华东师大初中七年级上册数学角(基础)知识讲解[精选]
华东师大初中七年级上册数学角(基础)知识讲解

角(基础)知识讲解【学习目标】1.掌握角的概念及角的表示方法,并能进行角度的互换;2. 借助三角尺画一些特殊角,掌握角大小的比较方法;3.会利用角平分线的意义进行有关表示或计算;4. 掌握角的和、差、倍、分关系,并会进行有关计算;5. 掌握互为余角和互为补角的概念及性质,会用余角、补角及性质进行有关计算;6.了解方位角的概念,并会用方位角解决简单的实际问题.【要点梳理】【高清课堂:角 397364 角的概念】要点一、角的概念1. 角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O ,边是射线OA 、OB .(2)定义二:一条射线绕着它的端点旋转而形成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA 绕它的端点O 旋转到OB 的位置时,形成的图形叫做角,起始位置OA 是角的始边,终止位置OB 是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA 绕点O 旋转,当终止位置OB 和起始位置OA 成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB 和OA 重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:图1 图2要点诠释:用数字或小写希腊字母表示角时,要在靠近角的顶点处加上弧线,且注上阿拉伯数字或小写希腊字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.要点二、角的比较与运算1.角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的160为1分,记作“1′”,1′的160为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于等于60时要向高一位进位.2.角的比较:角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小.方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小:如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB=∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.3.角的和、差关系如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB-∠2.要点诠释:(1)用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数).(2) 利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.4.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOC=∠BOC =12∠AOB.要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.要点三、余角和补角1.定义:一般地,如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角.类似地,如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.2.性质:(1)同角(等角)的余角相等.(2)同角(等角)的补角相等.要点诠释:(1)互余互补指的是两个角的数量关系,互余、互补的两个角只与它们的和有关,而与它们的位置无关.(2)一般地,锐角α的余角可以表示为(90°-α),一个角α的补角可以表示为(180°-α) .显然一个锐角的补角比它的余角大90°。
华师大版七年级数学上册第四章角复习.doc

华师大版七年级数学上册《图形的初步认识》综合复习一一角(-)知识点11、角的定义和表示方法(1) 角的概念:角是由 ________ 具有公共端点的 _____ 组成, _____________ 是角的顶点,两条_是角的两边。
(2) 角的第二定义:角也可以看做由一条射线绕端点旋转所形成的图形.如下图中的 角,可以看做射线0A 绕端点0按逆时针方向旋转到0B 所形成的,我们把0A 叫做角的始 边,0B 叫做角的终边.(3) 用角度表示方向。
用“南、北”偏“东、西”加角度表示方向。
(4) 角的表示方法方法_: ___________ 方法二: _____________ 方法三: ______________ 方法四: _________________例1、八点三十分,这一时刻,时针与分针夹角是( ) (A) 70° ・(B) 75° .(C) 80° .(D) 85° ・例2、从8点10分到8点40分,吋钟的吋针转过 ______ 度,吋钟的分针转过 ______ 度. 例3、如图,ZA0C 与ZB0D 都是直角,且ZA0B:ZA0D=2:ll.求ZA0B 与ZB0C 的度数.例4、如图,A,B,C 分别代表学校、图书馆、小红家,学校和图书馆分别在小红家的北偏 西方向,学校又在图书馆的北偏东方向,那么图中点A 表示 _______ ,点B 表示 ______ ,点 C 表示 ______(二) 、知识点21、角度之间的进率关系和计算(1) 两种特殊的角:第一种情况是绕着端点旋转到角的终边和始边成一直线,这时所 成的角叫做平角(straight angle);第二种情况是绕着端点旋转到终边和始边重合,这时所成 的角叫做周角(perigon).(2) 把周角分成360等份,每一份就是一度,记作1。
.当一个角并不正好是整数度数, 与氏度单位一样,考虑用更小一些的单位.把一度分成60等份,每一份就是1分,记作1’ ; 而把一分再分成60等份,每一份就是1秒,记作1”.这样,角的度量单位度、分、秒有如下 关系:东31° =60' , 1' =60” 。
华东师大版七年级上册数学第四章第6节《角》精品课件

顶点
始边
探究2 角的表示方法
(角的符号:∠ )
A
(1)用三个大写字母表示,三个字母应
分别写在顶点及两边上的点,顶点的字 母必须写在中间。
O B
∠AOB 或∠BOA 表示的是同一个角
A
(2)角也可用一个大写字母表示,这个 字母写在顶点处,它只适用于顶点处只
用一个角如上∠O
C
2α
O1
(3)用一个数字(1, 2……)
4.6 角
角
1、角的定义 (静态) 由两条具有公共端点的射线组成的图形。 (公共端点O叫做该角的顶点,
射线OA、OB叫做该角的两条边)
角的外部 O
B 角的内部
A
判断:下面的图形那些是角?
