高等数学数试题(含解答)

合集下载

高等数学试题及答案完整版

高等数学试题及答案完整版

高等数学试题一、单项选择题(本大题共5小题,每小题2分,共10分)1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x2.()002lim 1cos tt x x e e dt x -→+-=-⎰( )A .0B .1C .-1D .∞ 3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导5.设C +⎰2-x xf(x)dx=e ,则f(x)=( )2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<=8.arctan lim _________x x x→∞= 9.已知某产品产量为g 时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC 10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.11.函数3229129y x x x =-+-的单调减少区间是___________.12.微分方程3'1xy y x -=+的通解是___________.13.设2ln 2,6a a π==⎰则___________.14.设2cos x z y =则dz= _______. 15.设{}2(,)01,01y D D x y x y xedxdy -=≤≤≤≤=⎰⎰,则_____________.三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设1x y x ⎛⎫= ⎪⎝⎭,求dy.17.求极限0ln cot lim ln x x x+→18.求不定积分.19.计算定积分I=0.⎰ 20.设方程2z x 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。

高等数学试题及答案详解

高等数学试题及答案详解

高等数学试题及答案详解一、选择题(每题3分,共30分)1. 极限的定义中,如果函数f(x)在某点x=a的极限存在,则对于任意的正数ε,存在正数δ,使得当0<|x-a|<δ时,|f(x)-L|<ε。

这个定义说明了极限的什么性质?A. 唯一性B. 有界性C. 局部性D. 连续性答案:A2. 函数f(x)=x^2在区间[0,1]上的定积分表示的几何意义是什么?A. 曲线y=x^2与x轴围成的面积B. 曲线y=x^2与y轴围成的面积C. 曲线y=x^2与x轴在区间[0,1]上的面积D. 曲线y=x^2与y轴在区间[0,1]上的面积答案:C3. 微分方程dy/dx=2x的通解是?A. y=x^2+CB. y=2x^2+CC. y=x^2+CD. y=x+C答案:A4. 以下哪个函数是奇函数?A. y=x^2B. y=x^3C. y=x^4D. y=x答案:B5. 函数f(x)=sin(x)的导数是?A. cos(x)B. -sin(x)C. sin(x)D. -cos(x)答案:A6. 函数f(x)=e^x的不定积分是?A. e^x+CB. e^(-x)+CC. -e^x+CD. -e^(-x)+C答案:A7. 以下哪个级数是收敛的?A. 1+1/2+1/4+1/8+...B. 1-1/2+1/3-1/4+...C. 1+2+3+4+...D. 1-1/2+1/3-1/4+1/5-...答案:D8. 函数f(x)=ln(x)的定义域是?A. (-∞,0)B. (0,+∞)C. (-∞,+∞)D. [0,+∞)答案:B9. 函数f(x)=x^3-3x+2的极值点是?A. x=1B. x=-1C. x=2D. x=-2答案:A10. 以下哪个函数是周期函数?A. f(x)=x^2B. f(x)=sin(x)C. f(x)=ln(x)D. f(x)=e^x答案:B二、填空题(每题2分,共20分)11. 函数f(x)=x^3的二阶导数是________。

高等数学试题详解及答案

高等数学试题详解及答案

高等数学试题详解及答案一、单项选择题(每题2分,共10分)1. 函数f(x)=x^2在x=0处的导数是:A. 0B. 1C. 2D. 0答案:B2. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. πD. -1答案:B3. 函数F(x)=∫(0 to x) t^2 dt的不定积分是:A. (1/3)x^3 + CB. (1/2)x^2 + CC. x^3 + CD. x^2 + C答案:A4. 无穷小量α与无穷小量β,若α是β的高阶无穷小,则:A. α/β→0B. α/β→∞C. α/β→1D. α/β→常数答案:A5. 曲线y=x^3-3x+2在x=1处的切线斜率是:A. -2B. 0C. 2D. 1答案:C二、填空题(每题3分,共15分)1. 若函数f(x)的二阶导数为f''(x)=6x,那么f'(x)=______。

答案:3x^2 + C2. 函数y=e^x的反函数是______。

答案:ln(x)3. 定积分∫(0 to 1) x dx的值是______。

答案:1/24. 函数y=ln(x)的导数是______。

答案:1/x5. 曲线y=x^2在点(1,1)处的法线方程是______。

答案:y=-x+2三、解答题(每题10分,共30分)1. 求函数f(x)=x^3-3x^2+2x的极值点。

答案:首先求导数f'(x)=3x^2-6x+2,令f'(x)=0,解得x=1或x=2/3。

通过二阶导数f''(x)=6x-6,可以判断x=1为极大值点,x=2/3为极小值点。

2. 计算定积分∫(0 to π/2) sin(x) dx。

答案:根据积分公式,∫sin(x) dx = -cos(x) + C,所以∫(0 toπ/2) sin(x) dx = [-cos(x)](0 to π/2) = -cos(π/2) + cos(0)= 1。

高等数学试题及参考答案

高等数学试题及参考答案

高等数学试题及参考答案一、选择题(每题4分,共20分)1. 以下哪个函数是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = \sin(x) \)D. \( f(x) = \cos(x) \)答案:B2. 计算极限 \(\lim_{x \to 0} \frac{\sin(x)}{x}\) 的值。

