卡尔曼滤波 matlab仿真
卡尔曼滤波轨迹预测matlab

卡尔曼滤波是一种由芬兰控制理论专家卡尔曼(R.E.Kalman)于20世纪60年代提出的一种适用于线性动态系统的状态估计方法,它的原理是根据系统的数学模型通过观测数据对系统状态进行动态估计,具有对系统参数模型的误差进行校正、对系统运动的预测与跟踪的优点。
在今天的科学技术发展中,卡尔曼滤波已经广泛应用于航空航天、导航、通信、天文测量、生物医学工程等众多领域。
其中,在轨迹预测方面,卡尔曼滤波可以通过对目标的动态模型进行建模,结合观测数据,实现对目标位置的精确预测。
而在使用matlab进行卡尔曼滤波轨迹预测时,通常需要按照以下步骤进行操作:1. 建立系统模型在matlab中,首先需要根据目标运动的特点建立系统的动态模型。
这个过程通常会涉及到目标的运动方程、动态参数、观测误差等内容。
在建立好系统模型后,可以将系统模型表示为状态方程和观测方程。
2. 初始化滤波器参数在进行卡尔曼滤波之前,需要对滤波器的初始状态进行初始化,这包括系统状态向量的初始估计、系统噪声和观测噪声的协方差矩阵等参数的初始化。
3. 观测数据处理在实际应用中,通常会通过传感器或者其他设备获取目标的观测数据,这些数据需要进行预处理,包括去噪、滤波等操作,以提高滤波器的效果。
4. 卡尔曼滤波预测在完成上述准备工作后,就可以利用matlab中的卡尔曼滤波函数进行轨迹预测了。
这个过程通常包括对观测数据和系统模型进行融合,实现对目标轨迹的准确预测。
5. 评估与调整需要对滤波结果进行评估与调整。
这个过程包括对滤波器参数的调整优化以及与实际观测数据进行对比等步骤,以保证滤波器的准确性与稳定性。
总结来看,matlab在卡尔曼滤波轨迹预测中具有良好的适用性和灵活性,可以帮助用户快速、准确地实现对目标轨迹的预测与跟踪。
但在实际应用中,用户需要根据具体的系统模型和观测数据特点来合理选择滤波参数,以最大程度地发挥卡尔曼滤波的优势。
在进行卡尔曼滤波轨迹预测时,用户除了需要掌握matlab的基本操作以外,更需要对卡尔曼滤波理论有着深刻的理解与应用能力,这样才能更好地利用卡尔曼滤波来实现目标轨迹的准确预测与跟踪,为实际应用提供更好的支持与保障。
matlab 自适应卡尔曼滤波

matlab 自适应卡尔曼滤波自适应卡尔曼滤波是一种基于卡尔曼滤波算法的扩展,用于跟踪非线性系统的状态。
在传统的卡尔曼滤波中,假设系统是线性的,并且系统的噪声和测量噪声是已知的。
然而,在实际应用中,往往会遇到非线性系统或未知的噪声情况,这就需要使用自适应卡尔曼滤波方法来处理。
自适应卡尔曼滤波的基本思想是通过一种递归算法,根据系统的状态和测量值的变化来调整卡尔曼滤波的参数。
具体步骤如下:1. 初始化卡尔曼滤波模型的参数,包括状态向量、状态转移矩阵、测量矩阵、过程噪声协方差矩阵、测量噪声协方差矩阵等。
2. 根据当前的测量值和状态向量,计算预测的状态向量和状态转移矩阵。
3. 通过当前的测量值和预测的状态向量,计算卡尔曼增益。
4. 更新状态向量和状态协方差矩阵。
5. 根据更新后的状态向量,重新计算过程噪声协方差矩阵和测量噪声协方差矩阵。
6. 重复步骤2到5,直到滤波结束。
自适应卡尔曼滤波的关键在于如何根据当前的测量值和状态向量来调整滤波模型的参数,以适应实际系统的变化。
常见的自适应卡尔曼滤波算法包括扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)和粒子滤波等。
在MATLAB中,可以使用现有的工具箱或编写自己的函数来实现自适应卡尔曼滤波。
MATLAB提供了kalmanfilt函数用于实现标准的卡尔曼滤波,同时也可以根据需要自定义滤波模型和参数。
它还提供了ekf, ukf和pf函数分别用于实现扩展卡尔曼滤波、无迹卡尔曼滤波和粒子滤波算法。
