反激式变压器的设计
正激反激式双端开关电源高频变压器设计详解

正激反激式双端开关电源高频变压器设计详解高频变压器作为电源电子设备中的重要组成部分,起到了将输入电压进行变换的作用。
根据不同的使用环境和要求,电源电路中的电感元件可分为正激式、反激式和双端开关电源。
下面就分别对这三种电源的高频变压器设计进行详解。
1.正激式电源变压器设计正激式电源变压器是将输入电压通过矩形波进行激励的一种变压器。
其基本结构包括主磁线圈和副磁线圈两部分,主磁线圈用来耦合能量,副磁线圈用来提供输出电压。
正激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。
(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。
(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。
(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。
(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。
(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。
2.反激式电源变压器设计反激式电源变压器是通过反馈控制来实现变压的一种变压器。
其基本结构包括主磁线圈、副磁线圈和反馈元件等。
反激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。
(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。
(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。
(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。
(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。
(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。
(7)选择合适的反馈元件:根据反馈控制的需要来选择合适的反馈元件,并设计合适的反馈回路。
反激式开关电源变压器设计步骤(重要)

反激式开关电源变压器设计反激式变压器是反激式开关电源的核心,它决定了反激式变换器一系列的重要参数,如占空比D ,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。
这样可以让其发热量尽量小,对器件的磨损也尽量小。
同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源性能会有很大的下降,如损耗会加大,最大输出功率会下降.设计变压器,就是要先选定一个工作点,在这个点就是最低的交流输入电压,对应于最大的输出功率。
第一步,选定原边感应电压V OR 。
这个值是有自己来设定的,这个值就决定了电源的占空比.可能朋友们不理解什么是原边感应电压。
我们分析一个工作原理图。
当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性上升:I 升=Vs*Ton/L 。
这三项分别是原边输入电压,开关开通时间和原边电感量。
在开关管关断的时候,原边电感放电,电感电流会下降,此时有下降了的电流:I 降=V OR *T OFF /L 。
这三项分别是原边感应电压(即放电电压)、开关管管段时间和电感量。
经过一个周期后,原边电感电流会回到原来的值,不可能会变,所以有:Vs *T ON /L=V OR *T OFF /L 。
即上升了的等于下降了的。
上式中用D 来代替T ON ,用(1-D )来代替T OFF .移项可得:D=V OR /(V OR +Vs)。
这就是最大占空比了.比如说我设计的这个变压器,我选定电感电压V OR =20V ,则Vs 为24V ,D=20/(20+24)=0。
455。
第二步,确定原边电流波形的参数原边电流波形有三个参数,平均电流,有效值电流,峰值电流,首先要知道原边电流的波形,原边电流的波形如下。
