2011届高三文科数学会考试卷及答案
2011年高三文科数学试题及答案

2011年普通高等学校招生全国统一考试适应性训练数 学(文科)第Ⅰ卷 选择题(共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1.已知集合1(),02x A y y x ⎧⎫==<⎨⎬⎩⎭,集合{}12B x y x ==,则A B ⋂=( ) A .[)1,+∞ B .()1,+∞ C .()0,+∞ D .[)0,+∞2. 在用二分法求方程3210x x --=的一个近似解时,现在已经将一根锁定在(1,2)内,则下一步可断定该根所在的区间为( )A.(1.4,2)B.(1,1.4)C.(1,1.5)D.(1.5,2)3. 如图是容量为100的样本的频率分布直方图,则样本数据落在[)6,10内的频数为( )A.8B.32C.40D.无法确定4. 双曲线22221y abx -=的一条渐近线方程为43y x =,则双曲线的离心率为( )A.53B.43C.54D.745. 阅读右侧的算法流程图,输出的结果B 的( ) A.7 B.15 C.31 D.636. 对定义域内的任意两个不相等实数1x ,2x ,下列满足0)]()()[(2121<--x f x f x x 的函数是( )A .2)(x x f =B .xx f 1)(=C .x x f ln )(=D .xx f 5.0)(=7. 一个几何体按比例绘制的三视图如图所示(单位:m ),则该几何体的体积为( )A.373m B.392m C.372m D.394m8. 已知函数m x x x f +-=3)(3在区间]0,3[-上的最大值与最小值的和为14-,则实数m 的值为( )A .1B .2C .9-D .8-9. 已知正棱锥S —ABC 的底面边长为4,高为3,在正棱锥内任取一点P ,使得21<-ABC P V ABC S V -的概率是( )A .43 B .87 C .21 D .4110.在△ABC 中,三内角A 、B 、C 所对应的边长分别为a 、b 、c ,且A 、B 、C 成等差数列,3b =,则△ABC 的外接圆半径为( B )A .21B.1C.2D.4第Ⅱ卷 非选择题(共100分)二、填空题:本大题共7小题,考生作答5小题,每小题5分,满分25分.11.记n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S = . 12. 已知向量(1,2),(2,)a b λ=-=r r,且a r 与b r 的夹角为锐角,则实数λ的取值范围是 .13.已知函数()113sin cos 24f x x x x =--的图象在点()()00,A x f x 处的切线斜率为12,则)4tan(0π+x 的值为 .14. 某企业三月中旬生产,A 、B 、C 三种产品共3000件,根据分层抽样的结果;企业统计 产品类别 A B C 产品数量(件)1300样本容量(件)130A 产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C 的产品数量是 件。
2011年高考全国数学试卷(新课标)-文科(含详解答案)

绝密★启用前2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题...卷上作答无效....... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U=(M N )I ð (A ){}12,(B ){}23, (C ){}2,4 (D ){}1,4 【答案】D【命题意图】本题主要考查集合交并补运算. 【解析】{2,3},(){1,4}U M N M N =∴=ðQ I I(2)函数0)y x =≥的反函数为(A )2()4xy x R =∈ (B )2(0)4xy x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【答案】B【命题意图】本题主要考查反函数的求法.【解析】由原函数反解得24yx =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4xy x =≥.(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A (B (C (D【答案】B【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=r r r r r u r ,所以2a b +=r r (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b > 【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = (A )8 (B )7 (C )6 (D )5 【答案】D【命题意图】本题主要考查等差数列的基本公式的应用. 【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =.解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系.【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,A C l ⊥,C 为垂足,B β∈,B D l ⊥,D 为垂 足,若2,1AB AC BD ===,则C D = (A ) 2 (B(C (D )1 【答案】C【命题意图】本题主要考查二面角的平面角及解三角形.