下面是一个简单的MATLAB示例,演示了如何使用kalmanfilt函数实现自适应卡尔曼滤波:matlab% 定义系统的状态转移矩阵和测量矩阵A = [1 0.1; 0 1];C = [1 0];% 定义过程噪声协方差矩阵和测量噪声协方差矩阵Q = [0.01 0; 0 0.01];R = 0.1;% 创建kalman滤波器对象kf = kalmanfilt(A, C, Q, R);% 初始化状态向量和状态协方差矩阵x0 = [0; 0];P0 = eye(2);% 生成模拟数据N = 100;x_true = zeros(2, N);y = zeros(1, N);for k = 1:Nx_true(:, k) = A * x_true(:, k-1) + sqrtm(Q) * randn(2, 1);y(k) = C * x_true(:, k) + sqrt(R) * randn(1);end% 使用kalman滤波器滤波数据x_est = zeros(2, N);for k = 1:Nx_est(:, k) = kf(y(k));end% 绘制真实值和估计值的对比图figure;hold on;plot(1:N, x_true(1, :), 'b-', 'LineWidth', 2);plot(1:N, x_true(2, :), 'r-', 'LineWidth', 2);plot(1:N, x_est(1, :), 'k', 'LineWidth', 2);plot(1:N, x_est(2, :), 'm', 'LineWidth', 2);legend('True x1', 'True x2', 'Estimate x1', 'Estimate x2');hold off;以上示例中,定义了一个二维状态向量和一个一维测量向量,并根据这两个向量构建了卡尔曼滤波模型的参数。
MATLAB技术卡尔曼滤波教程

MATLAB技术卡尔曼滤波教程MATLAB技术:卡尔曼滤波教程随着现代科技的发展,数据处理和信号滤波成为许多领域研究的重要环节。
其中,卡尔曼滤波作为一种常用的最优估计方法,被广泛应用于控制与导航、机器人、经济学以及信号处理等众多领域。
本文将为读者简要介绍MATLAB中的卡尔曼滤波原理与实现方法。
一、卡尔曼滤波简介卡尔曼滤波由Rudolph E. Kalman在1960年代初提出,其基本思想是通过综合当前观测数据和已知系统动态方程,估计出系统状态的最优解。
卡尔曼滤波通过联合考虑信号的测量和系统模型的不确定性,提供了一种在噪声干扰存在下的最优估计方法。
卡尔曼滤波的核心思想是建立一种递推的状态估计过程,即通过使用上一步的估计结果以及当前时刻的观测数据,预测下一步的状态。
卡尔曼滤波算法分为两个主要步骤:预测(时间更新)和更新(测量更新)。
预测步骤利用系统的动态模型和上一步的状态估计,计算出当前时刻状态的预测值以及预测误差协方差矩阵。
更新步骤则通过结合当前时刻的实际观测数据和预测值,计算出当前时刻的状态估计值和更新后的误差协方差矩阵。
二、MATLAB中的卡尔曼滤波工具箱为了解决卡尔曼滤波的数学推导与实现问题,MATLAB提供了专门的卡尔曼滤波工具箱。
该工具箱提供了丰富的函数和工具,使得用户可以方便地进行卡尔曼滤波算法的实现与仿真。
首先,用户需要定义系统的动态模型和测量模型,并设置初始状态以及误差协方差矩阵。
MATLAB中提供了`kalman`函数用于实现卡尔曼滤波的状态更新与估计。
其次,用户可以利用`kalman`函数进行滤波的仿真实验。
通过输入实际观测数据以及系统模型,用户可以获得滤波后的状态估计值和误差协方差矩阵。
此外,用户还可以根据系统模型的不同,选择不同的卡尔曼滤波算法(如扩展卡尔曼滤波、无迹卡尔曼滤波等)。
三、实例演示:基于MATLAB的卡尔曼滤波仿真为了更好地理解和掌握MATLAB中的卡尔曼滤波工具箱,我们将通过一个简单的实例演示其用法。
卡尔曼滤波 正弦函数 matlab

一、介绍卡尔曼滤波卡尔曼滤波是一种用于估计系统状态的线性动态系统的方法。
它是由朗迪·卡尔曼在1960年提出的。
卡尔曼滤波是一种递归滤波器,通过使用过去时刻的状态和测量,以及系统动态的模型,来预测当前时刻的状态。
二、卡尔曼滤波原理1. 状态更新步骤:在状态更新步骤中,卡尔曼滤波使用系统的动态方程来预测下一个时刻的状态。
这一步骤包括预测状态、预测状态协方差和计算卡尔曼增益。
2. 测量更新步骤:在测量更新步骤中,卡尔曼滤波使用最新的测量值来修正之前的预测。
这一步骤包括计算测量预测、计算残差、计算卡尔曼增益和更新状态估计。
三、正弦函数及其在卡尔曼滤波中的应用正弦函数是一种周期性变化的函数,具有良好的数学性质和广泛的应用。
在卡尔曼滤波中,正弦函数可以用于模拟系统的动态特性,对系统的状态进行预测和更新。
四、matlab中的卡尔曼滤波实现matlab是一种用于科学计算和工程应用的高级技术计算语言和交互环境。
