy
y
x
x2 y2 1
O
x
o
x
图6
2. 求由曲面 z x2 2 y2 及 z 6 2x2 y2 所围成的立体的体积. 6 3. 求由曲面 z x2 y 2 及 z x 2 y 2 所围成的立体的体积
D
[思路] 利用二重积分的估值性质估计二重积分,先计算被积函数在积分区域上的最大、 最小值和积分区域的面积,应用估值性质来估计二重积分的值.
解: 因为在积分区域 D 上, 0 x 1,0 y 2 ,所以 0 xy 2, 1 x y 1 4
于是可得 0 xy(x y 1) 8 ,而 D 的面积 1 2 2 ,应用估值性质有

数学分析21.6重积分的应用(含习题及参考答案)

第二十一章 重积分 6重积分的应用一、曲面的面积问题:设D 为可求面积的平面有界区域,函数f(x,y)在D 上具有连续的一阶偏导数,讨论由方程z=f(x,y), (x,y)∈D 所确定的曲面S 的面积.分析:对区域D 作分割T ,把D 分成n 个小区域σi (i=1,2,…,n). 曲面S 同时也被分割成相应的n 个小曲面片S i (i=1,2,…,n). 在每个S i 上任取一点M i , 作曲面在这一点的切平面πi , 并 在πi 上取出一小块A i , 使得A i 与S i 在xy 平面上的投影都是σi . 现在M i 附近,用切平面A i 代替小曲面片S i . 则当T 充分小时,有 △S=∑=∆ni i S 1≈∑=∆ni i A 1, 这里的△S, △S i , △A i 分别表示S, S i 和A i 的面积.∴当T →0时,可用和式∑=∆ni i A 1的极限作为S 的面积.建立曲面面积计算公式:∵切平面πi 的法向量就是曲面S 在点M i (ξi ,ηi ,ζi )处的法向量, 记其与z 轴的夹角为γi , 则|cos γi |=),(),(1122i i yi i xf f ηξηξ++.∵A i 在xy 平面上投影为σi , ∴△A i =iiγσcos ∆=i i i y i i x f f σηξηξ∆++),(),(122. 又和数∑=∆ni i A 1=∑=∆++ni i i i y i i x f f 122),(),(1σηξηξ是连续函数),(),(122y x f y x f y x ++在有界闭区域D 上的积分和,∴当T →0时,有△S=∑=→∆++ni i i i y i i x T f f 1220),(),(1lim σηξηξ=⎰⎰++Dy x dxdy y x f y x f ),(),(122, 或△S=∑=→∆ni i iT 1cos limγσ=⎰⎰∧Dz n dxdy ),cos(,其中),cos(∧z n 为曲面的法向量与z 轴正向夹角的余弦.例1:求圆锥z=22y x +在圆柱体x 2+y 2≤x 内那一部分的面积. 解:由x 2+y 2≤x, 得D={(r,θ)|0≤r ≤21, 0≤θ≤2π}, 又z x =22y x x +=r r θcos =cos θ, z y =22yx y+=r r θsin =sin θ, ∴△S=⎰⎰++Dyxdxdy z z 221=⎰⎰πθ202102rdr d =π42.例2:设平面光滑曲线的方程为y=f(x), x ∈[a,b] (f(x)>0). 求证:此曲线绕x 轴旋转一周得到的旋转曲面的面积为: S=⎰'+ba dx x f x f )(1)(22π.证:由上半旋转面方程为z=22)(y x f -, 得 z x =22)()()(yx f x f x f -', z y =22)(yx f y --. 即有221yxz z ++=2222222)()()()(1yx f y y x f x f x f -+-'+=2222)())(1)((yx f x f x f -'+. ∴S=⎰⎰--'+b a x f x f dy y x f x f x f dx )()(222)()(1)(2=⎰⎰-'+b a x f dyy x f dx x f x f )(0222)(1)(1)(4=⎰⎰---'+ba x f x yf d x f y dx x f x f )(01222))(()(11)(1)(4=⎰⎰-'+b a dt tdx x f x f 102211)(1)(4=⎰'+b adx x f x f )(1)(22π.注:若空间曲面S 由参量方程:x=x(u,v),y=y(u,v),z=z(u,v),(u,v)∈D 确定, 其中x(u,v), y(u,v), z(u,v)在D 上具有连续一阶偏导数,且),(),(v u u y x ∂,),(),(v u u z y ∂,),(),(v u u x z ∂中至少有一个不等于0,则 曲面S 在点(x,y,z)的法线方向数为⎝⎛∂),(),(v u u z y ,),(),(v u u x z ∂,⎪⎪⎭⎫∂),(),(v u u y x , 则 它与z 轴的夹角的余弦的绝对值为:),cos(∧z n =222),(),(),(),(),(),(),(),(⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂∂v u u y x v u u x z v u u z y v u u y x=2222222)())((),(),(v u v u v u vvvuuuz z y y x x z y x z y x v u u y x ++-++++∂=21),(),(FEG v u u y x -∂,其中E=222u u u z y x ++,G=222v v v z y x ++,F=v u v u v u z z y y x x ++.当),(),(v u u y x ∂≠0,则有△S=⎰⎰∧Dz n dxdy ),cos(=dudv z n v u u y x D ⎰⎰'∧∂),cos(),(),(=dudv F EG D ⎰⎰'-2.例3:求球面上两条纬线和两条经线之间 的曲面的面积(图中阴影部分). 解:设球面方程为:(R 为球的半径). x=Rcos ψcos φ,y=Rcos ψsin φ, z=Rsin ψ.由E=222ψψψz y x ++=R 2, G=222ϕϕϕz y x ++=R 2cos 2ψ, F=ϕψϕψϕψz z y y x x ++=0, 得2F EG -=R 2cos ψ. ∴△S=⎰⎰2121cos 2ψψϕϕψψϕd R d =R 2(φ2-φ1)(sin ψ2-sin ψ1).二、质心引例:设V 是密度函数为ρ(x,y,z)的空间物体,ρ(x,y,z)在V 上连续. 为求得V 的质心坐标公式,先对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则小块v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 若把每一小块看作质量集中在(ξi ,ηi ,ζi )的质点时,整个物体就可用这n 个质点的质点系来近似代替. 由于质点系的质心坐标公式为:∑∑==∆∆=ni iiiini iiiiin v v x 11),,(),,(ζηξρζηξρξ, ∑∑==∆∆=ni iiiini iiiiin v v y 11),,(),,(ζηξρζηξρη, ∑∑==∆∆=n i iiiini ii i i in v v z 11),,(),,(ζηξρζηξρζ.