⑴
⑵
⑶
⑷
⑸
⑹
动态角的概念
角也可以看成是一条射线绕着它的端点旋转而成的图形。
起始位置的射线叫做这个角 的始边。 终止位置的射线叫做这个角的终边。
A
O
B
平角
O
A(B)
周角
AB直线源自OA射线3、写出图中(1)能用一个字母表示的角
A
(
∠A 和∠C
)
E (2)以B为顶点的角
( ∠ABE、∠EBC、 ∠ABC
)
B
C
(3)图中共有几个角
(小于平角的角)
(
7个角
)
(∠A 、∠C 、∠ABE 、∠EBC、 ∠ABC、 ∠AEB 、∠CEB)
角的度量工具:量角器
角的度量
角的度量单位:度,分,秒
1°的60分之一为1分,记作“1′”,即1°=60′ 1′的60分之一为1秒,记作“1″”,即1′=60″
第9讲 角-华东师大版七年级数学上册讲义(机构专用)

第9讲角知识点整合1.认识角定义:角是由两条有公共端点的射线组成的图形;角是由一条射线绕着它的端点旋转而形成的图形;射线的端点叫做角的顶点,起始位置的射线叫做角的始边,终止位置的射线叫做角的终边。
角度:1周角=360° 1平角=180° 1°=60′ 1′=60″2.角的比较和运算角的大小比较方法:1,直接根据角度大小比较; 2,使两个角一条边重合,根据另一条边的位置比较;角平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
3.余角和补角余角:两个角的和等于90°(直角),就说这两个角互为余角,简称互余。
补角:两个角的和等于180°(平角),就说这两个角互为补角,简称互补。
重点讲解重点1:认识角下列关于角的说法正确的个数是( )①角是由两条射线组成的图形;②角的边越长,角越大;③在角一边延长线上取一点D ;④角可以看作由一条射线绕着它的端点旋转而形成的图形. A .1个 B .2个 C .3个 D .4个解析:①角是由有公共端点的两条射线组成的图形,错误;②角的大小与开口大小有关,角的边是射线,没有长短之分,错误;③角的边是射线,不能延长,错误;④角可以看作由一条射线绕着它的端点旋转而形成的图形,说法正确.所以只有④正确.故选A.方法总结:本题主要是对角的定义的考查,正确理解角的定义是解题的关键:有公共端点的两条射线组成的图形叫做角,需要熟练掌握.下列四个图形中,能用∠1、∠AOB 、∠O 三种方法表示同一个角的图形是( )A BC D解析:在角的顶点处有多个角时,用一个字母表示这个角,这种方法是错误的.所以A 、C 、D 错误,故选B.方法总结:角的两个基本元素中,边是两条射线,顶点是这两条射线的公共端点.解题时要善于排除一些似是而非的说法的干扰,选出能准确描述“角”的说法.用三个大写字母表示角,表示角顶点的字母在中间.重点2:角的比较和运算如图,射线OC ,OD 分别在∠AOB 的内部,外部,下列各式错误的是( )A .∠AOB <∠AOD B .∠BOC <∠AOBC .∠COD <∠AOD D .∠AOB <∠AOC解析:A.∠AOB 与∠AOD 的边OA 重合,OB 在∠AOD 内,所以∠AOB <∠AOD ,A 正确;同理B 、C 正确;D.∠AOB 和∠AOC 的边AO 重合,OC 在∠AOB 内,所以∠AOB >∠AOC .D 错误,故选D.方法总结:此题主要考查了角的比较大小,解题的关键是掌握角比较大小的方法. 探究点二:角度的有关计算如图,∠AOB =120°,OD 平分∠BOC ,OE 平分∠AOC . (1)求∠EOD 的度数;(2)若∠BOC =90°,求∠AOE 的度数.解析:(1)根据OD 平分∠BOC ,OE 平分∠AOC 可知∠DOE =∠DOC +∠EOC =12(∠BOC +∠AOC )=12∠AOB ,由此即可得出结论;(2)先根据∠BOC =90°求出∠AOC 的度数,再根据角平分线的定义即可得出结论. 