在matlab中,可以很方便地实现和应用卡尔曼滤波算法。
1. 使用matlab进行线性动态系统建模在matlab中,可以使用state-space模型来表示线性动态系统的状态空间方程。
通过定义系统的状态方程、测量方程、过程噪声和观测噪声,可以建立系统的状态空间模型。
2. 使用matlab实现卡尔曼滤波算法在matlab中,可以使用kalman滤波器函数来实现卡尔曼滤波算法。
首先需要定义系统的状态转移矩阵、测量矩阵、过程噪声协方差矩阵和观测噪声协方差矩阵。
然后利用kalman滤波器函数,输入系统模型和测量值,即可得到卡尔曼滤波器的输出。
3. 使用matlab对正弦函数进行卡尔曼滤波在matlab中,可以构建一个包含正弦函数的模拟系统,并对其进行卡尔曼滤波。
通过比较卡尔曼滤波的结果和真实正弦函数的值,可以评估卡尔曼滤波算法的性能。
五、结论卡尔曼滤波是一种用于估计系统状态的有效方法,在很多领域都有广泛的应用。
卡尔曼滤波原理及应用matlab仿真

卡尔曼滤波原理及应用matlab仿真卡尔曼滤波(Kalman Filter)是一种最优估计算法,由美国工程师卡尔曼发明并命名。
它是一种递归算法,适用于线性以及线性化的系统。
卡尔曼滤波可以通过已知的状态方程和观测方程来计算未知的状态量,同时考虑到测量误差和系统噪声。
卡尔曼滤波的核心思想是通过已知的状态方程和观测方程来递归地更新估计值和协方差矩阵。
估计值是对状态量的估计,协方差矩阵是表示估计值的不确定性的指标,它受到测量误差和系统噪声的影响。
通过不断迭代的过程,最终得到最优的状态估计值。
卡尔曼滤波主要应用于控制系统、导航、信号处理、图像处理等领域,它可以用于预测未来的状态量和优化估计结果,提高系统的稳定性和精度。
在自主导航系统中,卡尔曼滤波可以通过传感器捕捉环境信息,实现机器人的定位、控制和路径规划。
Matlab是一种强大的数学计算软件,它提供了丰富的工具箱和函数库,可以实现卡尔曼滤波算法的仿真。
Matlab中的Kalman滤波工具箱可以用于模拟线性系统的状态估计。
通过Matlab软件,可以输入系统的状态方程和观测方程,生成真实值和观测值序列,并使用卡尔曼滤波算法估计状态量,同时展示状态量的收敛过程和误差分析。
在实际应用中,卡尔曼滤波需要针对具体的问题进行调整和优化,例如选择不同的观测量和噪声模型,选择恰当的卡尔曼增益等。
因此,在使用卡尔曼滤波进行估计时需要注意以下几点:1.确定系统的状态方程和观测方程,建立合理的模型。
2.合理估计系统噪声和观测噪声,减小误差对估计结果的影响。
3.选择合适的卡尔曼增益,平衡观测值和实际值对估计的贡献。
4.对估计结果进行误差分析,评估卡尔曼滤波的优势和局限性。
总之,卡尔曼滤波是一种重要的最优估计算法,广泛应用于控制、导航、信号处理等领域。
通过Matlab软件,可以进行卡尔曼滤波算法的仿真,并优化估计结果。
在实际应用中,需要针对具体问题进行调整和优化,以提高估计精度和稳定性。
自适应扩展卡尔曼滤波matlab

自适应扩展卡尔曼滤波matlab自适应扩展卡尔曼滤波(Adaptive Extended Kalman Filter,AEKF)是一种用于非线性系统状态估计的滤波算法。
本文将介绍AEKF算法的原理、步骤和实现方法,并结合MATLAB 编写代码进行演示。
一、扩展卡尔曼滤波原理扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的滤波算法。
它通过使用线性化系统模型的方式将非线性系统转换为线性系统,在每个时间步骤中用线性卡尔曼滤波器进行状态估计。
然而,EKF仅限于具有凸多边形测量特性的问题,并且对线性化过程误差敏感。
为了解决这些问题,AEKF通过自适应更新协方差矩阵的方式提高了滤波器的性能。
AEKF通过测量残差的方差更新协方差矩阵,从而提高了滤波器对非线性系统的适应能力。
AEKF算法的步骤如下:1. 初始化状态向量和协方差矩阵。
2. 根据系统的非线性动力学方程和测量方程计算预测状态向量和协方差矩阵。
3. 计算测量残差,即测量值与预测值之间的差值。
4. 计算测量残差的方差。
5. 判断测量残差的方差是否超过预设阈值,如果超过,则更新协方差矩阵。
6. 利用更新后的协方差矩阵计算最优滤波增益。
7. 更新状态向量和协方差矩阵。
8. 返回第2步,进行下一次预测。