当T →0时,n x , n y , n z 的极限x , y , z 就定义为V 的质心坐标,即⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x x x ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x y y ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x z z ),,(),,(ρρ.当物体V 的密度均匀即ρ为常数时,则有⎰⎰⎰∆=VxdV Vx 1, ⎰⎰⎰∆=VydV Vy 1, ⎰⎰⎰∆=VzdV Vz 1, 这里△V 为V 的体积.又密度分布为ρ(x,y)的平面薄板D 的质心坐标为:⎰⎰⎰⎰=DDd y x d y x x x σρσρ),(),(, ⎰⎰⎰⎰=DDd y x d y x y y σρσρ),(),(. 当平面薄板的密度均匀时,即ρ为常数时,则有⎰⎰∆=Dxd D x σ1, ⎰⎰∆=D yd D y σ1, △D 为薄板D 的面积.例4:求密度均匀的上半椭球体的质心.解:设椭球体由不等式a x 2+by 2+c z 2≤1表示.由对称性知x =0, y =0, 又由ρ为常数,得z =⎰⎰⎰⎰⎰⎰VVdVdVz ρρ=abc abc ππ3242=83c .三、转动惯量质点A 对于轴l 的转动惯量J 是质点A 的质量m 和A 与转动轴l 的距离r 的平方的乘积,即J=mr 2.设ρ(x,y,z)为空间物体V 的密度分布函数,它在V 上连续. 对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 当以质点系{(ξi ,ηi ,ζi ), i=1,2,…, n}近似替代V 时,质点系对于x 轴的转动惯量为:i i i i ni i i x v J n∆+=∑=),,()(122ζηξρζη.当T →0时,上述积分和的极限就是物体V 对于x 轴的转动惯量 J x =⎰⎰⎰+VdV z y x z y ),,()(22ρ. 类似地,V 对于y 轴与z 轴的转动惯量分别为:J y =⎰⎰⎰+VdV z y x x z ),,()(22ρ, J z =⎰⎰⎰+VdV z y x y x ),,()(22ρ.同理,V 对于坐标平面的转动惯量分别为:J xy =⎰⎰⎰VdV z y x z ),,(2ρ, J yz =⎰⎰⎰VdV z y x x ),,(2ρ, J xz =⎰⎰⎰VdV z y x y ),,(2ρ.平面薄板对于坐标轴的转动惯量分别为:J x =⎰⎰Dd y x y σρ),(2, J y =⎰⎰Dd y x x σρ),(2. 以及有J l =⎰⎰Dd y x y x r σρ),(),(2,其中l 为转动轴, r(x,y)为D 中点(x,y)到l 的距离函数.例5:求密度均匀的圆环D 对于垂直于圆环面中心轴的转动惯量. 解:设圆环D 为R 12≤x 2+y 2≤R 22, 密度为ρ, 则D 中任一点(x,y)与转轴的距离平方为x 2+y 2, 于是转动惯量为:J=⎰⎰+Dd y x σρ)(22=⎰⎰21320R R dr r d πθρ=2πρ(R 24-R 14)=例6:求均匀圆盘D 对于其直径的转动惯量.解:设D 为x 2+y 2≤R 2, 密度为ρ, D 内任一点(x,y)与y 轴的距离为|x|, 于是转动惯量为:(m 为圆盘质量) J=⎰⎰Dd x σρ2=⎰⎰Rdr r d 02320cos θθρπ=⎰πθθρ2024cos 4d R =44R ρπ=42mR .例7:设某球体的密度与球心的距离成正比,求它对于切平面的转动惯量.解:设球体由x 2+y 2+z 2≤R 2表示,密度为k 222z y x ++, k 为比便常数. 切平面方程为x=R, 则球体对于平面x=R 的转动惯量为: J=k ⎰⎰⎰-++VdV x R z y x 2222)(=k ⎰⎰⎰-ππϕθϕϕθ003220sin )cos sin (Rdr r r R d d=kR 6⎰⎰⎪⎭⎫ ⎝⎛+-ππϕθϕθϕθ023220cos sin 61cos sin 5241d d =⎰πθθ2026cos 911d kR =911k πR 6.四、引力求密度为ρ(x,y,z)的立体对立体外质量为1的质点A 的引力.设A 的坐标为(ξi ,ηi ,ζi ),V 中点的坐标用(x,y,z)表示. V 中质量微元dm=ρdV 对A 的引力在坐标轴上的投影为 dF xyz其中K 为引力系数, r=222)()()(ζηξ-+-+-z y x 是A 到dV 的距离,于是 力F 在三个坐标轴上的投影分别为: F x =K ⎰⎰⎰-VdV r x ρξ3, F y =K ⎰⎰⎰-V dV r y ρη3, F z =K ⎰⎰⎰-VdV r z ρζ3, 所以F=F x i+F y j+F z k.例8:设球体V 具有均匀的密度ρ, 求V 对球外一点A(质量为1)的引力(引力系数为k).解:设球体为x 2+y 2+z 2≤R 2,球外一点坐标为(0,0,a) (R<a). 则F x =F y =0,F z =k ⎰⎰⎰-++-V dV a z y x a z ρ2/3222])([=k ρ⎰⎰⎰-++--zD R R a z y x dxdydz a z 2/3222])([)(, 其中D z ={(x,y)|x2+y2≤R 2-z 2}. 运用极坐标计算得: F z =k ρdr a z r rd dz a z z R RR ⎰⎰⎰---+-2202/32220])([)(πθ =2πk ρ⎰-+----R R dz aaz R a z )21(22=2πk ρ⎪⎪⎭⎫⎝⎛+--++-+-⎰-R R dz a az R R a a az R a R 22222222212= 2πk ρ⎥⎦⎤⎢⎣⎡-+----+---⎰⎰--RRRRaz d a az R a R a az d a az R a R )2(214)2(241222222222=2πk ρ⎥⎦⎤⎢⎣⎡+---+-----RRRRa az R a R a a az R a R 22222322222)2(612 =2πk ρ⎥⎦⎤⎢⎣⎡-++----222233)(6)()(2a R a R a a R R a R=2πk ρ⎪⎪⎭⎫⎝⎛-+++-232332a R R a R R R =2334a R k ρπ-. (注:z ≤R<a)习题1、求曲面az=xy 包含在圆柱x 2+y 2=a 2内那部分的面积.解:∵z x =a y, z y =ax , D={(r,θ)|0≤r ≤a, 0≤θ≤2π}, ∴曲面面积为: S=⎰⎰⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+Ddxdy a x a y 221=⎰⎰+a dr a r r d 022201πθ=)122(322-a π.2、求锥面z=22y x +被柱面z 2=2x 所截部分的曲面面积. 