解:(1)∵∠AOB =120°,OD 平分∠BOC ,OE 平分∠AOC ,∴∠EOD =∠DOC +∠EOC =12(∠BOC +∠AOC )=12∠AOB =12×120°=60°;(2)∵∠AOB =120°,∠BOC =90°,∴∠AOC =120°-90°=30°,∵OE 平分∠AOC ,∴∠AOE =12∠AOC =12×30°=15°.方法总结:能够根据图形正确找到角之间的和差关系,理解角平分线的概念是解题的关键.如图,将一副三角板折叠放在一起,使直角的顶点重合于点O ,则∠AOC +∠DOB=()A.120° B.180° C.150° D.135°解析:由图可得∠AOC+∠DOB=∠AOB+∠COD=90°+90°=180°.故选B.方法总结:此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.重点3:余角和补角如果α与β互为余角,则( )A.α+β=180° B.α-β=180°C.α-β=90° D.α+β=90°解析:如果α与β互为余角,则α+β=90°.故选D.方法总结:正确记忆互为余角的定义是解决问题的关键.已知∠A与∠B互余,且∠A的度数比∠B度数的3倍还多30°,求∠B的度数.解析:根据∠A与∠B互余,得出∠A+∠B=90°,再由∠A的度数比∠B度数的3倍还多30°,从而得到∠A=3∠B+30°,再把两个算式联立即可求出∠2的值.解:∵∠A与∠B互余,∴∠A+∠B=90°,又∵∠A的度数比∠B度数的3倍还多30°,∴∠A=3∠B+30°,∴3∠B+30°+∠B=90°,解得∠B=15°.故∠B的度数为15°.方法总结:此题把角的关系结合方程问题一起解决,即把相等关系的问题转化为方程问题,利用方程组来解决.如图,已知∠AOB在∠AOC内部,∠BOC=90°,OM、ON分别是∠AOB,∠AOC的平分线,∠AOB与∠COM互补,求∠BON的度数.解析:根据补角的性质,可得∠AOB +∠COM =180°,根据角的和差,可得∠AOB +∠BOM =90°,根据角平分线的性质,可得∠BOM =12∠AOB ,根据解方程,可得∠AOB 的度数,根据角的和差,可得答案.解:由∠AOB 与∠COM 互补,得∠AOB +∠COM =180°.由角的和差,得∠AOB +∠BOM +∠COB =180°,∠AOB +∠BOM =90°. 由OM 是∠AOB 的平分线,得∠BOM =12∠AOB ,即∠AOB +12∠AOB =90°.解得∠AOB =60°.由角的和差,得∠AOC =∠BOC +∠AOB =90°+60°=150°.由ON 平分∠AOC 得∠AON =12∠AOC =错误!×150°=75°.由角的和差,得∠BON =∠AON-∠AOB =75°-60°=15°.方法总结:本题考查了余角与补角及角平分线的相关知识,利用了补角的性质,角的和差,角平分线的性质进行计算,解决问题一定要结合图形认真分析,做到数形结合.探究点二:方位角巩固练习1, 如图所示,在∠AOB 的内部有3条射线,则图中角的个数为( )A .10B .15C .5D .20解析:可以根据图形依次数出组成角的个数;或者根据公式求图中角的个数是:12×5×(5-1)=10.故选A.方法总结:若从一点发出n 条射线,则构成12n (n -1)个角.2, (1)用度、分、秒表示48.26°; (2)用度表示37°24′36″.解析:(1)度、分、秒是常用的角的度量单位.根据1度=60分,即1°=60′,1分=60秒,即1′=60″把大单位化成小单位乘以60即可;(2)根据度分秒之间60进制的关系计算.解:(1)48.26°=48°+0.26×60′=48°15′+0.6×60″=48°15′36″; (2)根据1°=60′,1′=60″得36″÷60=0.6′,24.6′÷60=0.41°,所以37°24′36″用度来表示为37.41°.3, 如图,将矩形ABCD 沿EF 折叠,C 点落在C ′,D 点落在D ′处.