这是一个梯形波横向表示时间,总想表示电流大小,这个波形有三个值,一个是平均值I 平均,二是有效值I ,三是峰值Ip 。
首先要确定平均值I 平均:I 平均=Po/(η*Vs )。
反激式变压器的设计

校企联合开发的实训教材 反激式变压器的设计广东明丰电源实业有限公司中山火炬职业技术学院2018年6月20日反激式变压器的设计反激式变压器设计思考(一)对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消副边电流的作用。
另一部分是励磁电流分量,主要产生主磁通,在空载运行和负载运行时,该励磁分量均不变化。
励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。
在整个抽水过程中,水泵中保持的水量又是不变的。
这就是,励磁电流在变压器中必须存在,并且在整个工作过程中保持恒定。
正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。
而初次级负载安匝数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。
反激式变换器和以上所述大不相同,反激式变换器工作过程分两步:第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来;第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。
可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没有次级安匝数去抵消它。
初级的全部电流用于磁芯沿磁滞回线移动,实现电能向磁能的转换;这种情况极易使磁芯饱和。
磁芯饱和时,很短的时间内极易使开关管损坏。
因为当磁芯饱和时,磁感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开关管上,开关管会瞬时损坏。
反激变压器设计过程

反激变压器设计过程电源参数根据功率、输入输出的情况,我们选择反激电源拓扑。
反激式变压器的优点有:1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求。
2. 转换效率高,损失小。
3. 变压器匝数比值较小。
4. 输入电压在很大的范围内波动时,仍可有较稳定的输出。
设计步骤:1、决定电源参数。
2、计算电路参数。
3、选择磁芯材料。
4、选择磁芯的形状和尺寸。
5、计算变压器匝数、有效气隙电感系数及气隙长度。
6、选择绕组线圈线径。
7、计算变压器损耗和温升。
原理图步骤一、确定电源参数:(有些参数为指标给定,有些参数从资料查得)注:电流比例因数:纹波比例,在重载和低收入情况下的纹波电流和实际电流的比例。
步骤二、计算电路参数:最低直流输入电压:Z为损耗分配因数,如果Z=1.0表示所有损耗都在副边,如果Z=0表示所有的损耗都在原边,在这里取Z=0.5表示原副边都存在损耗。
步骤三、选择磁芯材料:铁氧体材料具有电阻率高,高频损耗小的特点,且有多种材料和磁芯规格满足各要求,加之价格较其它材料低廉,是目前在开关电源中应用最为广泛的材料。
同时也有饱和磁感应比较低,材质脆,不耐冲击,温度性能差的缺点。
采用的是用于开关电源变压器及传输高功率器件的MnZn功率铁氧体材料PC40,其初始磁导率为2300±25%,饱和磁通密度为510mT(25℃时)/390mT(100℃时),居里温度为215℃。
选择磁芯材料为铁氧体,PC40。
步骤四、选择磁芯的形状和尺寸:高频功率电子电路中离不开磁性材料。
磁性材料主要用于电路中的 变压器、扼流圈(包括谐振电感器)中。
变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的。
磁性材料(Magnetic materials)有个磁饱和问题。
如果磁路饱和,会导致变压器电量传递畸变,使得电感器电感量减小等。
对于电源来说,有效电感量的减小,电源输出纹波将增加, 并且通过开关管的峰值电流将增加。
反激变压器设计过程