解:且面在xy 平面的投影区域为:D={(r,θ)|0≤r ≤1, 0≤θ≤2π}, 且z x =22yx x +, z y =22yx y +, ∴曲面面积为:S=⎰⎰⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++Ddxdy y x y y x x 2222221=⎰⎰10202rdr d πθ=π2.3、求下列均匀密度的平面薄板质心:(1)半椭圆2222by a x +≤1, y ≥0;(2)高为h, 底分别为a 和b 的等腰梯形.解:(1)设质心位置为(x ,y ), 由对称性得x =0.y =⎰⎰⎰⎰DDd yd σρσρ=⎰⎰⎰⎰DDd yd σσ=⎰⎰Dyd ab σπ2=dr r ab d ab ⎰⎰πθθπ122sin 2=π34b . (2)不妨设a 为下底,以下底中点为原点建立直角坐标系,则 D={(x,y)|l 1(y)≤x ≤l 2(y),0≤y ≤h}.设质心位置为(x ,y ), 由对称性得x =0.又等腰三角形的面积为2)(hb a +, ∴y =⎰⎰+D yd h b a σ)(2=⎰⎰+h y l y l dx ydy h b a 0)()(21)(2=⎰⎥⎦⎤⎢⎣⎡+---+--+h ydy a h y h a b a h y h b a h b a 02)(22)(2)(2=⎰⎥⎦⎤⎢⎣⎡+--+h ydy a h y h b a h b a 0)()(2=⎰⎪⎭⎫ ⎝⎛+-+h dy by y h b a h b a 02)(2=h b a a b )(32++. 其中:l 1(y): x=2)(2a h y h a b ---; l 2(y): x=2)(2ah y h b a +--.4、求下列均匀密度物体的质心.(1)z ≤1-x 2-y 2, z ≥0;(2)由坐标面及平面x+2y-z=1所围的四面体. 解:(1)设质心为(x ,y ,z ), 由对称性x =y =0, 应用柱面坐标变换有,z =⎰⎰⎰⎰⎰⎰VVdV dV z ρρ=⎰⎰⎰⎰⎰⎰--221020110201r r dz r d r d zdz r d r d ππθθ=dr r r dr r r )1()1(212102210--⎰⎰=31. (2)设质心为(x ,y ,z ),∵V=⎰⎰⎰VdV =121, ∴x =⎰⎰⎰--+21001211x y x dz dy xdx V =⎰⎰---2101)21(12x dy y x xdx =⎰-1024)1(12dx x x =41. y =⎰⎰⎰--+yy x dz dx ydy V 210122101=⎰⎰---ydx x y ydy 210210)21(12=⎰-21022)21(12dy y y =81. z =⎰⎰⎰--+yy x zdz dx dy V21012211=⎰⎰--+-ydx y x dy 2102210)12(6=⎰--21033)21(6dy y =41-.5、求下列均匀密度的平面薄板的转动惯量: (1)半径为R 的圆关于其切线的转动惯量;(2)边长为a 和b, 且夹角为φ的平行四边形,关于底边b 的转动惯量.解:(1)设切线为x=R, 密度为ρ.则对任一点P(x,y)∈D, P 到x=R 的距离为R-x ,从而转动惯量 J=ρ⎰⎰-Dd x R σ2)(=ρ⎰⎰+-Rdr r Rr R r d 022220)cos cos 2(θθθπ=ρ⎰+-πθθθ2024)cos 41cos 3221(d R= R 4. (2)设密度为ρ. 以底边为x 轴,左端点为原点,则转动惯量 J=⎰⎰Dd y σ2=ρ⎰⎰+by y a dx dy y ϕϕϕcot cot sin 02=3sin 33ϕρb a .6、计算下列引力:(1)均匀薄片x 2+y 2≤R 2, z=0对于轴上一点(0,0,c) (c>0)处的单位质量的引力;(2)均匀柱体x 2+y 2≤a 2, 0≤z ≤h 对于点P(0,0,c) (c>h)处的单位质量的引力;(3)均匀密度的正圆锥体(高h, 底半径R)对于在它的顶点处质量为m 的质点的引力.解:(1)根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρ⎰⎰++Ddxdy c y x c 2/3222)(=kc ρ⎰⎰+R dr c r r d 02/32220)(πθ=2k .∴F={0,0,2k }.(2)根据对称性知引力方向在z 轴上,∴F z =0, F y =0. F z =k ρ⎰⎰⎰-++-VdV c z y x c z 2/3222])([=k ρ⎰⎰⎰-+-a h dr c z r rd dz c z 02/322200])([)(πθ=-2k πρdz c z a c z h⎰⎥⎥⎦⎤⎢⎢⎣⎡-+-+022)(1=2k πρ[]h c h a c a --+-+2222)(. ∴F={0,0,2k πρ[]h c h a c a --+-+2222)(}.(3)以圆锥体的顶点为原点, 对称轴为z 轴建立xyz 三维直角坐标系. 根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρm ⎰⎰⎰++V dV z y x z 2/3222)(=k ρm ⎰⎰⎰+R hrR dz z r zrdr d 02/322020)(πθ=2k πR ρm ⎪⎪⎭⎫⎝⎛++-22221R h R h R . ∴F={0,0, 2k πR ρm ⎪⎪⎭⎫ ⎝⎛++-22221R h R h R }.7、求曲面⎪⎩⎪⎨⎧=+=+=ψϕψϕψsin sin )cos (cos )cos (a z a b y a b x (0≤φ≤2π, 0≤ψ≤2π) 的面积,其中常数a,b 满足0≤a ≤b.解:∵x φ=-(b+acos ψ)sin φ, y φ=(b+acos ψ)cos φ, z φ=0; x ψ=-asin ψcos φ, y ψ=-asin ψsin φ, z ψ=acos ψ.∴E=222ϕϕϕz y x ++=(b+acos ψ)2, G=222ψψψz y x ++=a 2, F=ψϕψϕψϕz z y y x x ++=0. ∴S=σd F EG D ⎰⎰'-2=σψd a b a D ⎰⎰'+)cos (=⎰⎰+ππψψϕ2020)cos (d a b d a =4ab π2.8、求螺旋面⎪⎩⎪⎨⎧===ϕϕϕb z r y r x sin cos (0≤r ≤a, 0≤φ≤2π) 的面积.解:∵x r =cos φ, y r =sin φ, z r =0; x φ=-rsin φ, y φ=rcos φ, z φ=b.∴E=222r r r z y x ++=1, G=222ϕϕϕz y x ++=r 2+b 2, F=ϕϕϕz z y y x x r r r ++=0.∴S=σd F EG D ⎰⎰'-2=σd b r D ⎰⎰'+22=⎰⎰+πϕ20022d dr b r a=π⎪⎪⎭⎫⎝⎛++++b b a a b b a a 22222ln .9、求边长为a 密度均匀的正方体关于其任一棱边的转动变量. 解:以正方体的一个顶点为原点,顶点上方的棱为z 轴,使 正方体处于第一卦限中,则正方体对z 轴上的棱的转动变量为: J z =ρ⎰⎰⎰+V dV y x )(22=ρ⎰⎰⎰+aaadz y x dy dx 00220)(=a ρ⎰⎰+aady y x dx 0220)(=a ρ⎰+adx a ax 032)31(=32a 5ρ. (ρ为正方体密度)。