二、AEKF算法的MATLAB实现下面,我们将使用MATLAB编写AEKF算法的代码,并通过一个实例进行演示。
首先,定义非线性系统的动力学方程和测量方程。
在本例中,我们使用一个双摆系统作为非线性系统模型。
```matlabfunction x_next = nonlinear_dynamics(x_current, u)% Nonlinear system dynamicstheta1 = x_current(1);theta2 = x_current(2);d_theta1 = x_current(3);d_theta2 = x_current(4);g = 9.8; % Gravitational accelerationd_theta1_next = d_theta1 + dt * (-3*g*sin(theta1) - sin(theta1-theta2) ...+ 2*sin(theta1-theta2)*(d_theta2^2 + d_theta1^2*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));d_theta2_next = d_theta2 + dt * (2*sin(theta1-theta2)*(2*d_theta2^2 ...+ d_theta1^2*cos(theta1-theta2) + g*cos(theta1) +g*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));theta1_next = theta1 + dt * d_theta1_next;theta2_next = theta2 + dt * d_theta2_next;x_next = [theta1_next; theta2_next; d_theta1_next;d_theta2_next];endfunction y = measurement_model(x)% Measurement model, measure the angles of the double pendulumtheta1 = x(1);theta2 = x(2);y = [theta1; theta2];end```然后,定义AEKF算法的实现。
维纳、卡尔曼滤波简介及MATLAB实现

现代数字信号处理课程作业维纳、卡尔曼、RLS、LMS算法matlab实现维纳滤波从噪声中提取信号波形的各种估计方法中,维纳(Wiener)滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号(波形),而不只是它的几个参量。
设维纳滤波器的输入为含噪声的随机信号。
期望输出与实际输出之间的差值为误差,对该误差求均方,即为均方误差。
因此均方误差越小,噪声滤除效果就越好。
为使均方误差最小,关键在于求冲激响应。
如果能够满足维纳-霍夫方程,就可使维纳滤波器达到最佳。
维纳滤波器的优点是适应面较广,无论平稳随机过程是连续的还是离散的,是标量的还是向量的,都可应用。
维纳滤波器的缺点是,要求得到半无限时间区间内的全部观察数据的条件很难满足,同时它也不能用于噪声为非平稳的随机过程的情况,对于向量情况应用也不方便。
因此,维纳滤波在实际问题中应用不多。
下面是根据维纳滤波器给出的图像处理matlab实例,在下面实例中维纳滤波和均值滤波相比较,并且做了维纳复原、边缘提取、图像增强的实验:%****************维纳滤波和均值滤波的比较*********************I=imread('lena.bmp');J=imnoise(I,'gaussian',0,0.01);Mywiener2 = wiener2(J,[3 3]);Mean_temp = ones(3,3)/9;Mymean = imfilter(J,Mean_temp);figure(1);subplot(121),imshow(Mywiener2),title('维纳滤波器输出');subplot(122),imshow(uint8(Mymean),[]),title('均值滤波器的输出');%***********************维纳复原程序********************figure(2);subplot(231),imshow(I),title('原始图像');LEN = 20;THETA =10;PSF = fspecial('motion',LEN,THETA);Blurred = imfilter(I,PSF,'circular');subplot(232),imshow(Blurred),title('生成的运动的模糊的图像');noise = 0.1*randn(size(I));subplot(233),imshow(im2uint8(noise)),title('随机噪声');BlurredNoisy=imadd(Blurred,im2uint8(noise));subplot(234),imshow(BlurredNoisy),title('添加了噪声的模糊图像');Move=deconvwnr(Blurred,PSF);subplot(235),imshow(Move),title('还原运动模糊的图像');nsr = sum(noise(:).^2)/sum(im2double(I(:)).^2);wnr2 = deconvwnr(BlurredNoisy,PSF,nsr);subplot(236),imshow(wnr2),title('还原添加了噪声的图像');%****************维纳滤波应用于边缘提取*********************N = wiener2(I,[3,3]);%选用不同的维纳窗在此修改M = I - N;My_Wedge = im2bw (M,5/256);%化二值图像BW1 = edge(I,'prewitt');BW2 = edge(I,'canny');BW3 = edge(I,'zerocross');BW4 = edge(I,'roberts');figure(3)subplot(2,4,[3 4 7 8]),imshow(My_Wedge),title('应用维纳滤波进行边沿提取'); subplot(241),imshow(BW1),title('prewitt');subplot(242),imshow(BW2),title('canny');subplot(245),imshow(BW3),title('zerocross');subplot(246),imshow(BW4),title('roberts');%*************************维纳滤波应用于图像增强***************************for i = [1 2 3 4 5] K = wiener2(I,[5,5]);end K = K + I; figure(4);subplot(121),imshow(I),title('原始图像'); subplot(122),imshow(K),title('增强后的图像');维纳滤波器输出均值滤波器的输出原始图像生成的运动的模糊的图像随机噪声添加了噪声的模糊图像还原运动模糊的图像还原添加了噪声的图像卡尔曼滤波卡尔曼滤波的一个典型实例是从一组有限的,对物体位置的,包含噪声的观察序列预测出物体的坐标位置及速度。
卡尔曼滤波的仿真实现

卡尔曼滤波的仿真实现以下是一个卡尔曼滤波的仿真实现过程。
1.定义系统模型:首先,需要定义系统的状态转移方程和观测方程。
系统状态转移方程描述了状态在时间上的演变关系,观测方程描述了测量值与系统状态之间的关系。
例如,考虑一个简单的一维恒定速度系统,状态转移方程可以定义为:x(k+1) = x(k) + v(k) * dt观测方程可以定义为:z(k)=x(k)+w(k)2.初始化滤波器参数:卡尔曼滤波器需要初始化一些参数,包括状态的初始估计值和协方差矩阵。
初始估计值可以根据先验知识提供一个初始猜测,协方差矩阵则定义了该估计的方差。
在这个例子中,可以假设初始位置和速度均为0,并且初始协方差矩阵为一个较大的值。
3.实现卡尔曼滤波算法:在每个时间步骤中,进行以下步骤:-预测步骤:根据状态转移方程预测下一个状态的估计值和协方差矩阵:x_hat(k+1,k) = A * x_hat(k,k) + B * u(k)P(k+1,k)=A*P(k,k)*A^T+Q-更新步骤:根据观测方程更新状态的估计值和协方差矩阵:K(k+1)=P(k+1,k)*H^T*(H*P(k+1,k)*H^T+R)^(-1)x_hat(k+1,k+1) = x_hat(k+1,k) + K(k+1) * (z(k+1) - H *x_hat(k+1,k))P(k+1,k+1)=(I-K(k+1)*H)*P(k+1,k)其中,A和B是状态转移方程的系数矩阵,u(k)是系统的外部输入,Q是过程噪声的协方差矩阵,H是观测方程的系数矩阵,R是观测噪声的协方差矩阵。