反激变压器设计过程1、初始值设定1.1 开关频率fkHz对于要接受EMI规格适用的产品,不要设定在150kHz预计余量的话120kHz左右以上;一般设定在65kHz左右;1.2 输入电压范围设定主要对瞬时最低输入电压/连续最低输入电压/最大输入电压的3类进行设定;1.3 最大输出电流设定对于过电流保护最大输出电流/连接最大输出电流/峰值最大输出电流在规格书上有规定的情况下3种类,进行设定;另外,在这最大输出电流中需包括对于各自偏差的余量;1.4 最大二次绕组输出端电压设定用以下公式算出:最大二次绕线端输出电压:V N2max V =接插件端输出电压+线间损失0.1~0.5V +整流元器件Vf 0.4~0.6V※ 在有输出电压可变的情况下,根据客户要求规格书的内容不同,适用的范围而各不相同;只保证输出电压 ※只在装置试验时电压可变的情况下; 磁芯用最大输出电压来设计;绕线是用额定输出电压来设计;保证所有的性能※在实际使用条件下通常的电压可变的情况下; 磁芯、绕线都用最大输出电压来设计;1.5 一次电流倾斜率设定输入电压,瞬时最低动作电压、输出电流,在过电流保护最大输出电流/连接最大输出电流/峰值最大输出电流的任意一个最大输出电流的条件下,设定图1-1的一次电流波形的斜率;K 的设定公式如下;作为目标,设定到0.5~0.6,兼顾到之后的其他特性,作最适当的变更;1.6 最大占空比设定一般设定为0.45~0.65;1.7 最大磁通密度设定Bmax设定为磁芯的产品目录上所记载的饱和磁通密度×0.8~0.9;设计的要点:单一输入的情况下设定为0.45、普遍输入的情况下设定为0.65左右;图1-2中表示了TDK 制的磁珠磁芯PC44的B-H 曲线图; 磁芯的磁通密度BT,如图1-2所示,与磁场强度HA/m 成比例,增加;另外,当B 达到一定的值时,在那基础上,即使增加H,B 也不会增加;在此磁束饱和状态下,不仅仅达不到作为变压器的机能,还有开关FET 破损的危险性,因此磁芯绝对必须在此饱和磁通密度以下来使用;另外,从产品目录上引用数据时,需要在符合使用条件的温度下选择饱和磁通密度,因此请注意;※磁芯的饱和磁通密度是根据温度而变动;在TDK 制PC44的120℃下的饱和磁通密度,将降低到25℃时的值的68.6%;因此,如果在25℃的条件下设计的话,有可能发生使用时的故障;1.8 绕线电流密度设定绕线电流密度对绕线的温度上升有一定影响,因此一定要考虑冷却条件、使用温度范围、变压器构造等,再进行适当的设定;设计要点:・ 变压器的发热,是根据,根据磁芯损失的铁损和根据绕线损失的铜损来决定2、变压器特性设计2.1 计算一次绕组的电流峰值变压器总输出功率P 2W 是瞬时最大值;在输出电流规格书中有设定峰值条件的情况下,用I o peak ×V N2max ;另外,多输出的情况下,将各电路的输出功率的总和作为变压器总输出功率;变压器效率一般为0.95;2.2 计算一次/二次绕组的匝数比匝数比根据输出入电压和最大占空比来决定;2.3 计算一次绕组的电感量3、变压器构造设计3.1 计算一次绕组的电流有效值 计算一次绕线电流有效值I N1 TYP RMS ;不用考虑瞬时最低动作输入电压、过电流、峰值最大电流;首先求出占空比α;接着用以上所求出的占空比α,求出一次绕线电流有效值;作为标准,从1.1.8项中设定的绕线电流密度I/SA/mm 2和一次绕线电流有效值I N1typrms A 中,计算出一次绕线截面积S N1mm 2;3.2 计算二次绕组的电流有效值※省略以下的详细计算,可以将直流输入电流的1.6倍作为一※可以省略以下的详细计算,将直流输出电流的1.4倍作为二在实使用条件的通常驻机构状态下,用在1.3.1项中算出的占空比α、一次绕线电流有效值IN1typrmsA,算出连续流出的最大的二次绕线电流有效值;替换为与各自的二次绕线和一次卷的绕线比,进行计算,另※多输出变压器的情况下,将N12中加上对于全功力的其电路输出功力的比率;外在所求得的IN2typrmsA作为标准,从在1.1.8项中设定的绕线电流密度I/SA/mm2与二次绕线电流有效值IN2typrms中,计算出二次绕线断面积Smm2;N2设计要点:・变压器的发热,是根据,根据磁芯损失的铁损和根据绕线损失的铜损来决定的;绕线电流密。
反激式开关电源变压器设计说明

2.6 计算一次绕组最大匝数Npri
Lpri 452*10-6
Npri = =
= 61.4匝 取Npri=62匝