数学分析课后习题答案--高教第二版(陈纪修)--13章


F (x, y) = f (x) , (x, y) ∈ D 。
证明 F (x, y) 在 D 上可积。
证 将[a,b] 、[c, d ] 分别作划分:
a = x0 < x1 < x2 < < xn−1 < xn = b

m c = y0 < y1 < y2 < < ym−1 < ym = d , o 则 D 分成了 nm 个小矩形 ∆Dij (i = 1,2, , n, j = 1,2, , m) 。
2π 3

∫∫∫

1
+
dxdxdz x2 + y2 +
z
2

4π 3

m 4.计算下列重积分:
co (1) ∫∫(x3 + 3x2 y + y3 )dxdy ,其中 D 为闭矩形[0,1] × [0,1] ;
. D
aw (2) ∫∫ xy ex2+y2 dxdy ,其中 D 为闭矩形[a,b] × [c,d ];
课 证明
H ( x, y) = max{ f ( x, y), g( x, y)}

h( x, y) = min{ f ( x, y), g( x, y)}
也在 D 上可积。
证 首先我们有
H (x, y) = 1 ( f (x, y) + g(x, y) + f (x, y) − g(x, y) ), 2
D
khd (3)
∫∫∫ Ω
dxdydz (x + y + z)3
,其中

为长方体 [1,2]
×
[1,2]

数学分析课本(华师大三版)-习题及答案第二十一章

第十一章 重积分§1 二重积分的概念1.把重积分⎰⎰D xydxdy 作为积分和的极限,计算这个积分值,其中D=[][]1,01,0⨯,并用直线网x=n i ,y=nj (i,j=1,2,…,n-1)分割这个正方形为许多小正方形,每一小正方形取其右上顶点为其界点.2.证明:若函数f 在矩形式域上D 可积,则f 在D 上有界.3.证明定理(20.3):若f 在矩形区域D 上连续,则f 在D 上可积.4.设D 为矩形区域,试证明二重积分性质2、4和7.性质2 若f 、g 都在D 上可积,则f+g 在D 上也可积,且()⎰+D g f =⎰⎰+D D g f .性质4 若f 、g 在D 上可积,且g f ≤,则 ⎰⎰≤D Dg f ,性质7(中值定理) 若f 为闭域D 上连续函数,则存在()D ,∈ηξ,使得()D ,f f D∆ηξ=⎰.5.设D 0、D 1和D 2均为矩形区域,且210D D D U =,∅=11D int D int I , 试证二重积分性质3.性质3(区域可加性) 若210D D D U =且11D int D int I ∅=,则f 在D 0上可积的充要条件是f 在D 1、D 2上都可积,且⎰0D f =⎰⎰+21D D f f ,6.设f 在可求面积的区域D 上连续,证明:(1)若在D 上()0y ,x f ≥,()0y ,x f ≠则0f D>⎰;(2)若在D 内任一子区域D D ⊂'上都有⎰'=D 0f ,则在D 上()0y ,x f ≡。

.7.证明:若f 在可求面积的有界闭域D 上连续,,g 在D 上可积且不变号,则存在一点()D ,∈ηξ,使得()()⎰⎰D dxdy y ,x g y ,x f =()ηξ,f ()⎰⎰Ddxdy y ,x g .8.应用中值定理估计积分⎰⎰≤-++10y x 22ycos x cos 100dxdy的值§2 二重积分的计算1.计算下列二重积分:(1)()⎰⎰-Ddxdy x 2y ,其中D=[][]2,15,3⨯;(2)⎰⎰D 2dxdy xy ,其中(ⅰ)D=[][]3,02,0⨯,(ⅱ)D=[]3,0 []2,0⨯;(3)()⎰⎰+Ddxdy y x cos ,其中D=[]π⨯⎥⎦⎤⎢⎣⎡π,02,0;(4)⎰⎰+D dxdy xy 1x ,其中D=[][]1,01,0⨯.2. 设f(x,y)=()()y f x f 21⋅为定义在D=[]⨯11b ,a []22b ,a 上的函数,若1f 在[]11b ,a 上可积,2f 在[]22b ,a 上可积,则f 在D 上可积,且⎰D f =⎰⎰⋅1122b a b a 21f f .3.设f 在区域D 上连续,试将二重积分()⎰⎰Ddxdy y ,x f 化为不同顺序的累次积分:(1)D 由不等式x y ≤,a y ≤,b x ≤()b a 0≤≤所确的区域:(2)D 由不等式222a y x ≤+与a y x ≤+(a>0)所确定的区域;(3)D=(){}1,≤+y x y x .4.在下列积分中改变累次积分的顺序:(1) ()⎰⎰20x 2x dy y ,x f dx ; (2) ()⎰⎰----11x 1x 122dy y ,x f dx ;(3)()⎰⎰10x 02dy y ,x f dy +()()⎰⎰-31x 3210dy y ,x f dx .5.计算下列二重积分:(1)⎰⎰D 2dxdy xy ,其中D 由抛物线y=2px 与直线x=2p (p>0)所围的区域;(2)()⎰⎰+D 22dxdy y x,其中D=(){1x 0y ,x ≤≤, y x ≤ x 2≤;(3)⎰⎰-D x a 2dxdy (a>0),其中D 为图(20—7)中的阴影部分;(4)⎰⎰Ddxdy x ,其中D=(){}x y x y ,x 22≤+;(5)⎰⎰D dxdy xy ,其中为圆域222a y x ≤+.6.写出积分()⎰⎰ddxdy y ,x f 在极坐标变换后不同顺序的累次积分:(1)D 由不等式1y x 22≤+,x y ≤,0y ≥所确定的区域;(2)D 由不等式2222b y x a ≤+≤所确定的区域;(3)D=(){}0x ,y y x y ,x 22≥≤+.7.用极坐标计算二重积分:(1) ⎰⎰+D 22dxdy y x sin ,其中D=(){222y x y ,x +≤π }24π≤;(2)()⎰⎰+Ddxdy y x ,其中D=(){}y x y x y ,x 22+≤+;(3)()⎰⎰+'D 22dxdy y x f ,其中D 为圆域222R y x ≤+.8.在下列符号分中引入新变量后,试将它化为累次积分:(1) ()⎰⎰--20x 2x 1dy y ,x f dx ,其中u=x+y,v=x-y;(2) ()dxdy y ,x f D ⎰⎰,其中D=(){a y x y ,x ≤+,0x ≥,}0y ≥,若x=v cos U 4,v sin U y 4=.(3) ()⎰⎰dxdy y ,x f ,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x+y=u,y=uv.9.求由下列曲面所围立体V 的体积:(1) v 由坐标平面及x=2,y=3,x+y+Z=4所围的角柱体;(2) v 由z=22y x +和z=x+y 围的立体;(3) v 由曲面9y 4x Z 222+=和2Z=9y 4x 22+所围的立体.11.试作适当变换,计算下列积分:(1)()()⎰⎰-+Ddxdy y x sin y x ,D=(){π≤+≤y x 0y .x }π≤-≤y x 0;(2)⎰⎰+D y x y dxdy e,D=(){1y x y ,x ≤+,0x ≥,}0y ≥.12.设f:[a,b]→R 为连续函数,应用二重积分性质证明:()≤⎥⎦⎤⎢⎣⎡⎰2b a dx x f ()()⎰-b a 2dx x f a b ,其中等号仅在f 为常量函数时成立。