若∠EFC =119°,则∠BFC ′为( )A .58°B .45°C .60°D .42°解析:∵将矩形ABCD 沿EF 折叠,C 点落在C ′,D 点落在D ′处,∠EFC =119°,∴∠EFC ′=∠EFC =119°,∠EFB =180°-∠EFC =61°,∴∠BFC ′=∠EFC ′-∠EFB =119°-61°=58°,故选A.方法总结:掌握折叠的性质,要善于发现题中的隐含条件:折叠前后两图形是完全重合的,其角不变.4, 计算:(1)153°29′42″+26°40′32″; (2)110°36′-90°37′28″; (3)62°24′17″×4; (4)102°43′21″÷3.解析:(1)相同单位相加,超过60向上一位进1即可;(2)先借1°化为分和秒,然后同一单位分别相减即可得解;(3)每一个单位分别乘以4,分、秒超出60的部分向上一个单位进1即可;(4)从度开始计算,余数乘以60继续除以3进行计算即可得解.解:(1)153°29′42″+26°40′32″=179°69′74″=180°10′14″; (2)110°36′-90°37′28″=109°95′60″-90°37′28″=19°58′32″; (3)62°24′17″×4=248°96′68″=249°37′8″; (4)102°43′21″÷3=102°42′81″÷3=34°14′27″.方法总结:角度的运算规律为:(1)加减法时将同一单位进行加减,加法够60进1,减法不够减要借1当60;(2)乘法时将数与度、分、秒分别相乘,然后从小到大逢60进1;(3)除法时用度先除,把余数化为分,再加上原来的分,用这个数除以除数,把余数化成秒,再加上原来的秒,再用这个数除以除数,如果除不尽,就按题意要求,进行四舍五入.5, M 地是海上观测站,从M 地发现两艘船A 、B 的方位如图所示,下列说法中正确的是( )A .船A 在M 的南偏东30°方向B .船A 在M 的南偏西30°方向C .船B 在M 的北偏东40°方向D .船B 在M 的北偏东50°方向解析:船A 在M 的南偏西90°-30°=60°方向,故A 、B 选项错误;船B 在M的北偏东90°-50°=40°方向,故C正确,D错误.故选C.方法总结:用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.6,如图所示,甲、乙、丙三艘轮船从港口O出发,当分别行驶到A、B、C处时,经测量得甲船位于港口的北偏东44°方向,乙船位于港口的北偏东76°方向,丙船位于港口的北偏西45°方向.(1)求∠BOC的度数;(2)求∠AOB的度数.解析:(1)根据方向角的表示方法,可得∠EOB,∠EOC的度数,根据角的和差,可得答案;(2)根据方向角的表示方法,可得∠EOB,∠EOA的度数,根据角的和差,可得答案.解:如图,(1)由乙船位于港口的北偏东76°方向,丙船位于港口的北偏西45°方向,得∠EOB=76°,∠EOC=45°.由角的和差,得∠BOC=∠EOB+∠EOC=76°+45°=121°;(2)由甲船位于港口的北偏东44°方向,乙船位于港口的北偏东76°方向,得∠EOB=76°,∠EOA=44°.由角的和差,得∠AOB=∠EOB-∠EOA=76°-44°=32°.方法总结:解决本题主要是理解方向角的表示方法,结合图形找到相应的角,然后进行计算.提升练习1.下列说法正确的是( )A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看成是由一条射线绕着它的端点旋转而成的图形D.角可以看成是由一条线段绕着它的端点旋转而成的图形答案:选c本题考查角2.下列说法正确的是( )A.平角就是一条直线B.周角就是一条射线C.平角的两条边在同一条直线上D.周角的终边与始边重合,所以周角的度数是0°。
七年级数学上册4.6角角的学习六注意素材华东师大版(new)