AL 120*10-9
2.7 计算二次主绕组匝数NS1〔NS1为DC+5V绕组
Npri<V01+VD><1-Dmax> 62*<5+0.7>*<1-0.5>
Ns1=
=
= 2.78匝
Vin<min>Dmax
技术部培训教材
反激式开关电源变压器设计(2)
表二 变压器窗口利用因数
变压器情况
窗口
反激式变压器 一个二次绕组 两个或多个二次绕组 相互隔离的二次绕组 满足UL或CSA标准 满足IEC标准 法拉第屏屏蔽
1.1 1.2
1.3 1.4 1.1 1.2 1.1
用下式按变压器情况将各窗口利用因数综合起来 Knet=Ka.Kb…
技术部培训教材
反激式开关电源变压器设计(2)
变压器绕制结构如下:
0.06/3层 0.06/3层 0.06/3层 0.06/3层
偏置绕组 ½一次绕组 二次绕组 ½一次绕组
3mm
3mm 技术部培训教材
反激式开关电源变压器设计(2)
2.11 计算变压器损耗
1铜损:Pcun = NnV* MLT*Rn>In2 MLT = 2E+2C=2*25.27+2*9.35=69.24mm
5+0.7
取13匝
技术部培训教材
反激式开关电源变压器设计(2)
2.9 检查相应输出端电压误差 Vsn
δVsn%=<< = *Ns’n-Vsn>/Vsn>*100% Nsn
反激式开关电源变压器的设计方法

反激式开关电源变压器的设计方法反激式开关电源变压器是一种常用于电子设备中的高效率、高频率开关电源变压器。
其设计方法包括了选择合适的变压器参数、计算变压器工作状态、考虑磁芯损耗和温升等方面。
下面将详细介绍反激式开关电源变压器的设计步骤。
首先,确定设计目标和性能要求。
根据所需的输入和输出电压和电流,确定变压器的额定功率和输出功率。
同时,考虑变压器的体积限制以及可用的材料,进行适当的权衡。
第二步是选择磁芯材料。
磁芯的选择对于反激式开关电源变压器来说非常重要,因为磁芯的性能直接影响着变压器的效率和工作频率。
常见的磁芯材料包括铁氧体和软磁合金等,可以根据具体的应用需求和成本进行选择。
第三步是计算变压器的主要参数。
包括主磁链感应系数、匝数比、实际绕组电压和电流等。
根据设计目标和性能要求,以及选择的磁芯材料,可以通过一系列公式和计算来决定这些参数。
第四步是进行磁芯损耗和温升的估算。
反激式开关电源变压器在工作过程中会产生磁芯损耗和温升。
这些损耗会导致变压器的效率下降,甚至导致变压器无法正常工作。
因此,需要根据具体的磁芯材料和使用条件,进行损耗和温升的估算。
第五步是进行变压器的绕组设计。
根据变压器的参数和工作状态,设计变压器的绕组结构和匝数。
通过合理设计绕组,可以提高变压器的效率和性能。
第六步是进行变压器的线径选择和导线布局。
根据所需的电流和损耗,选择合适的线径,并进行合理的导线布局,以提高变压器的效率和散热性能。
最后一步是进行变压器的实际制造和测试。
根据设计图纸和规格要求进行变压器的实际制造,并通过测试来验证设计的正确性和性能。
总之,反激式开关电源变压器的设计是一个复杂的过程,需要考虑多个因素的综合影响。
通过合理选择磁芯材料、计算变压器参数、评估磁芯损耗和温升等步骤,可以设计出性能良好、效率高的变压器。
反激式变压器的设计

反激式变压器的设计(共7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--反激式变压器的设计反激式变压器的工作与正激式变压器不同。
正激式变压器两边的绕组是同时流过电流的,而反激式变压器先是通过一次绕组把能量存储在磁心材料中,一次侧关断后再把能量传到二次回路。
因此,典型的变压器阻抗折算和一次、二次绕组匝数比关系不能在这里直接使用。
这里的主要物理量是电压、时间、能量。
在进行设计时,在黑箱估计阶段,应先估计出电流的峰值。
磁心尺寸和磁心材料也要选好。
这时,为了变压器能可靠工作,就需要有气隙。
刚开始,在开关管导通时把一次绕组看作是一个电感器件,并满足式(24)。
(24)把 Lpri移到左边,用Ton=Dmax/f 代到上式中,用已知的电源工作参数,通过式(25)就可以算出一次最大电感——最大占空比(通常为50%或。
(25)这个电感值是在输入最小工作电压时,电源输出仍能达到额定输出电压所允许选择的最大电感值。