【解析】因为l αβ--是直二面角, A C l ⊥,∴AC ⊥平面β,A C B C ∴⊥BC ∴=又B D l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 (A) 12种 (B) 24种 (C) 30种 (D)36种 【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5()2f -=(A) -12(B)1 4- (C)14(D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值.【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111((2)()()2(12222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C = (A)4 (B)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π 【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离O M =,在R t O M N ∆中,30OMN ︒∠=, ∴12O N O M ==故圆N 的半径r ==,∴圆N的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年浙江省普通高中会考数学试卷(word,含答案)

2011年浙江省普通高中会考数 学考生须知:1.全卷分试卷Ⅰ、Ⅱ和答卷Ⅰ、Ⅱ.试卷共6页,有四大题,42小题,其中第二大题为选做题,其余为必做题,满分为100分.考试时间120分钟.2.本卷答案必须做在答卷Ⅰ、Ⅱ的相应位置上,做在试卷上无效.3.请用铅笔将答卷Ⅰ上的准考证号和学科名称所对应的括号或方框内涂黑,请用钢笔或圆珠笔将姓名、准考证号分别填写在答卷Ⅰ、Ⅱ的相应位置上.4.参考公式:球的表面积公式:S =4πR 2 球的体积公式:334R V π=(其中R 为球的半径)试 卷 Ⅰ一、选择题(本题有26小题,1-20每小题2分,21-26每小题3分,共58分.选出各题中一个符合题意的正确选项,不选、多选、错选均不给分) 1.设全集为{1,2,3,4},则集合{1,2,3}的补集是 (A){1} (B){2} (C){3}(D){4}2.函数x x f +=1)(的定义域是 (A)),1[+∞(B)(0,+∞)(C)),0[+∞(D)(-∞,+∞)3.若右图是一个几何体的三视图,这这个几何体是 (A) 圆柱 (B)圆台 (C) 圆锥 (D)棱台 4.56π是(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 5.在等比数列{a n }中,a 1=2,a 2=4,则a 5= (A)8 (B)16 (C)32 (D)646.函数f (x )=cos2x ,x ∈R 的最小正周期是 (A)4π(B)2π(C)π(D)2π7.椭圆192522=+y x 的焦点坐标是 (A)(-3,0),(3,0) (B)(-4,0),(4,0) (C)(0,-4),(0,4)(D)(0,-3),(0,3)8.已知函数11)(+=x x f ,g (x )=x 2+1,则f [g (0)]的值等于( )(A )0 (B )21(C )1(D )2 (D)(-∞,2)正视图 俯视图侧视图(第3题)9.抛物线y 2=4x 的准线方程是(A)x =-1 (B)x =1 (C)y =-1 (D)y =1 10.关于x 的不等式ax -3>0的解集是{x |x >3},则实数a 的值是 (A)1 (B)-1 (C)3 (D)-311.下列不等式成立的是( ) (A )0.52>1 (B )20.5>1 (C )log 20.5>1 (D )log 0.52>1 12.函数y =sin x 的图象向右平移3π个单位长度后,得到的图象所对应的函数是(A))3sin(π-=x y (B))3sin(π+=x y (C)3sin π-=x y (D)3sin π+=x y13.某玩具厂生产一批红、黄、蓝三种颜色的球,红球质量不超过40g ,黄球质量超过40g 但不超过60g ,蓝球质量超过60g 但不超过100g. 现从这批球中抽取100个球进行分析,其质量的频率分布直方图如图所示. 则图中纵坐标a 的值是( ) (A )0.015 (B )0.0125 (C )0.01 (D )0.00814.已知A ,B 是互斥事件,若51)(=A P ,21)(=+B A P ,则P (B )的值是( )(A )54 (B )107(C )103 (D )10115.在∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b =2,c =1,B =45º,则sin C 的值是 (A)42 (B)21 (C)22 (D)116.在空间直角坐标系中,设A (1,2,a ),B (2,3,4),若|AB |=3,则实数a 的值是 (A)3或5 (B)-3或-5 (C)3或-5 (D)-3或5 17.函数f (x )=ln x +2x 的零点的个数是( ) (A )0 (B )1 (C )2 (D )3 18.函数f (x )=log a |x -t |(a >1且a ≠1)的图象如图所示,则下列结论正确的是( ) (A )t =1,0<a <1 (B )t =1,a >1 (C )t =2,0<a <1 (D )t =2,a >119.