角的学习六注意角是我们熟悉的、经常遇到的简单的几何图形.学习时应注意把握以下几个问题:一、注意正确理解角的概念角的概念可以用以下两种方式来描述:一种是从一些实际问题中抽象地概括出来。
即有公共端点的两条射线组成的图形,叫做角。
另一种是用旋转的观点来定义。
即一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角.上述角的两种定义都告诉我们这样一些事实:(1)角有两个特征:一是角有两条射线,二是角的两条射线必须有公共端点,两者缺一不可;(2)由于射线是向一方无限延伸的,所以角的两边无所谓长短,即角的大小与它的边的长短无关。
(3)当角的大小一旦确定,它的大小就不因图形的位置、图形的放大或缩小而改变.二、注意熟练掌握角的表示方法一个角可以用下列四种不同的方法来表示:即(1)用三个大写字母来表示。
在这种表示法中,顶点的字母必须写在中间,在角的两边上各取一点,将表示这两个点的字母分别写在顶点字母的两旁,两旁的字母不分前后。
如图1中的角可记为∠ABC或∠CBA。
(2)用一个大写字母来表示。
如果某个角的顶点处只有一个角,此时就可以用顶点的大写字母来表示,如图1中的角就可以表示为∠B.(3)用一个小写希腊字母来表示,如α、β、γ等。
其方法是在靠近角的顶点处加上弧线,并在弧线旁注上小写希腊字母,如图2中的∠ABC也可以表示为∠α.(4)用一个阿拉伯数字来表示.其方法与用一个小写希腊字母来表示的方法一样.AB C图1 BCAα图2上述四种表示方法中都不能漏掉角的符号,另外要切记用三个大写字母表示一个角时,顶点字母一定要写在中间,同一顶点有多个角时,切不可用顶点的一个大写字母来表示,三、注意分清平角与直线、周角与射线的关系用旋转的观点来描述一个角就是当一条射线绕着它的端点旋转到两条射线成一条直线时就构成了一个平角,继续旋转当有公共端点的两条射线重合时,就构成了周角,也就是说把直线上的一点看成是角的顶点,其两旁的射线看成是角的两边时,才能说它是平角,同样也只有把射线端点看成角的顶点,射线端点周围的平面看作角的内部,射线看成这个角的两边时,才能说它是周角.切不可以把平角与直线、周角与射线混为一谈,更不能说成“平角就是直线、周角就是射线”.四、注意会对角进行分类我们还是用旋转的观点来研究角的分类问题.当一条射线绕着它的端点旋转,角逐渐由小变大,形成锐角、直角、钝角、平角、周角,请看下表:从表中我们可以看出,从0°到180°之间的所有角,由此大小均可分为或锐角或直角或钝角或平角。
4最新华东师大版初中数学七年级上册精品课件.6 角

4.6.2 角的比较和运算
A
读数为45
45
o
°
B
D
读数为60
60°
E
F
所以:∠AOB<∠DEF
比较∠ABC 和 ∠DEF的大小
把∠DEF移动,使它的顶点E和∠ABC的顶点B重合, 一边EF和BC重合,另一边ED和BA落在BC的同旁。
A( )
D
B( ) C( )
E
F
ED与BA重合,则∠DEF =∠ABC。
COD COE 1 AOC 1 BOC
2
2
1 (AOC BOC) 90 2
所以∠COD和∠COE互为余角,
同理,∠AOD和∠BOE,∠AOD和∠COE,
∠COD和∠BOE也互为余角。
E
西 C
F
北 D 45° 45° O
B南
(1)正东,正南,正西,正北 H
射线OA OB OC OD
75°
角的平分线:
A C
O
B
从一个角的顶点出发,把这个角分成相等的两 个角的射线,叫做这个角的平分线。
问题:已知射线OC是∠AOB的角平分线,你能写出
图中各角的关系吗?
∠AOC =∠BOC=1/2 ∠AOB
A
OC是∠AOB的二等分线
C
O
B
类似地:还有角的三等分线 ,如图
D
C
B
3 ⌒
2
1
A
O
OB、OC是∠AOD的三等分线
角的定义(2)
角也可以看做一条射线绕 端点旋转所形成的图形。
平角
B
B
O
A
如果一个角的终边继续旋转,旋转到与始边成一 条直线时,所成的角叫做 平角 .