4.生成噪声:为了模拟真实的情况,在每个时间步骤中,生成过程噪声和观测噪声。
过程噪声可以使用正态分布随机数生成,观测噪声可以根据具体应用生成。
5.执行仿真:在每个时间步骤中,首先根据当前状态和输入生成观测值。
然后,根据观测值和卡尔曼滤波算法更新状态的估计值和协方差矩阵。
最后,记录每个时间步骤下的估计状态和真实状态,并计算估计状态与真实状态之间的误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机信号处理上机作业
题目:假设有一个二坐标雷达对一平面上运动目标的进行观察,目标在t =0~400秒沿y 轴作恒速直线运功,运动速度为-15m/s ,目标的起点为(2000m ,10000m ),雷达扫描周期为2秒,x 和y 独立地进行观察,观察噪声的标准差均为100m 。
试建立雷达对目标的跟踪算法,并进行仿真分析,给出仿真结果,画出目标真实轨迹、对目标的观察和滤波曲线。
一、跟踪算法
考虑利用卡尔曼滤波算法对目标的运动状态进行估计。
由于目标在二维平面内做匀速运动,因此这里只考虑匀速运动情况。
1. 建立模型
由于目标沿y 轴作匀速直线运动,取状态变量
⎥⎥
⎥⎦
⎤⎢⎢⎢⎣⎡=y v y x S 状态方程:
()()k AS k S =+1 (1)
观测方程:
()()()k V k CS k Z += (2)
其中,
⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡=10010001T A
⎥⎦⎤⎢⎣⎡=010001C
⎥⎦
⎤
⎢⎣⎡=y x z z Z ⎥⎦⎤⎢⎣⎡=y x v v V
对目标位置和速度的同时滤波与一步预测的方程组如下:
预测估计方程:
()()
11/^
^-=-k A k k S S
预测误差协方差:
()()T A
k AP k k P 11/-=-
滤波估计增益:
()()()R C k k C k k C k B T T +--=1/1/,其中
⎥⎥⎦
⎤⎢⎢⎣⎡=2200y x R σσ 滤波估计方程:
()()()()()⎥⎦⎤⎢
⎣⎡--+-=1/1//^
^
^
k k k Z k B k k k k S S S
滤波误差协方差:
()()[]()1/1/--=k k P C k B k k P
2. 初始化
利用目标的前几个测量值建立状态的其实估计,采用两点起始法。
()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-=∧T Z Z Z Z S y y y x )1()2()2()2(2/2
()⎥⎥
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣
⎡=T T T P y y y y
x 2222
220000
2/2σσσσσ
滤波误差均值:
()k k S k S N
k e I
N
i i
x /)(1
)(1
∧
=-=
∑
滤波误差标准差:
()22
1)(/)(1k e k k S k S N
x N
i I i y
-⎥⎦⎤
⎢⎣
⎡-=
∑=∧
∧
σ
二. 仿真分析
利用MATLAB 对前面建立的模型进行仿真,结果如下。
图 2.1
图 2.1 是目标运动的真实轨迹和观测轨迹曲线。
其中,真实轨迹显示目标在x=2000米处沿y 轴方向做匀速直线运动,而观测轨迹是目标运动的真实轨迹加上方差和随机测量噪声得到的。
从图中可以看出,观测轨迹围绕真实轨迹作上下浮动。
图 2.2
图2.2是单次滤波和100次滤波后的数据曲线。
从图中可以看出,滤波刚开始时误差较大,之后滤波误差逐渐降低,估计值逐步逼近真实轨迹。
而随着滤波次数增加,滤波后的结果更为接近真实轨迹。
图 2.3
图 2.4
图2.3,图2.4分别是x和y方向滤波估计误差均值及误差标准差曲线。
从图上可以看出,滤波开始时误差较大,随着采样次数的增加,误差逐渐减小,误差的标准差也具有相同特性。