在空间中,设m 表示直线,α,β表示不同的平面,则下列命题正确的是(A)若α//β,m //α,则m //β(B)若α⊥β,m ⊥α,则m ⊥β(C)若α⊥β,m //α,则m ⊥β (D)若α//β,m ⊥α,则m ⊥β20.设等差数列{a n }的前n 项和为S n ,若a 11-a 8=3,S 11-S 8=3,则使a n >0的最小正整数n 的值是(A)8(B)9(C)10(D)11a 0.020.005/g (第13题)21.已知函数f (x )=2x +a ⋅2-x ,则对于任意实数a ,函数f (x )不可能...( ) (A )是奇函数 (B )既是奇函数,又是偶函数 (C )是偶函数 (D )既不是奇函数,又不是偶函数 22.执行右图所示的程序框图,若输入x =2,则输出x 的值是( ) (A )4 (B )8(C)16(D )3223.已知非零向量b a ,满足|a |=1,3||=-b a,a 与b 的夹角为120º,则|b |=( ) (A )22(B )2(C )2(D )124.已知α为钝角,sin(α+4π)=31,则sin(4π-α)的值是 (A)31- (B)322-(C)31 (D)322 25.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤++≤--≥+-0012012a y x y x y x ,所围成的平面区域面积为23,则实数a 的值是(A)3(B)1(C)-1(D)-326.正方形ABCD 的边长为2,E 是线段CD 的中点,F 是线段BE 上的动点,则⋅的取值范围是( ) (A )[-1,0] (B )]54,1[-(C )]1,54[-(D )[0,1]二、选择题(本题分A 、B 两组,任选一组完成,每组各4小题,选做B 组的考生,填涂时注意第27-30题留空;若两组都做,以27-30题记分. 每小题3分,共12分,选出各题中一个符合题意的正确选项,不选、多选、错选均不给分)A 组27.在复平面内,设复数3-3i 对应点关于实轴、虚轴的对称点分别是A ,B ,则点A ,B 对应的复数和是(A)0(B)6(C)32-i(D)632-i28.设x ∈R ,则“x >1”是“x 2>x ”的 (A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(第22题)29.直线y =kx +1与双曲线12222=-by a x 的一条渐近线垂直,则实数k 的值是(A)54或54- (B)45或45- (C)43或43- (D)34或34- 30.已知函数b xaax x f ++=)((a ,b ∈R )的图象在点(1,f (1))处的切线在y 轴上的截距为3,若f (x )>x 在(1,+∞)上恒成立,则a 的取值范围是(A)]1,0((B)]891[,(C)),89(+∞(D)),1[+∞B 组31.若随机变量X 分布如右表所示, X 的数学期望EX =2,则实数a 的值是(A)0 (B)31 (C)1 (D)2332.函数y =x sin2x 的导数是(A)y '=sin2x -x cos2x(B)y '=sin2x -2x cos2x(C)y '=sin2x +x cos2x (D)y '=sin2x +2x cos2x33.“回文数”是指从左到右与从右到左读都是一样的正整数,如121,666,95259等,则在所有五位数中,不同“回文数”的个数是(A)100 (B)648 (C)900 (D)100034.已知二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),记a n =f (n +3)-f (n ),若数列{a n }的前n 项和S n 单调递增,则下列不等式总成立的是(A)f (3)>f (1)(B) f (4)>f (1)(C) f (5)>f (1)(D) f (6)>f (1)试 卷 Ⅱ请将本卷的答案用钢笔或圆珠笔写在答卷Ⅱ上. 三、填空题(本题有5小题,每小题2分,共10分) 35.点(1,0)到直线x -2y -2=0的距离是 . 36.若一个球的体积为29π,则该球的表面积是 . 37.已知函数00,1,)(2≤>⎩⎨⎧-=x x x x x f ,则f (x )的值域是 .38.已知lg a +lg b =lg(2a +b ),则ab 的最小值是 .39.把椭圆C 的短轴和焦点连线段中较长者、较短者分别作为椭圆C '的长轴、短轴,使椭圆C(第31题)变换成椭圆C ',称之为椭圆的一次“压缩”. 按上述定义把椭圆C i (i =0,1,2,…)“压缩”成椭圆C i +1,得到一系列椭圆C 1,C 2,C 3,…,当短轴长于截距相等时终止“压缩”. 经研究发现,某个椭圆C 0经过n (n ≥3)次“压缩”后能终止,则椭圆C n -2的离心率可能是:①23,②510,③33,④36中的 .(填写所有正确结论的序号)四、解答题(本题有3小题,共20分) 40.(本题6分)如图,长方体ABCD -A 1B 1C 1D 1中,AB =2,AD =AA 1=1,点E 是棱AB 的中点. (1)求证:B 1C //平面A 1DE ;(2)求异面直线B 1C 与A 1E 所成角的大小.41.(本题6分)如图,圆C 与y 轴相切于点T (0,2),与x 轴正半轴交于两点M ,N (点M 在点N 的左侧),且|MN |=3.(1)求圆C 的方程;(2)过点M 任作一条直线与圆O :x 2+y 2=4相交于点A ,B ,连接AN ,BN . 求证:∠ANM =∠BNM .AB D D 1A 1B 1C 1E(第40题)(第41题)42.(本题8分)已知函数x a x a x x f )5(4)1(2131)(23+-+-=,521ln 5)(2+-+=x ax x x g ,其中a ∈R . (1)若函数f (x ),g (x )有相同的极值点,求a 的值;(2)若存在两个整数m ,n ,使得函数f (x ),g (x )在区间(m ,n )上都是减函数. 求n 的最大值,及n 取最大值时a 的取值范围.。