数学分析21.7n重积分(含习题及参考答案)

第二十一章 重积分7 n 重积分引例:设物体V 1中点的坐标为(x 1,y 1,z 1), V 2中点的坐标为(x 2,y 2,z 2), 它们的密度函数分别为连续函数ρ1(x 1,y 1,z 1)与ρ2(x 2,y 2,z 2), 且 设它们之间的引力系数为1. 在V 1中取质量微元ρ1dx 1dy 1dz 1, 在V 2中取质量微元ρ2dx 2dy 2dz 2. 由万有引力定律知, V 1的微元对V 2的微元的吸引力在x 轴上的投影为32221112121)(rdz dy dx dz dy dx x x -ρρ, 其中r=221221221)()()(z z y y x x -+-+-.将两个物体的所有微元间的吸引力在x 轴上投影的量相加,就 得到物体V 1与V 2间的引力在x 轴上投影的值. 它是一个六重积分, 即F x =⎰⎰⎰⎰⎰⎰-Vdz dy dx dz dy dx rx x z y x z y x 22211132122221111))(,,(),,(ρρ.这是在由六维数组(x 1,y 1,z 1,x 2,y 2,z 2)构成六维空间中六维区域V=V 1×V 2上的积分. 吸引力在y 和z 轴上的投影也同样可由六个自变量的积分来表示.概念:规定n 维长方体区域:V=[a 1,b 1]×[a 2,b 2]×…×[a n ,b n ]的体积为 (b 1-a 1)×(b 2-a 2)×…×(b n -a n ). 又存在以下n 维体体积: n 维单纯形:x 1≥0,x 2≥0,…,x n ≥0, x 1+x 2+…+x n ≤h. n 维球体:x 12+x 22+…+x n 2≤R 2.设n 元函数f(x 1,x 2,…,x n )定义在n 维可求体积的区域V 上. 通过对V 的分割、近似求和、取极限的过程,即得到n 重积分: I=n n Vdx dx dx x x x f ⋯⋯⋯⋯⎰⎰2121),,,(.性质:1、若f(x 1,x 2,…,x n )在n 维有界区域V 上连续,则存在n 重积分. 2、若积分区域为长方体[a 1,b 1]×[a 2,b 2]×…×[a n ,b n ],则有 I=n n Vdx dx dx x x x f ⋯⋯⋯⎰⎰2121),,,(=⎰⎰⎰⋯⋯nnb a n n b a b a dx x x x f dx dx ),,,(21212211.3、当V 由不等式组a 1≤x 1≤b 1, a 2(x 1)≤x 2≤b 2(x 1),…, a n (x 1,…,x n-1)≤x n ≤b n (x 1,…,x n-1) 表示时,则有I=⎰⎰⎰--⋯⋯⋯⋯),,,(),,,(21)()(21121121121211),,,(n n n nx x x b xx x a n n x b x a b a dx x x x f dx dx .4、设变换T :⎪⎪⎩⎪⎪⎨⎧⋯=⋯⋯⋯=⋯=),,,(),,,(),,,(2121222111n n n nn x x x x x x ξξξξξξξξξ把n 维ξ1,ξ2,…,ξn 空间区域V ’ 一对一地映射成n 维x 1,x 2,…,x n 空间的区域V ,且在V ’上函数行列式J=),,,(),,,(2121n n x x x ξξξ⋯∂⋯∂=n nn n n n x x x x x x x x x ξξξξξξξξξ∂∂⋯∂∂∂∂⋯⋯⋯⋯∂∂⋯∂∂∂∂∂∂⋯∂∂∂∂212221212111恒不为零,则有n 重积分换元公式:I= n n n Vdx dx x x f ⋯⋯⎰⋯⎰11),,(个=n n n n n Vd d J x x f ξξξξξξ⋯⋯⋯⋯⎰⋯⎰1111||)),,(,),,,((个.例1:求n 维单纯形T n :x 1≥0,x 2≥0,…,x n ≥0, x 1+x 2+…+x n ≤h 的体积. 解:作变换x 1=h ξ1,x 2=h ξ2,…,x n =h ξn , 则J=h n , 单纯形T n 的体积为△T n =h nn n D d d d ξξξ⋯⎰⋯⎰211个=h n a n . 其中D 1={(ξ1,ξ2,…,ξn )|ξ1+ξ2+…+ξn ≤1, ξ1≥0, ξ2≥0,…, ξn ≥0},则a n =1211101--⋯⎰⋯⎰-⎰n n T n d d d d n ξξξξ个, 其中T n-1={(ξ1,ξ2,…,ξn-1)|ξ1+ξ2+…+ξn-1≤1-ξn , ξ1≥0, ξ2≥0,…, ξn-1≥0}. 又对积分a n 作变换ξ1=(1-ξn )ζ1,…, ξn-1=(1-ξn )ζn-1, 则J=(1-ξn )n-1,a n = 12111012)1(---⋯⎰⋯⎰-⎰n n D n n n d d d d ζζζξξ个= a n-1⎰--101)1(n n n d ξξ=na n 1-, 其中D 2={(ζ1, ζ2,…, ζn-1)| ζ1+ζ2+…+ζn-1≤1, ζ1≥0, ζ2≥0,…, ζn-1≥0}.当n=1时,a 1=1, ∴a n =!1n , 于是单纯形T n 的体积为△T n =!n h n .例2:求n 维球体V n :x 12+x 22+…+x n 2≤R 2的体积.解法一:作变换x 1=R ξ1,x 2=R ξ2,…,x n =R ξn , 则J=R n , 球体V n 的体积为△V n =R nn n d d d n ξξξξξ⋯⎰⋯⎰≤+⋯+211221 个=R n b n . 其中b n =121111122121---≤+⋯+-⋯⎰⋯⎰-⎰n n n d d d d nn ξξξξξξξ 个=⎰-11n d ξ△V n-1=b n-1⎰---11212)1(n n n d ξξ. 令ξn =cos θ, 则有b n =b n-1⎰-01cos sin πθθd n =2b n-1⎰20sin πθθd n . 又⎰20sin πθθd n =⎪⎪⎩⎪⎪⎨⎧+=+=-12!)!12(!)!2(22!!2!)!12(m n ,m m m n ,m m π, 及b 1=2, ∴△V n =R nb n =⎪⎪⎩⎪⎪⎨⎧+=+=+12!)