角华东师大版七年级数学上册的精品课件PPT

西 北
北
东 北
西
东
西 南
南
东 南
4.6.1角-华东师大版七年级数学上册 的课件
4.6.1角-华东师大版七年级数学上册 的课件
123
2.看图说出下列射线表示的方向角 (1)射线OA表示的方向是 北偏东7;0° (2)射线OB表示的方向是 南偏东2;8°
(3)射线OC表示的方向是 南偏西45;° (4)射线OD表示的方向是 北偏西70。°
•
3、在生命的每一个阶段,阿甘的心中 只有一 个目标 在指引 着他, 他也只 为此而 踏实地 、不懈 地、坚 定地奋 斗,直 到这一 目标的 完成, 又或是 新的目 标的出 现。
•
4、让学生有个整体感知的过程。虽然 这节课 只教学 做好事 的部分 ,但是 在研读 之前我 让学生 找出风 娃娃做 的事情 ,进行 板书, 区分好 事和坏 事,这 样让学 生能了 解课文 大概的 资料。
12
角的概念
B
静 态
由两条有公共端点的射线组成的图形。
定 两条射线的公共端点叫做角的顶点
O
义 这两条射线叫做角的边
A
动 态 定
可以看成由一条射线绕着 它的端点旋转而成的图形。
义
4.6.1角-华东师大版七年级数学上册 的课件
B 终边
O 顶点
始边
A
4.6.1角-华东师大版七年级数学上册 的课件
12
角的表示
•
5、人们都期望自我的生活中能够多 一些快 乐和顺 利,少 一些痛 苦和挫 折。可 是命运 却似乎 总给人 以更多 的失落 、痛苦 和挫折 。我就 经历过 许多大 大小小 的挫折 。
•
6、我就经历过许多大大小小的挫折。 大海因 为有了 狂风的 袭击, 才显示 出了它 顽强的 生命力 ,它把 狂风化 成了朵 朵浪花 ,给人 们带来 美丽;
初一上数学课件(华东师大)-角

B.50°
C.2°
D.都不对
4.下列各式中,正确的角度互化是( C )
A.18°18′18″=3.33°
B.46°48′=46.48°
C.22.25°=22°15′
D.28.5°=28°50′
5.(1)30.54°= 30 ° 32 ′ 24 ″;
(2)15°24′36″= 15.41 °;
(3)96′= 1.6 °.
16.如图,已知直线 AB、CD、EF 相交于 O. (1)若∠COF=120°,∠AOD=100°,求∠AOF 的度数; (2)∠1∶∠2∶∠3=2∶3∶4,求∠2 的度数; (3)若∠BOC-∠BOD=20°,求∠AOC 的度数.
解:(1)∠AOF=40°; (2)∠2=60°; (3)∠AOC=80°.
6.如图,射线 OA 表示 北偏东25° ,射线 OB 表示 南偏东20° 偏西 65°表示的射线是 OC ,南偏西 25°表示的射线是 OD .
,北
7.如图,画出表示下列方向的射线. (1)西南方向 OA; (2)北偏东 38°方向 OB; (3)北偏西 50°方向 OC; (4)南偏东 60°方向 OD.
2.下列说法:①一条直线就是一个平角;②周角就是一条射线;③角的两
边可以一样长,也可以一长一短;④平角的两条边在一条直线上;⑤角的大
小只与角的两边张开的大小有关.其中,正确的有( B )
A.1 个
B.2 个
C.3 个
D.4 个
3.用放大 5 倍的放大镜看 10°的角,观察到角的度数为( A )
A.10°
14.如图所示,回答下列问题: (1)写出能用一个字母表示的角; (2)写出以 B 为顶点的角; (3)图中共有几个小于平角的角? 解:(1)∠A,∠C; (2)∠ABE;∠EBC;∠ABC; (3)7 个.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角(基础)知识讲解【学习目标】1.掌握角的概念及角的表示方法,并能进行角度的互换;2. 借助三角尺画一些特殊角,掌握角大小的比较方法;3.会利用角平分线的意义进行有关表示或计算;4. 掌握角的和、差、倍、分关系,并会进行有关计算;5. 掌握互为余角和互为补角的概念及性质,会用余角、补角及性质进行有关计算;6.了解方位角的概念,并会用方位角解决简单的实际问题.【要点梳理】【高清课堂:角 397364 角的概念】要点一、角的概念1. 角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O ,边是射线OA 、OB .(2)定义二:一条射线绕着它的端点旋转而形成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA 绕它的端点O 旋转到OB 的位置时,形成的图形叫做角,起始位置OA 是角的始边,终止位置OB 是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA 绕点O 旋转,当终止位置OB 和起始位置OA 成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB 和OA 重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:图1 图2要点诠释:用数字或小写希腊字母表示角时,要在靠近角的顶点处加上弧线,且注上阿拉伯数字或小写希腊字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.