2011山东高考文科数学答案解析.doc

绝密★启用前2010年普通高等学校招生全国统一考试(山东卷)文科数学(全解析)注意事项:1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证 号条形码粘贴在答题卡上的指定位置,用2B 铅笔将答题卡上试卷类型B 后的方框涂黑。
2选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷、草稿纸上无效。
3填空题和解答题用0 5毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区 域内。
答在试题卷、草稿纸上无效。
4考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
第I 卷(共60分)一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知全集U R =,集合{}240M x x =-≤,则U C M = A. {}22x x -<< B. {}22x x -≤≤ C .{}22x x x <->或 D. {}22x x x ≤-≥或 【答案】C【解析】因为{}240M x x =-≤{}22x x =-≤≤,全集U R =, 所以U C M ={}22x x x <->或,故选C 。
【命题意图】本题考查集合的补集运算、二次不等式的解法等基础知识,属基础题。
(2)已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则a b += A. 1- B. 1 C. 2 D. 3 【答案】B 【解析】由a+2i=b+i i得a+2i=bi-1,所以由复数相等的意义知:a=-1,b=2,所以a+b=1,故选B.【命题意图】本题考查复数相等的意义、复数的基本运算,属保分题。
(3)函数()()2log 31xf x =+的值域为A. ()0,+∞B. )0,+∞⎡⎣C. ()1,+∞D. )1,+∞⎡⎣ 【答案】A【解析】因为311x+>,所以()()22log 31log 10x f x =+>=,故选A 。
2011年山东省高中会考数学题学业水平考试(有答案)

山东省2011年高中学业水平考试数学明老师整理本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分100分,考试限定时间90分钟.交卷前,考生务必将自己的姓名、考籍号、座号填写在答题卡的相应位置,考试结束后,讲本试卷和答题卡一并交回.第Ⅰ卷(共45分)注意事项:每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑.如需改动用像皮擦干净后再选涂其他答案标号,不涂在答题卡上,只涂在试卷上无效.一、选择题:本大题共15小题,每题3分,共45分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.集合{0},{|11}M N x Z x ==∈-<<,则MN 等于A.{—1,1}B.{—1}C.{1} D 。
{0} 2.下列函数中,其图象过点(0,1)的是A .2xy = B 。
2log y x = C 。
13y x = D 。
sin y x =3.下列说法正确的是A .三点确定一个平面B 。
两条直线确定一个平面C .过一条直线的平面有无数多个 D. 两个相交平面的交线是一条线段 4.已知向量(2,1),(3,4)a b ==-,则a b -的坐标为A 。
(-5,3)B 。
(-1,5)C 。
(5,—3) D.(1,-5) 5.0cos75cos15sin 75sin15+的值为A.0B.12C. D 。
16.已知过点(2,)A m -和(,4)B m 的直线与直线210x y +-=平行,则m 的值为A 。
-8 B. 0 C 。
2 D. 107.高三某班共有学生56人,其中女生24人,现用分层抽样的方法,选取14人参加一项活动,则应选取女生A. 8人 B 。
7 C 。
6人 D 。
5人 8.已知一个半球的俯视图是一个半径为4的圆,则它的主(正)视图的面积是A. 2π B 。
4π C 。
8π D.16π 9.函数2()(1)(310)f x x x x =-+-的零点个数是A 。
2011年全国高考文科数学试题及答案-山东

2011年普通高等学校招生全国统一考试(山东卷)文科数学参考公式:柱体的体积公式:V Sh =,其中S 是柱体的底面积,h 是柱体的高。
圆柱的侧面积公式:S cl =,其中c 是圆柱的底面周长,l 是圆柱的母线长。
球的体积公式:343V R π=,其中R 是球的半径。
球的表面积公式:24S Rπ=,其中R 是球的半径。