!12()2(22!122m n ,m R m n ,m R m m mm ππ.解法二:作变换x 1=rcos φ1,x 2=rsin φ1cos φ2, x 3=rsin φ1sin φ2cos φ3,…, x n-1=rsin φ1sin φ2…sin φn-2cos φn-1, x n =rsin φ1sin φ2…sin φn-1, 则 J=r n-1sin n-2φ1sin n-3φ2…sin 2φn-3sin φn-2, 积分区域为:0≤r ≤R, 0≤φ1,φ2,…,φn-2≤π, 0≤φn-1≤2π, 从而 △V n =⎰⎰⎰⎰------⋯⋯πππϕϕϕϕϕϕ20122312102001sin sin sin n n n n n n Rd r d d dr=⎰⎰⎰----⋯πππϕϕϕϕϕ2010220112sin sin n n n n n d d d n R =⎪⎪⎩⎪⎪⎨⎧+=+=+12!)!12()2(22!122m n ,m R m n ,m R m m mm ππ.注:特别地,当n=1,2,3时,有△V 1=2R ,△V 2=πR 2,△V 3=34πR 3.求n 维空间中的曲面面积:设x n =f(x 1,…,x n-1), f(x 1,…,x n-1)∈△⊂R n-1为n 维空间中的曲面,则其面积为 11212111---∆⋯⎪⎪⎭⎫ ⎝⎛∂∂+⋯+⎪⎪⎭⎫⎝⎛∂∂+⎰⋯⎰n n n nn dx dx x x x x 个.例3:求n 维单位球面x 12+x 22+…+x n 2=1的面积.解:n 维单位球面上半部为:x n =)(12121-+⋯+-n x x (2121-+⋯+n x x ≤1), 又21211⎪⎪⎭⎫ ⎝⎛∂∂+⋯+⎪⎪⎭⎫ ⎝⎛∂∂+-n n n x x x x =n x 1, ∴上半球面面积为 21△S=n n n x x x dx dx n 11112121--≤+⋯+⋯⎰⋯⎰- 个=)(1212111112121---≤+⋯++⋯+-⋯⎰⋯⎰-n n n x x x x dx dx n个=⎰---+⋯+-+⋯+------≤+⋯++⋯+-⋯⎰⋯⎰)(1)(1212112121222122212121)(1n n n x x x x n n n n x x xx dx dx dx个. 又⎰--+⋯+-+⋯+----+⋯+-)(1)(12121122212221)(1n n x x x x n n x x dx =π, ∴21△S=π21212121--≤+⋯+⋯⎰⋯⎰-n n x x dx dx n个=πb n-2, 其中b n-2=21212121--≤+⋯+⋯⎰⋯⎰-n n x x dx dx n个为n-2维空间中单位球体体积.由例2得n 维球面面积为:△S=2πb n-2=⎪⎪⎩⎪⎪⎨⎧+=-=-12!)!12()2(22)!1(2m n ,m m n ,m mmππ.注:特别地,当n=1,2,3时,有△S 1=2,△S 2=2π,△S 3=4π.习题1、计算五重积分⎰⎰⎰⎰⎰Vdxdydzdudv , 其中V :x 2+y 2+z 2+u 2+v 2≤r 2.解:根据例2的结论,当n=5时V 5=!!5)2(225πr =15852r π.2、计算四重积分⎰⎰⎰⎰++++----Vdxdydzdu u z y x u z y x 2222222211, V :x 2+y 2+z 2+u 2≤1.解:令x=rcos φ1, y=rsin φ1cos φ2, z=rsin φ1sin φ2cos φ3, u=rsin φ1sin φ2sin φ3, 原式=⎰⎰⎰⎰+-102123222030201sin sin 11dr r rr d d d ϕϕϕϕϕπππ =⎰⎰+-132011211sin 4dr r r r d πϕϕπ=2π2⎰+-1032211dr r r r =π2(1-4π).3、求n 维角锥x i ≥0,nn a x a x a x +⋯++2211≤1, a i >0 (i=1,2,…,n)的体积. 解:令ξi =iia x (i=1,2,…,n), 则V=n n a x dx dx n i ii ⋯⎰∑⋯⎰≤=111个=a 1…a n n n d d n i i ξξξ⋯⎰∑⋯⎰≤=111个.由例1得V=!1n a 1…a n .4、把Ω:x 12+x 22+…+x n 2≤R 2上的n(n ≥2)重积分n n n dx dx x x x f ⋯+⋯++⎰⋯⎰122221Ω)(个化为单重积分,其中f(u)为连续函数. 解:令x 1=rcos φ1, x 2=rsin φ1cos φ2,…, x n-1=rsin φ1sin φ2…sin φn-2cos φn-1,x n =rsin φ1sin φ2…sin φn-2sin φn-1, 则nn n dx dx x x x f ⋯+⋯++⎰⋯⎰122221Ω)(个=⎰⎰⎰⎰⎰------⋯⋯ππππϕϕϕϕϕϕϕ2012231202020101sin sin sin )(n n n n n Rn d d d d dr r f r ,∵⎰π0sin tdt n =2⎰20cos πtdt n =⎪⎭⎫⎝⎛+Γ⎪⎭⎫⎝⎛+Γ2221n n π. ∴原式=⎰-⎪⎭⎫ ⎝⎛ΓR n hdr r f r h 012)(22π.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 总积分习题解答第12次课 二重积分的概念及性质1、 略2、根据这三点可知区域:2120ln()10[ln()]ln()x y x y x y x y ≤+≤⇒<+<⇒<+<+由二重积分的性质即得到:20[ln()]ln()DDx y d x y d σσ<+<+⎰⎰⎰⎰ 2、 提示:对于二重积分(,)Df x y d σ⎰⎰,根据题设条件:(1) 积分区域是对称的(2) 被积函数(,)f x y 的奇偶性(注意一定要判定) 据(1)、(2)可得答案依次为:成立、不成立、成立3、 与3题方法一样:答案依次为:0、0、0、0。