在开关管导通的每个周期中,存储在磁心的能量为:(26)要验证变压器最大连续输出的功率能否满足负载所需的最大功率,可以使用下式:(27)所有磁心工作在单象限的场合,都要加气隙。
气隙的长度(cm)可以用下式近似(CGS制(美国)):(28a)式中Ac——有效磁心面积,单位为;Bmax——最大磁通密度,单位为G(Wb/cm )。
在MKS系统(欧洲)中气隙的长度(m)为(28b)式中Ac——有效磁心面积,单位为;Bmax——最大磁通密度,单位为T(Wb/m )。
这只是估算的气隙长度,设计者应该选择具有最接近气隙长度的标准磁心型号。
磁心制造厂商为气隙长度提供了一个A L的参数。
这参数是电感磁心绕上1000匝后的数据(美国)。
根据设计好的电感值,绕线的匝数可以用式(29)计算确定。
(29)式中 Lpri——一次电感量,单位为mH。
如果有些特殊的带有气隙的磁心材料没有提供A L。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反激式变压器的设计
反激式变压器的工作与正激式变压器不同。
正激式变压器两边的绕组是同时流过电流的,而反激式变压器先是通过一次绕组把能量存储在磁心材料中,一次侧关断后再把能量传到二次回路。
因此,典型的变压器阻抗折算和一次、二次绕组匝数比关系不能在这里直接使用。
这里的主要物理量是电压、时间、能量。
在进行设计时,在黑箱估计阶段,应先估计出电流的峰值。
磁心尺寸和磁心材料也要选好。
这时,为了变压器能可靠工作,就需要有气隙。
刚开始,在开关管导通时把一次绕组看作是一个电感器件,并满足式(24)。
(24)
把 Lpri移到左边,用Ton=Dmax/f 代到上式中,用已知的电源工作参数,通过式(25)
就可以算出一次最大电感
——最大占空比(通常为50%或0.5)。
(25)
这个电感值是在输入最小工作电压时,电源输出仍能达到额定输出电压所允许选择的最大电感值。
在开关管导通的每个周期中,存储在磁心的能量为:
(26)
要验证变压器最大连续输出的功率能否满足负载所需的最大功率,可以使用下式:
(27)
所有磁心工作在单象限的场合,都要加气隙。
气隙的长度(cm)可以用下式近似(CGS制(美
国)):
(28a)
式中Ac——有效磁心面积,单位为;
Bmax——最大磁通密度,单位为G(Wb/cm )。
在MKS系统(欧洲)中气隙的长度(m)为
(28b)
式中Ac——有效磁心面积,单位为;
Bmax——最大磁通密度,单位为T(Wb/m )。
这只是估算的气隙长度,设计者应该选择具有最接近气隙长度的标准磁心型号。
磁心制造厂商为气隙长度提供了一个A L的参数。
这参数是电感磁心绕上1000
匝后的数据(美
国)。
根据设计好的电感值,绕线的匝数可以用式(29)计算确定。
(29)
式中 Lpri——一次电感量,单位为mH。
如果有些特殊的带有气隙的磁心材料没有提供A L。
的值,可以使用式(30)。
注意不要混淆CGS和MKS两种单位制(G和cm与T和m)。
(30)
现在就用式(3- 31)来确定输出最大功率时的二次绕组匝数。
(31)
式中 Dmax——最大占空比(通常为50%)。
式(31)算出来的结果应该看作是最大的匝数,因为匝数越多的话,二次电感量也越大,因此把磁心的能量释放完需要更长的时间。
这样算出来的结果往往不是整数,而很多磁心是不支持带小数的匝数,这就要在磁心允许的范围内选取最接近这个小数的整数。
确定其余输出绕组的匝数,可以用设计正激式变压器的方法[见式(22)]。
同样,如果输出的电压值与理想的输出电压值的误差超标的话,也需要进行反复设计。
先把原来的二次绕组匝数拿掉一匝,重新计算输出电压(包括整流桥的正向压降)。
最终,输出电压总是会有些误差存在的。
(22)
式中 Vout(n)——另外的输出电压;
VD——预计的输出整流器的正向压降。
现在要考虑二次绕组的安排了。
设计者可能会选用自耦变压器式的二次绕组(也就是低压绕组的绕线是共用的)或隔离式二次绕组。
由于反激式的二次侧是半波整流的,所以非中间抽头的绕组或全波整流桥是不能用的(见图19)。
一旦要设计的二次绕组的绕法确定后,就要检查磁心的窗口面积是否能装下这个绕组。
这同样也可以按式(23)来检
验。
(23)
式中,k 取1.2~1.4之间的值,这是考虑到绕组余量和绝缘层的缘故。