用最小二乘法求线性回归方程系数公式:12241ˆˆ,ni ii ni x y nx ybay bx xnx==-==--∑∑, 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B )第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只有一项是满足题目要求的. 1.设集合 M ={x|(x+3)(x-2)<0},N ={x|1≤x ≤3},则M ∩N = A .[1,2) B .[1,2] C .( 2,3] D .[2,3] 2.复数z=22ii-+(i 为虚数单位)在复平面内对应的点所在象限为A .第一象限B .第二象限C .第三象限D .第四象限3.若点(a,9)在函数3xy =的图象上,则tan=6a π的值为 A .0BC .1D4.曲线211y x =+在点P (1,12)处的切线与y 轴交点的纵坐标是A .-9B .-3C .9D .155.已知a ,b ,c ∈R ,命题“若a b c ++=3,则222a b c ++≥3”,的否命题是A .若a +b+c≠3,则222a b c ++<3B .若a+b+c=3,则222a b c ++<3C .若a +b+c≠3,则222a b c ++≥3D .若222a b c ++≥3,则a+b+c=36.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=A .23B .32C .2D .37.设变量x ,y 满足约束条件250200x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,则目标函数231z x y =++的最大值为A .11B .10C .9D .8.58.某产品的广告费用x 与销售额y 的统计数据如下表广告费用x (万元)4 2 35 销售额y (万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元9.设M (0x ,0y )为抛物线C :28x y =上一点,F 为抛物线C 的焦点,以F 为圆心、FM 为半径的圆和抛物线C 的准线相交,则0y 的取值范围是A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)10.函数2sin 2xy x =-的图象大致是11.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯 视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命 题的个数是 A .3 B .2 C .1 D .012.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ= (λ∈R ),1412A A A A μ=(μ∈R ),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知点C (c ,o ),D(d ,O ) (c ,d ∈R )调和分割点A (0,0),B (1,0),则下面说法正确的是 A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上第II 卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽 取40名学生进行调查,应在丙专业抽取的学生人数为 . 14.执行右图所示的程序框图,输入l =2,m=3,n=5,则输出的y 的值是15.已知双曲线22221(0b 0)x y a a b -=>,>和椭圆22x y =1169+有相同的 焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .16.已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A-2cos C 2c-a=cos B b.(I )求sin sin CA的值; (II )若cosB=14,5b ABC 的周长为,求的长.18.(本小题满分12分)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(I )若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(II )若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.19.(本小题满分12分)如图,在四棱台1111ABCD A BC D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,AB=2AD ,11AD=A B ,BAD=∠60° (Ⅰ)证明:1AA BD ⊥;(Ⅱ)证明:11CC A BD ∥平面.20.(本小题满分12分)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足:(1)ln n n n n b a a =+-,求数列{}n b 的前2n 项和2n S .21.(本小题满分12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >.设该容器的建造费用为y 千元. (Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的r .22.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线3x =-于点(3,)D m -.(Ⅰ)求22m k +的最小值; (Ⅱ)若2OG OD =∙OE ,(i )求证:直线l 过定点;(ii )试问点B ,G 能否关于x 轴对称?