4、 按照二重积分的定义(几何意义),答案:6π5、 222210ln()02x y x y <+≤⇒+<,再由积分中值定理,可得: 符号为负提高题:当00,0x y ρ+→⇒→→ 再由积分中值定理:2222222(,)(,)(,)x y x y f x y d f d f σσσεησπεησ+≤+≤==⎰⎰⎰⎰(1)将(1)代入所求式子:2222220020011lim (,)lim (,)lim lim (,)lim x y x y x y I f x y d f d f σσσσσσσεησππεησ++++→→→+≤+≤→→→===⎰⎰⎰⎰由(,)f x y 的连续性,有:00lim (,)=(0,0)x y f f εη→→故而:0I =第13次课 二重积分的计算法1、(1)根据积分区域: 11,11x y -≤≤-≤≤112222118()()3Dx y d dy x y dy σ--+=+=⎰⎰⎰⎰ 或者:根据对称性质:2222882()233D D Dy d x y d x d σσσ==+==⎰⎰⎰⎰⎰⎰ (2)根据积分区域:0000cos()(sin 2sin )11(cos 2cos 2cos cos )22()232xxdx x y dy x x x dxx x xdx x x xdx ππππππππππ+=-=---+=-+=⎰⎰⎰⎰⎰(3)根据积分区域32222220235222222002(4)311264(4)(4)(4)33515Dxy d xdx y dy x x dyx d x x σ==-=---=--=⎰⎰⎰⎰⎰(4)根据对称性: 1:0,0,1D x y x y ≥≥+≤1110112200()4()4()144((1)(1))2(1)23yDD x y dxdy x y dxdy dy x y dxy y y dy y dy -+=+=+=-+-=-=⎰⎰⎰⎰⎰⎰⎰⎰P45(5)sin 22220230320302202200()()1(sin sin ) (1)3sin (1cos )cos 124[cos cos ](2) (2)333cos [cos 2sin ]2(sin cos )xDx y d dx x y dyx x x dx xdx x d xx x x d x x x xd x x x x ππππππππππσππ-=--=--=--=--+=-=--++=-⎰⎰⎰⎰⎰⎰⎰⎰⎰2 4 (3)40(2)(3)(1)9π-由、得(6)33120112220112222201sin sin sin [(cos1cos )(cos cos1)]11[cos1sin ][sin cos1]221(cos1sin1sin 4sin14cos1cos1)22cos12sin1sin 42y y y y Dx x xd dy dx dy dx y y y y y dy y y dy y y y y σ=+=--+-=----=--+--++-=⎰⎰⎰⎰⎰⎰⎰⎰2、计算下列二重积分 (1)210120=2Dxydxdy ydy xdxπ==⎰⎰⎰⎰⎰(2)22141244253(cos )cos 4015y Dy DDa baby e x yx dxdy ye xdxdy y x dxdy x dx y dy a b ----+=+=+=⎰⎰⎰⎰⎰⎰⎰⎰P 46 (3) 坐标变换222222002220222ln(1)cos ln(1)sin 1ln(1)(1)2[(1)ln(1)(1)][(1)ln(1)]DDR R xy dxdyx r r rdrd y r d r d r r r r R R R πθθθθππ++=+==++=++-+=++-⎰⎰⎰⎰⎰⎰ (4)122221220111:10:01DD D x y x D y x D y x ≤≤-≤-≤-≤-≤≤-≤=+⎰⎰⎰⎰根据对称性:12221122()523D D x xdx dx π=+=+=+⎰⎰⎰⎰⎰⎰???3、 (1)110111110(,)(,)(,)(,)xxDyyf x y d dy f x y dydx f x y dy dx f x y dyσ-+-+==+⎰⎰⎰⎰⎰⎰⎰⎰(2)210111(,)(,)(,)(,)Dy f x y d dx f x y dy f x y dydy f x y dxσ-=+=⎰⎰⎰⎰P47 4 (1)211(,)y dy f x y dx +⎰⎰(2)4102(,)xdx f x y dy ⎰⎰(3)1(,)xdx f x y dy ⎰(4)120(,)yydy f x y dx -⎰⎰5(说明:以通常的级坐标表达式) (1)2cos 202(cos ,sin )d f r r rdr πθπθθθ-⎰⎰(2)20(cos ,sin )bad f r r rdr πθθθ⎰⎰6 (1)223320cos 44()()d f r rdr d f r rdr ππππθθθ-⎰⎰⎰⎰或者:232cos 4()d f r rdr ππθθ⎰⎰(2)1210cos sin (cos ,sin )d f r r rdrπθθθθθ+⎰⎰P-48 7 (1)2320016R d r dr R πθπ=⎰⎰(2)220(63cos 2sin )6Rd r r rdr R πθθθπ--=⎰⎰(3)cos 3cos 222220223232333322001()322224(1cos )sin 33339R R d R r d R d R d R R θππθππππθθθθθθ--=--=-===⎰⎰⎰⎰⎰提高题:11111001110011100(,)(,)[(,)(,)](1,)0,(,1)0,(1,)0(,1)0[(,)(,)](,)(,)[(,)(xyx x x Dy x x x x DI f x y dxdy xdx ydf x y x f x y y f x y dy dx f y f x f y f x x f x y y f x y dy dx xf x y dxdydy xdf x y f x y x f '''''===-''===='''=-=-=-=--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰由于得,11,)](,)Dx y dx dy f x y dxdy a==⎰⎰⎰⎰第十四次课 三重积分1、 略2、 (1)2102(,,)x y dx f x y z dz ++-⎰⎰(2)20(,,)dy f x y z dz ⎰3、(1)35600001112848ax ya x a xdx ydy zdz xdx y dy x dx a ===⎰⎰⎰⎰⎰⎰(2)2220222200cos()(1sin )1111(1sin )(cos sin )222162xdx ydy x z dz x dx ydyx xdx x x x x ππππππ-+=-=-=+-=-⎰⎰⎰⎰(3)11112201230111(3)(4)12!3!1(1)(3,4)333(7)36!180xxy xxdx ydy dz x dx y dyx x dx B --=ΓΓ=-====Γ⎰⎰⎰⎰⎰⎰ (4)22112201320)111(2)460x y xdx ydy dz xdx x y ydyx x x dx +=+=+=⎰⎰⎰⎰P-51 4、110(,,)zz ydz dy f x y z dx --⎰⎰⎰5、 (1)2221210001(1)x y r e dxdy dz d e rdr eπθπ---==-⎰⎰⎰⎰⎰(2)2212cos 0rV d r dr πθθ==⎰⎰或者由对称性也可得为零P-52(3)2222520()430hhd r dr r h r dr h πππθ=-=⎰⎰⎰提高题:根据三重积分的性质:222()()F t zdV f x y z dV ΩΩ=+++⎰⎰⎰⎰⎰⎰将分成的两部分分别计算22204(2)18rzdV d rdr t r rdrt πθππΩ==-=⎰⎰⎰⎰2222200322323()()()()1212())2()[()2332()(1)32rf x y z dV f dVt f dV f d rdr f r r dr f t r r f t πξξξξθπξπξπξΩΩΩ++=≤====---=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰433003012()()(1832()12limlim[()(18300()(0)()2lim(132t t t F t t f tF t t f t t f x f a F t a t ππξππξξπ→→+→=+-=+→→==-由于当时,可得再有的连续性和条件得: 第十五次课 重积分的应用P-53 1、 (1)11101)12S dx dx π===-⎰⎰(2)由对称性:33(1cos )2222211221(cos 2cos )(2)24a ad d a d a πθππππθσσθθθ-=-=+⎰⎰⎰2(1)由对称性:122202120044)1cos 1(1)228sin Dzd