另外,可以看到由于在y方向上有速度分量,因此y方向的估计误差均值比x方向的估计误差均值波动要大一些。
%仿真场景
sigma=10000;
T=2;
t=200;
Vy=-15;
C=[1 0 0;0 1 0];
A=[1 0 0;0 1 T;0 0 1];
eSk(:,t)=[0 0 0]';eSz(:,t)=[0 0 0]';eeSz(:,t)=[0 0]';
N=100;%蒙特卡洛次数
for i=1:N
for j=1:t
Zk(:,j)=[2000+wgn(1,1,40);10000+Vy*T*(j-1)+wgn(1,1,40)];
end
for j=1:200
if j==1
Sk(:,1)=[Zk(1,1),Zk(2,1),0]';Sk1(:,1)=Sk(:,1);
Sk(:,2)=[Zk(1,2),Zk(2,2),(Zk(2,2)-Zk(2,1))/T]';Sk1(:,2)=Sk(:,2);
Pk=[sigma,0,0;0,sigma,sigma/T;0,sigma/T,2*sigma/T];
else
if j>2
Sk1(:,j)=A*Sk(:,j-1);%预测
Pk1=A*Pk*A';%预测误差协方差
Bk=Pk1*C'*inv(C*Pk1*C'+sigma*eye(2));%kalman增益
Sk(:,j)=Sk1(:,j)+Bk*(Zk(:,j)-C*Sk1(:,j));%滤波
Pk=(eye(3)-Bk*C)*Pk1;%滤波协方差
end
end
%%
%1000次求平均
eSk(:,j)=eSk(:,j)+Sk(:,j)/N;%滤波
eSz(:,j)=eSz(:,j)+([2000;10000+Vy*(j-1)*T;0]-Sk(:,j))/N;%滤波误差均值
eeSz(:,j)=eeSz(:,j)+[(2000-Sk(1,j))^2;(10000+Vy*(j-1)*T-Sk(2,j))^2]/N;%滤波误差标准差end
end
%绘图
%真实轨迹和测量轨迹
subplot(2,1,1);j=0:0.1:t;plot(2000,10000+Vy*(j-1)*T);
title('目标真实轨迹');xlabel('X(米)');ylabel('Y(米)');
subplot(2,1,2);plot(Zk(1,:),Zk(2,:));
title('测量轨迹');xlabel('X(米)');ylabel('Y(米)');
%滤波单次仿真和蒙特卡洛仿真
figure;
subplot(2,1,1);
plot(Sk(1,:),Sk(2,:));
title('单次滤波数据曲线');xlabel('X(米)');ylabel('Y(米)'); subplot(2,1,2);
plot(eSk(1,:),eSk(2,:));title('100次滤波数据曲线');
xlabel('X(米)');ylabel('Y(米)');
j=1:t;
figure;subplot(211);plot(j,eSz(1,:));title('X滤波误差均值曲线'); xlabel('采样次数');ylabel('X(米)');
subplot(212);
for j=1:t
eeSz(1,j)=sqrt(eeSz(1,j)-eSz(1,j)^2);
eeSz(2,j)=sqrt(eeSz(2,j)-eSz(2,j)^2);
end
j=1:t;
plot(j,eeSz(1,:));title('x滤波误差标准差曲线');
xlabel('采样次数');ylabel('X(米)');
figure;subplot(211);plot(j,eSz(2,:));
title('y滤波误差均值曲线');xlabel('采样次数');ylabel('Y(米)'); subplot(212);plot(j,eeSz(2,:));title('y滤波误差标准差曲线'); xlabel('采样次数');ylabel('Y(米/秒)');
figure;subplot(211);plot(j,Sk(3,:));title('单次滤波速度估计'); xlabel('采样次数');ylabel('Y(米/秒)');
subplot(212);plot(j,eSk(3,:));title('100次滤波速度估计'); xlabel('采样次数');ylabel('Y(米/秒)');。