若能,求出此时ABG 的外接圆方程;若不能,请说明理由.参考答案一、选择题1——12 ADDCABBBCCAD 二、填空题13.16 14.68 15.22143x y -= 16.2 三、解答题 17.解:(I )由正弦定理,设,sin sin sin a b ck A B C===则22sin sin 2sin sin ,sin sin c a k C k A C Ab k B B ---== 所以cos 2cos 2sin sin .cos sin A C C AB B--= 即(cos 2cos )sin (2sin sin )cos A C B C A B -=-, 化简可得sin()2sin().A B B C +=+ 又A B C π++=,所以sin 2sin C A =因此sin 2.sin CA = (II )由sin 2sin CA =得 2.c a =由余弦定得及1cos 4B =得 22222222cos 14444.b ac ac Ba a a a =+-=+-⨯= 所以2.b a = 又5,a bc ++= 从而1,a =因此b=2。
开封市2011届高三年级第一次质量检测--数学(文)

开封市2011届高三第一次质量检测数学试题(文科)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,考生作答时,将答案答在答题卡上。
在本试卷上答题无效。
注意事项:1.答题前,考生务必先将自己的姓名,准考证号填写在答题卡上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后。
再选涂其他答案的标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卷面清洁。
不折叠,不破损。
第Ⅰ卷(选择题,共60分)一、选择题:(本大题共12小题,每小题5分,共60分。
在每小题所给出的四个选项中,只有一项是符合题目要求的。
)1.若P ={y |y =x 2},Q ={x |x 2+y 2=2},则P ∩Q =A .[0B .{(1,1),(-1,1)}C .{0D .[2.已知i 为虚数单位,复数z =11i i+2-,则复数z 在复平面上的对应点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知等比数列{n a }的前三项依次为a -2,a +2,a +8,则n a =A .83()2n B .82()3n C .813()2n - D .812()3n -4.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都平行于γ;②存在平面γ,使得α,β都垂于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l ,m ,使得l ∥α,l ∥β,m ∥α,m ∥β其中,可以判定α与β平行的条件有A .1个B .2个C .3个D .4个5.已知命题p :x ≤1,命题q :1x<1,则q 是⌝p 成立 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.给出30个数2,3,5,8,12,17,…,要计算这30个数的和,该问题的程序框图如图:则框图中判断框①和执行框②应是A .i ≤30;p =p+i -1B .i ≤31;p =p +i +1C .i ≤30;p =p +iD .i ≤31;p =p +i7.函数f (x )=sinxcosx 2x称中心是A .(23π,-2)B .(56π,-2)C .(-23π,2) D .(3π 8.连续掷两次骰子分别得到的点数为m ,n ,则点P (m ,n )在直线x +y =5左下方的概率为A .16 B .14 C .112 D .199.已知a 是函数f (x )=2x -12log x 的零点,若0<x 0<a ,则f (x 0)的值满足 A .f (x 0)=0 B .f (x 0)>0C .f (x 0)<0D .f (x 0)的符号不能确定10.某校为了解高三学生在寒假期间的学习情况,抽查了100名同学,统计他们每天平均学习时间,绘成频率分布直方图(如图),则这100名同学中学习时间在6到8小时内的人数为A .50B .45C .40D .3011.过双曲线M :x 2-2b 2y =1(b>0)的左顶点A 作斜率为1的直线l ,若l 与双曲线的渐近 线分别交于B 、C 两点,且AB =BC ,则双曲线的离心率是A B C .2 D .312.如图,动点P 在正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,过点P 作垂直于平面BB 1D 1D 的直线,与正方体表面交于M 、N ,设BP =x ,MN =y ,则函数y =f (x )的图象大致是第Ⅱ卷(非选择题,共90分)二、填空题:(本大题共4小题。
2011全国高考文科数学试卷及答案完整版(全国卷)