dx x y dyx r d r rdr y r πσθπθθ=--=⇒-==⎰⎰⎰⎰⎰ P-54 (2)1122022221()612()26xDDDDzd dx x y dy x d x y d y d σσσσ-=+==+==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰由等价和对称性:3、122222013320()()114[(2)2(1)]333xxDDd xy dxdy dx x y dyx x x x dx ρσ-=+=+=--+-=⎰⎰⎰⎰⎰⎰⎰4、DDS dxdy ===P-55 522cos 222202(1sin )2(1)2DDa S a a d ad a ππθπθθθ===-=-=-⎰⎰⎰⎰⎰⎰⎰根据对称性和极坐标变换:6根据对称性:只计算第一象限22388168()3RD RV dV dxdy dx R x dx R ====-=⎰⎰⎰⎰⎰⎰⎰一象限72122012240322(,)11()235(,)3548(,)3554xxDDy DDxDDMM x y dxdy x ydxdy dx x ydyx x x dx x y xdxdyx ydxdy M x M MMx y ydxdyx y dxdyM y MMMμμμ====-=========⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰设薄板的质量:821232330cos cos sin 4y Dx ar I x dxdya b d r dr a b y br πθπθθθ==⇒==⎰⎰⎰⎰9设密度>0k ρ= 根据对称性:就以绕Z 轴的转动惯量即可226235(2sin 9z RI I k x y k R k d d r dr πππθϕϕ==+==⎰⎰⎰⎰⎰⎰第十六次课 第十章 总复习题 1 (1)132212(1)233Dd r ππθπ==--=⎰⎰(2)2220222sin 2sin 2cos 2[cos sin ]6Dd r rdr r rdrrd r r r r πππππππππσθππππ===-=--=-⎰⎰⎰⎰⎰⎰(3)22222222222200ln(1)ln(1)1ln(1)(1)[(1)ln(1)(1)]224(5ln 54)4Dx y dxdy d r rdr r d r r r r πθπππ++=+=++=++-+=-⎰⎰⎰⎰⎰ (4)122212222222222222000:22[2()][2]:235)2)2DD D D x y x y dxdyx y dxdy x y dxdyD x y d r rdr d r rdr ππθθπ+≤+-⇒-+++-≤+≤-+-=⎰⎰⎰⎰⎰⎰⎰⎰(5)2sin 24304208(sin cos )(sin cos sin )3161631sin 33422d r dr d d πθππθθθθθθθπθθπ+=+===⎰⎰⎰⎰2 (1)21(,)xxdx f x y dy ⎰⎰(2)101(,)(,)dx f x y dy f x y dy +⎰(3)1302(,)xxdx f x y dy -⎰⎰(4)11arcsin 02arcsin 012arcsin 21arcsin 0arcsin 12arcsin (,)(,)(,)(,)(,)yy yyyydy f x y dx dy f x y dx dy f x y dxdy f x y dx dy f x y dxππππππ------+++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰或者:302sin 00404(,)2(1cos )(2aa a xI dx f x y dy d a d aθππθπθθ-----===-=⎰⎰⎰⎰⎰413210,0,120sin()1ln()038D x y x y x y x y x y I I I d σ≥≥≤+≤⎧⎫⎪⎪<+<+≤⎪⎪⎪⎪⇒+≤⇒<<⎨⎬⎪⎪⎪⎪=⎪⎪⎩⎭⎰⎰因为:由积分的性质可得: 5(1)222200022200()()()()0,0()lim lim ()0(2)()(1),lim lim ()(0)(3)DDt t Da a t F t f x y d f d f t t F t f t t f x y d f f aξξξξξσξσξπξξπσξπ++++++++++→→→→→→→→∃∈=+==→→==+==⎰⎰⎰⎰⎰⎰由积分的性质,(0,):由略65112220427y DI x dxdy x dx x dx ρρρρ====⎰⎰⎰⎰ 72222222120[4(3)](44)442cos (1)sin D Dy y y V x x x dxdyx r d r rdr y πθθθ=---+=--=⇒-==⎰⎰⎰⎰⎰822222221002cos 3343220442cos 2cos 32220223434222132cos (2)24122cos 4cos x y aaa xxa x y a a a x y V dx dz dx dy ad r dr a d a a V dV d rdr dz d r dr a ad a d ππθππππθθππππππθθθθθθθθθ++---+=====-=====⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰整332321313442242a a V V V a ππ===-=⎰9(1)222222222230264()()(2)23x y r xy dV x y dxdy dz d r dr πθπ+Ω+=+=-=⎰⎰⎰⎰⎰⎰⎰⎰(2)350011()480aa xa xyzdV xdx ydy zdz x a x dx a -Ω==-=⎰⎰⎰⎰⎰⎰(3)2320220(1sin )16(1sin )48xyzdV dxdy zdz d drd ππθθθθπΩ==+=+=⎰⎰⎰⎰⎰⎰⎰⎰(4)2222222222202021sin 422()2()(21)!ax y z r aaar r a r n a n edV d d e r dre r dr rde ae e dr a ae n n ππθϕϕππππ++Ω++∞=====-=-+⎰⎰⎰⎰⎰⎰⎰⎰⎰∑()22222222224cos 0sec cos 440:0,02(1)(1)a aaar x y x y r Da aD x a y ae dre dx e dy edxdy d e rdr ed e d πθππθθθθθ+⎛⎫ ⎪⎝⎭≤≤≤≤====-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰接下来求:此法行不通,前面用的级数展开表达式10设球的密度为ρ有对称性可知重心坐标0,0x y ==948M V zdV zdVz M ρρπρρΩΩ=====⎰⎰⎰⎰⎰⎰可得质心为:(2)令密度为ρ,质量为M ,由题意知ρ=22cos 320420sin 88sin cos 5M dV d d r drd ππϕπρθϕϕπϕϕϕπ=====⎰⎰⎰⎰⎰⎰⎰22cos 420sin cos 64835875d d r drzdVz MMMππϕθϕϕϕρππ=====⎰⎰⎰⎰⎰⎰⎰⎰⎰11 直角坐标:3x y +⎰柱面坐标: 2203r d πθ⎰⎰球面坐标:22223003cos 222sin3sin (sin cos ,sin sin ,cos )sin (sin cos ,sin sin ,cos )d d f r r r r dr d d f r r r r drπππϕπϕπθϕϕϕθϕθϕθϕϕϕθϕθϕ+⎰⎰⎰⎰⎰⎰(2)根据对称性:24223(,,)()13)94r f x y z dV x y z dV zdVr d r rdr πθππΩΩΩ=++==--=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰12132cos 23220033202sin sin cos 3sin 2263a dV d d r dr a d ad a πππϕππθϕϕϕϕϕππϕϕ====⎰⎰⎰⎰⎰⎰⎰⎰13201)6S d ππθ===⎰⎰⎰⎰表14提示:按照定义证明 152222222222221122000021122112()(1)sin cos 1(1)sin cos sin (1)2(1)1((1)(1))11.1..((1)(1))2418(1)1lim RR pRR R p p R R p pp p xI dV x y z x y z r dr d r I d d d d r r R R R p p Rp ππππϕθθϕϕθθϕϕππΩ----=++++++==+++-+==+-+-->⎰⎰⎰⎰⎰⎰⎰⎰⎰用球坐标变换得如下:当时,8(1)1lim R R R R I p p I π→+∞→+∞=-<=+∞当时,(注:本资料素材和资料部分来自网络,仅供参考。

相关文档
最新文档