要点二、角的比较与运算1.角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的160为1分,记作“1′”,1′的160为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于等于60时要向高一位进位.2.角的比较:角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小.方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小:如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB=∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.3.角的和、差关系如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB-∠2.要点诠释:(1)用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数).(2) 利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.4.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOC=∠BOC =12∠AOB.要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.要点三、余角和补角1.定义:一般地,如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角.类似地,如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.2.性质:(1)同角(等角)的余角相等.(2)同角(等角)的补角相等.要点诠释:(1)互余互补指的是两个角的数量关系,互余、互补的两个角只与它们的和有关,而与它们的位置无关.(2)一般地,锐角α的余角可以表示为(90°-α),一个角α的补角可以表示为(180°-α) .显然一个锐角的补角比它的余角大90°。
要点四、方位角在航行和测绘等工作中,经常要用到表示方向的角.例如,图中射线OA的方向是北偏东60°;射线OB的方向是南偏西30°.这里的“北偏东60°”和“南偏西30°”表示方向的角,就叫做方位角.要点诠释:(1)正东,正西,正南,正北4个方向不需要用角度来表示;(2)方位角必须以正北和正南方向作为“基准”,“北偏东60°”一般不说成“东偏北30°”;(3)在同一问题中观察点可能不止一个,在不同的观测点都要画出表示方向的“十字线”,确定其观察点的正东、正西、正南、正北的方向;(4)图中的点O是观测点,所有方向线(射线)都必须以O为端点.要点五、钟表上有关夹角问题钟表中共有12个大格,把周角12等分、每个大格对应30°的角,分针1分钟转6°,时针每小时转30°,时针1分钟转0.5°,利用这些关系,可帮助我们解决钟表中角度的计算问题.【典型例题】类型一、角的概念及表示1.下列语句正确的是 ( ) .A.两条直线相交,组成的图形叫做角.B.两条具有公共端点的线段组成的图形叫做角.C.两条具有公共端点的射线组成的图形叫做角.D.过同一点的两条射线组成的图形叫做角.【答案】C【解析】根据角的定义判断【总结升华】角不能仅仅看作是有公共端点的两条射线,角的两种描述中都隐含了组成角的一个重要元素,即两条射线间的相对位置关系,这是角与“有公共端点的两条射线”的重要区别.举一反三:【变式】判断下列说法是否正确(1)两条射线组成的图形叫做角 ( )(2)平角是一条直线 ( )(3)周角是一条射线 ( )【答案】(1)× (2)× (3)×2. 写出图中(1)能用一个字母表示的角;(2)以B为顶点的角; (3)图中共有几个角(小于180°).【答案与解析】解:(1)能用一个字母表示的角∠A、∠C.(2)以B为顶点的角∠ABE、∠ABC、∠CBE.(3)图中共有7个角.【总结升华】(1)顶点处只有一个角时,才可以用一个字母表示; (2)一般数角时不包括平角和大于平角的角.类型二、角度制的换算3. (1)把25.72°用度、分、秒表示; (2)把45°12′30″化成度(精确到百分位).【思路点拨】第(1)题中25.72°中含有两部分25°和0.72°,只要把0.72°化成分、秒即可.第(2)题中,45°12′30″含有三部分45°,12′和30″,其中45°已经是度,只要把12′和30″化成度即可.【答案与解析】解:(1)0.72°=0.72×60′=43.2′,0.2′=0.2×60″=12″,所以25.72°=25°43′12″. (2)130300.560'⎛⎫'''=⨯= ⎪⎝⎭,112.512.50.2160⎛⎫'=⨯ ⎪⎝⎭°≈° 所以45°12′30″≈45.21°.【总结升华】无论由高级单位向低级化还是由低级单位向高级化,都必须逐级进行,“越级”化单位容易出错.举一反三:【变式】 (1)把26.29°转化为度、分、秒表示的形式;(2)把33°24′36″转化成度表示的形式.【答案】解: (1)26.29°=26°+0.29°=26°+0.29×60′=26°+17.4′=26°+17′+0.4×60″=26°17′+24″=26°17′24″(2)33°24′36″=33°+24′+36×160'⎛⎫ ⎪⎝⎭=33°+24′+0.6′ =33°+24.6′=33°+24.6×160⎛⎫ ⎪⎝⎭°=33.41° 提示:在角度的和、差运算中应先统一单位,都化成度或分、秒表示,然后再进行计算。