2011年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题1.设集合U= U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则=⋂(M N )ð , 则A .{}12,B .{}23,C .{}2,4D .{}1,42.函数0)y x =≥的反函数为的反函数为A .2()4x y x R =∈B .2(0)4x y x =≥C .24y x =()x R ∈ D .24(0)y x x =≥3.权向量a,b 满足 ,则1||||1,2a b a b ==⋅=-,则2a b +=ABCD4.若变量x 、y 满足约束条件6321x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y -+的最小值为A .17B .14C .5D .3 5.下面四个条件中,使 成立的充分而不必要的条件是 A .1a b >+ B .1a b >-C .22a b >D .33a b >6.设n S 为等差数列{}n a 的前n 项和,若11a =,公差为22,24k k d S S +=-=,则k=A .8B .7C .6D .57.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .98.已知二面角l αβ--,点,,A AC l α∈⊥C 为垂足,点,B BD l β∈⊥,D 为垂足,若AB=2,AC=BD=1,则CD=A .2 BCD .19.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 A .12种 B .24种C .30种D .36种 10.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .14-C .14D .1211.11.设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =A .4 B.C .8D.12.已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N的面积为A .7πB .9πC .11πD .13π第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上(注意:在试卷上作答无效)13.(10的二项展开式中,x 的系数与x 9的系数之差为: .14.已知a ∈(3,2ππ),t a n 2,c o s αα=则=15.已知正方体ABCD —A 1B 1C 1D 1中,E 为C 1D 1的中点,则异面直线AE与BC 所成角的余弦值为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011届金台区高三质量检测
文科数学参考答案2010.11
、填空题:本大题共5小题,每小题5分,满分25分把答案填在答
题卡中对应题号后的横线上
11、【答案】-6
(必做题11——14题,选做题15题)
12、【答案】9 13、【答案】4
扎1十2 3
14、【答案】(-3,,:)【解析】即并乜「3
2 2 2
15、选做题(考生只能从A、B、C题中选作一题)
A、(不等式证明选讲)【答案】(0, + ?)
B、(几何证明选讲)【答案】4cm
C (坐标系与参数方程)【答案】4 三、解答题:本大题共6小题,共75分.
16、(本小题满分12分)
解:(I)设等差数列:a/?的公差为d,由a3 *5=8, S5 =15 ,
(印 2d)(印 4d) =8
5X4
5a< —d=15
4 3d =4 a1 - 2d -3 解得31
卫=1
a n二印亠〔n T d =1 (n -1) = n ,
故所求等差数列的通项公式为a*二n ...............................8•(「由(I)知bn = 2即=2n,由等比数列前n项和公式得T n = 2 2223... 2—如也=2n1-2
1 一2
••• T n=2n 1 -2 ..................... 12•
分
17、(本小题满分12分)
解:(I):在ABC 中,5b2• 5c2-8bc=5a2
222
.b 十c —a 4…cosA
2bc 5
6 •分3
又••• 0 A二,• sin A .
5
8 .分
又甲的标准差的平方(即方差)目=15, 乙的标准差的平方(即方差)S : ”14.33, S
甲
S 2 甲乙平均分相同,但乙的成绩比甲稳定,
3 4 (n)由(I)知 sin A , cosA -
5 5 ▼.. 兀 2兀
又・B , C
A 3
3
3 八1 .八3 43 cosA sinA 2 2
••• sinC 8 2 3 JI - A
10 12分
18、(本小题满分12分)
证明:(I): AC 二 CB 二 PA 二 PB = 一 2 又0是AB 的中点,AB=2 ••• 0C 丄 AB , P0 丄 AB, 又 PO^OC =0
故AB 丄平面POC ................... 解: ( n ) •/ AC 二 CB — 2 , 又0是AB 的中点,AB=2
• 0C 丄 AB , 0C =1,同理 P0 =1. 又 PC 二 2 ,
2 2 2
•- PC 2
=0C 2 P0=2
••• P0C =90:,即 P0丄 0C
1
…V p 4BC ■ S
P0C AB
3
6•分
12分
19、(本小题满分12分)
解:(I)由茎叶图知甲乙两同学的成绩分别为 :
甲:82 81 79 88
乙:85 77 83 85
记从甲、乙两人的成绩中各随机抽取一个 为(x, y),
用列举法表示如下:
(82.85) (82,77)(82,83)(82,85) (79.85) (79,77)(79,83)(79,85)
4
■甲的成绩比乙高的概率为
16 2.分
(81.85) (81,77)(81,83)(81,85) (88.85) (88,77)(88,83)(88,85) 4 分
4 (n)本小题的结论唯一但理由不唯一
合理解答即可得分.