图19
在反激式变换器中,变压器的物理结构设计也是比较苛刻的。
如果设计不当,会产生电压尖峰,这会影响半导体器件的可靠工作(见本文-基极和栅极的驱动变压器)。
正激式滤波扼流圈的设计
正激式滤波扼流圈就是正激式变压器的每个输出端上的滤波电感。
它的目的是当开关管关断时,为负载存储能量。
电气上的作用就是把开关方波脉冲积分成直流电压。
滤波电感的设计比较简单。
首先要选好磁心。
通常这种场合用钼镍铁合金(mopermalloy)磁环,这是因为这种材料本身内部有气隙。
当然用有气隙的铁氧体磁心也是可以的。
如果要用有气隙的铁磁心,请参照本文-升压式变换器单匝绕组电感的磁心尺寸设计方法进行设计。
下面就是采用钼镍铁合金磁环进行滤波电感设计的步骤。
首先用式(32)确定输出所需的最小电感
(32)
式中 Vin(max)——对应的输出端上整流器后的最高峰值电压;
Vout ——输出电压;
Ton(est) ——估计的最大输入电压下,开关管导通时间(1/ fop的30%是比较好的估计);
Iout(min) ——预先知道的输出端上负载最小电流。
这个值就是电感的最小值,如果低于这个值,在输出端上流过最小额定负载电流时,电感电流会发生断续。
对钼镍铁合金磁环来说,可以通过计算存储在磁心中的能量平均值来估计需要的磁心尺寸。
能量的平均值用式(33)计算。
(33)
参考图20,确定z轴的位置,在这个位置上垂直上移,直到和第一条曲线相交。
然后水平看过去,读出磁心型号。
参考该型号的数据手册,查到这个磁心的值,设计者就可以根据式(29)计算出所需的绕组匝数。
总之,通过电感的电流平均值越大的话,就使用越低的磁导率的MPP磁心材料。
图20
接下来检查磁环的窗口面积是否能绕下
这些匝数。
绕组占用磁环窗口面积的百分比由下式决定:
(34)
式中 Awire——绕组导线的横截面积(参考附录F中的导线规格表)( in2或m2 );
Awindow ——磁环可以提供的绕线面积(窗口面积)( in2或m2 );
N——绕组匝数。
如果这个值为40%一50%,那么绕组占的窗口面积太大了。
这是因为绕线梭要从余下的空间中穿过,如果余下的窗口空间小于50%,绕线梭就无法穿过。
解决的办法是选用尺寸更大的磁心或把导线的线径减小一号。
后一种方法会因为铜损的增加而使电感发热量增加。
最后,如果电源在高频下工作,并且流过滤波器的电流较大,则可以考虑用编织线(1itz wire)。
这是因为编织线是由很多细的导线绞合成一股的,集肤效应小。
对于相同导电截面积,编织线的直径要比单股线要大。
相互耦合的正激式滤波扼流圈的设计
在多组输出的正激式变换器中,输出电压互补时(如+/-5v等),可以把扼流圈做在同一个磁心上(见图21)。
这样做有一些好处:可以节省空间,提高输出的交叉调整性能,每个输出端电压的纹波也比较理想。
图21
首先要选好磁心的类型和材料,这部分与单输出滤波扼流圈的设计相同。
可以用钼镍铁合金磁环(见本文-正激式滤波扼流圈的设计)或用铁氧体磁心(见本文-确定磁心的尺寸)。
对于钼镍铁合金磁环,确定需要的磁心尺寸,把两个输出负载的电流叠加起来后,选用符合这个电流要求的导线规格,并用式(33)计算磁环大小。
所需的磁心窗口面积设为单绕组扼流圈时的两倍。
扼流圈的绕组匝数是由最小的电感值和最小输出电流下所需的匝数确定的。
这两个值可以用式(32)和式(29)来计算。
另一个绕组的匝数与该绕组相同。
这两个绕组要用双绞线,也就是在把导线绕到磁心或骨架上之前,先把它们绞在一起,这就保证它们的匝数是一样的,相同的匝数对扼流圈的工作是很重要的。
对于#22 AWG(AWG为美国线规)导线来说,每英寸绞三圈,这种绞合程度是比较合适的。
线径越大,绞合程度越低。
两个绕组产生的磁通在磁心中叠加在一起。
由于绕组一样(如绕线方向相同),两组电源的输出极性相反,所以同名端要标在电感的两端(见图21)。
如果把绕组的极性接错的话,这两个绕组互相影响,会使整个电源损坏。
滤波扼流圈的磁心上可以绕上更多的绕组,但是这里不推荐这种做法。
如果绕组的匝数不准确,每组输出匝数误差一匝,就会使电源的效率损失约1%。
建议每对互补输出端共用一个耦合滤波电感,并采用电压反馈电路的设计所介绍的输出交叉检测方法。
如有侵权请联系告知删除,感谢你们的配合!。