类型三、角的比较与运算4.不用量角器,比较图1和图2中角的大小.(用“>”连接)【思路点拨】图1中两角∠α、∠β均为锐角,因此,在不能测量的情形下,我们可以将图中的∠α向∠β平移,让∠α与∠β始边重合,观察终边的位置来比较角的大小.图2中的三个角按角的分类,∠1为锐角,∠2为直角,∠3为钝角,因此按照各自的范围就可以将它们的大小比较出来.【答案与解析】解:(1)如图所示,将∠α平移使∠α的始边与∠β的始边重合,发现∠α落在∠β内部,因此∠β>∠α.(2)由图可知∠1是锐角,∠1<90°,∠2是直角,即∠2=90°,∠3是钝角,即90°<∠3<180°,因此∠3>∠2>∠1.【总结升华】本例给出的两题是在不用量角器测量角的情况下比较角的大小,一种方法是叠合比较法,另外一种方法则是根据角的分类,由图形观察角的不同分类,按照常见的锐角<直角<钝角<平角<周角来比较大小.举一反三:【变式】已知∠AOB(如图所示),画一个角等于这个角.【答案】作法:(1)以点O为圆心,适当长为半径画弧,分别交OA、OB于点C、D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧l,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,交弧l于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.5. 如图所示,已知OC平分∠BOD,且∠BOC=20°,OB是∠AOD的平分线,求∠AOD 的度数.【答案与解析】解:因为OC平分∠BOD,且∠BOC=20°,所以∠BOD=2∠BOC=2×20°=40°.又OB是∠AOD的平分线,所以∠AOD=2∠BOD=2×40°=80°.【总结升华】应用角的平分线的定义时根据两点:若OB是∠AOC的平分线,则①∠AOB=∠BOC=12∠AOC;②∠AOC=2∠AOB=2∠BOC,在解题时要学会灵活应用.【高清课堂:角 397364 角的有关计算例3】举一反三:【变式】已知:如图,OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOC=80 ,求:∠MON.【答案】解:∵OM平分∠AOB,ON平分∠COB,∴∠MOB=12∠AOB,∠BON=12∠BOC.(角平分线的定义)∴∠MON=∠MOB+∠BON=12∠AOB+12∠BOC=12(∠AOB+∠BOC)=12∠AOC=12×80︒=40︒ .即∠MON=40︒.类型四、余角和补角6.(2016春•曹县校级月考)一个角的补角比这个角的余角的2倍还多40°,求这个角的度数.【思路点拨】这类题目要先设出这个角的度数.设这个角为x°,分别写出它的余角和补角,根据题意写出等量关系,解之即可得到这个角的度数.【答案与解析】解:设这个角为x°,则其余角为(90﹣x)°,补角为(180﹣x)°,依题意有180﹣x=2(90﹣x)+40,解得x=40.答:这个角的度数是40°.【总结升华】本题考查了余角和补角,是基础题,列出方程是解题的关键.举一反三:【变式】(2015•金华)已知∠α=35°,则∠α的补角的度数是()A.55°B.65°C.145°D.165°【答案】C.类型五、方位角7. A看B的方向是北偏东30°,那么B看A的方向是( ) .A.南偏东60° B.南偏西60°C.南偏东30° D.南偏西30°【答案】D【解析】依题意画出示意图.由图可知,图中∠1即表示从A看B的北偏东30°,∠2是从B看A的方位角.由此可确定从B看A是南偏西30°.【总结升华】从本例的分析与结果来看,从A看B与从B看A正好是一对对立的观察过程,其方向是一种“相反”的对应关系.方位角的确定首先以什么点为基点(即人站在此处观察)要弄清楚,再由正南或正北到视线夹角测量出来.举一反三:【变式】小王从家出发向南偏东30°的方向走了1000米到达小军家,此时小王家在小军家的________方向.【答案】北偏西30°类型六、钟表上有关夹角问题8.(2015•丹东模拟)如图是一个时钟的钟面,下午1点30分,时钟的分针与时针所夹的角等于.【答案】135°.【解析】解:30°×(4+)=30=135°.【总结升华】根据钟面平均分成12份,可得每份30°,根据每份的度数乘以时针与分针相距的份数,可得答案.本题考查了钟面角,每份的度数乘以时针与分针相距的份数是解题关键.举一反三:【变式】2时48分时针与分针的夹角.【答案】解法1:如图(2),设2时48分时针与分针的夹角为∠α,所以∠α=360°-(48×6°-2×30°-48×0.5°)=360°-204°=156°解法2:如图(2)∠BOD=30°×4=120°,∠COD=2×6°=12°,∠AOB=48×0.5°=24°,所以∠AOC=∠BOD+∠COD+∠AOB=156°.即2时48分时针与分针的夹角为156°.。