(1)派乙参赛比较合适, 理由如下:
甲的平均分X 甲=82.5,乙的平均分X 乙
7 •分
,只要考生从统计学的角度给出其
=82.5,甲乙平均分相同;
11分
.派乙去比较合适。
............... 13•分
⑵派乙去比较合适,理由如下:
1
从统计学的角度看,甲获得85分以上(含85分)的概率R J
4
2 1
乙获得85分以上(含85分)的概率P2 =2 =丄,
4 2
甲的平均分X甲=82.5,乙的平均分X乙二82.5,平均分相同;
.派乙去比较合适.
⑶若学生或从得82分以上(含82分)去分析:
2 1
甲获得82分以上(含82分)的概率R = 2 =丄,
4 2
3
乙获得82分以上(含82分)的概率巳=3,
4
甲的平均分X甲= 82.5,乙的平均分>乙-82.5,平均分相同;
.派乙去比较合适.(同样给此问的分).
20、(本小题满分13分)
解:(I )由已知f (x)的定义域为(1,+ ::),
f(X)= x -ax = x(x-a) ........................ 3 分当a_1时,在(1,+ 上f (x)0 ,则f (x)在(1,+ ::)单调递增;
当a 1 时,在(1,a)上f (x)::: 0,在[a,::)上f (x)0 , 所以f (x)在(1,a)单调递减,在⑻+血)上单调递增. ……7分
(n)当 a = 2 时,— , f(x) = x2-2x ........................................... 9 分
3
2 1
3 2
t
••• f (3)=3 -2 3=3, f(3) 3 -3 1 =1 .................. 11 分所以求曲线y=f(x)在点(3, f(3))处的切线方程为
y_1=3(x-3)即3x_y_8=0 .......................... 13 分21、(本小题满分14分)解:(I)设椭圆的半焦距为c,
由题意知—2,2 a ■ 2c = 4(、-2 ■ 1)
a 2
所以a = 22, c = 2,又a2 = b2• c2,因此b = 2
2 2
故椭圆的标准方程为—y = 1 ......................... 6•分
8 4
••• Ap[pB = 1 訂 Op^1, T
••• OAOB = (OP PA)jOp PB) =OP +OPcPB+PAOP+PA?B
=1+0+0-仁0,
即 X 1X 2 y 』2 0
将y = kx m 代入椭圆方程,得
(1 2k 2)x 2 4kmx (2m 2 -8) =0
2
4 km
2 m 8
由求根公式可得 x 1 x 2
2,
X 1X 2
2
1
2
1 +2k 2
1 2
1 +2k 2
0 = X 4X 2
y i y 2
= x 1
x 2
(kx 1
m)(kx 2
m)
=x 1
x 2
k 2x 1
x 2
km(x 1
x 2
) m 2
2 2
=(1 k )x 1
x 2
km(x 1
x 2
) m
因此(1 k 2)(2m 2 -8) -4k 2m 2 m 2(1 2k 2) = 0 将m 2二k 2 • 1代入上式并化简得 k 2 - -1 , 即此时直线丨不存在;
............. 10•分
(ii)当丨垂直于X 轴时,满足|OP| = 1的直线丨的方程为X = 1或X = -1 , 当 X =1 时,A,B,P 的坐标分别为(1, —),(1, - 一),(1,0),
2 2
14 14
• AP 二(0, ), PB 二(0,
APdPB
(n)设 A , B 两点的坐标分别为 (X t , y ,),( x 2, y 2),
假设使
(i)当丨不垂直于x 轴时,设丨的方程为y 二kx • m ,
由丨与n 垂直相交于P 点且|OP |=1得—1
m
1
—
=1,即m 2二k 2
• 1
1 + k 2
=1+0+0-1=0,
7
2
2
二AP P 踐彳式1
当x - -1斗同理可得AP D P : = i ,矛盾,即此时直线丨不存在 综上可知,使 AP[]Pm =1成立的直线丨不存在. ................ 14分。