A. 0B. 1C. 2D. \(\infty\)答案:B3. 以下哪个级数是收敛的?A. \(\sum_{n=1}^{\infty} \frac{1}{n^2}\)B. \(\sum_{n=1}^{\infty} \frac{1}{n}\)C. \(\sum_{n=1}^{\infty} \frac{1}{2^n}\)D. \(\sum_{n=1}^{\infty} \frac{1}{n^3}\)答案:A4. 函数 \(y = e^x\) 的导数是?A. \(e^x\)B. \(-e^x\)C. \(\ln(e)\)D. \(\frac{1}{e^x}\)答案:A5. 计算定积分 \(\int_0^1 x^2 dx\) 的值。

A. \(\frac{1}{3}\)B. \(\frac{1}{2}\)C. \(\frac{1}{4}\)D. \(\frac{1}{6}\)答案:A二、填空题(每题6分,共30分)1. 函数 \(y = \ln(x)\) 的反函数是 \(y = \boxed{e^x}\)。

2. 函数 \(y = x^2 + 2x + 1\) 的最小值是 \(\boxed{0}\)。

3. 函数 \(y = \sin(x)\) 的周期是 \(\boxed{2\pi}\)。

4. 函数 \(y = \frac{1}{x}\) 的不定积分是 \(\boxed{\ln|x| + C}\)。

5. 函数 \(y = \cos(x)\) 的导数是 \(\boxed{-\sin(x)}\)。

高等数学考试题目及答案

高等数学考试题目及答案

高等数学考试题目及答案一、单项选择题(每题3分,共30分)1. 函数f(x)=x^2+2x+1的导数是:A. 2x+2B. x^2+2C. 2xD. 2x+1答案:A2. 曲线y=x^3在点(1,1)处的切线斜率是:A. 0B. 1C. 3D. -3答案:C3. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. πD. -1答案:B4. 不定积分∫x^2 dx等于:A. (x^3)/3 + CB. x^3 + CC. (x^2)/2 + CD. 2x^3 + C答案:A5. 函数y=e^x的原函数是:A. e^x + CB. e^x - CC. e^(-x) + CD. -e^x + C答案:A6. 函数y=ln(x)的二阶导数是:A. 1/x^2B. 1/xC. -1/x^2D. -1/x答案:A7. 曲线y=x^2+2x+1与x轴的交点个数是:A. 0B. 1C. 2D. 3答案:A8. 函数y=x^3-3x的拐点是:A. (0,0)B. (1,-2)C. (-1,2)D. (2,2)答案:C9. 函数y=x^2-4x+4的极值点是:A. (2,0)B. (0,4)C. (4,0)D. (-2,0)答案:A10. 函数y=sin(x)的周期是:A. 2πB. πC. 1D. 0答案:A二、填空题(每题4分,共20分)11. 函数f(x)=x^3的导数是_________。

答案:3x^212. 曲线y=cos(x)在点(π/2,0)处的切线斜率是_________。

答案:013. 极限lim(x→∞) (1/x)的值是_________。

答案:014. 不定积分∫1/x dx等于_________。

答案:ln|x| + C15. 函数y=e^(-x)的原函数是_________。

答案:-e^(-x) + C三、解答题(每题10分,共50分)16. 求函数f(x)=x^2-4x+4在区间[1,3]上的最大值和最小值。

高等数学试题及答案解析

高等数学试题及答案解析

高等数学试题及答案解析一、选择题1. 函数f(x) = x^2 - 4x + 3在区间[0, 5]上的最大值是:A. 3B. 5C. 7D. 9答案:D解析:首先求导f'(x) = 2x - 4,令f'(x) = 0得到x = 2,这是函数的极值点。

计算f(2) = 2^2 - 4*2 + 3 = -1。

接下来检查区间端点,f(0) = 3,f(5) = 5^2 - 4*5 + 3 = 9。

因此,最大值为f(5) = 9。

2. 若f(x) = sin(x) + cos(x),则f'(x)等于:A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) + cos(x)D. -sin(x) - cos(x)答案:A解析:根据导数的基本公式,sin(x)的导数是cos(x),cos(x)的导数是-sin(x)。

因此,f'(x) = cos(x) - sin(x)。

二、填空题1. 求不定积分∫(2x + 1)dx = __________。

答案:x^2 + x + C解析:根据不定积分的基本公式,∫x^n dx = (x^(n+1))/(n+1) + C,其中n ≠ -1。

将n = 1代入公式,得到∫(2x + 1)dx = ∫2x dx + ∫1 dx = x^2 + x + C。

2. 若y = ln(x),则dy/dx = __________。

答案:1/x解析:对自然对数函数求导,根据对数函数的导数公式,ln(x)的导数是1/x。

三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x - 2的极值点。

答案:极值点为x = 3。

解析:首先求导f'(x) = 3x^2 - 12x + 9。

令f'(x) = 0,解得x = 1 和 x = 3。

计算二阶导数f''(x) = 6x - 12,代入x = 1得到f''(1) = -6 < 0,说明x = 1是极大值点;代入x = 3得到f''(3) = 18 > 0,说明x = 3是极小值点。

高等数学试题及及答案

高等数学试题及及答案

高等数学试题及及答案高等数学试题及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^2-2x+1的最小值是()。

A. 0B. 1C. -1D. 22. 极限lim(x→0) (sin(x)/x)的值是()。

A. 0B. 1C. -1D. 23. 函数y=e^x的导数是()。

A. e^xB. -e^xC. 1/e^xD. 04. 曲线y=x^3-3x+2在x=1处的切线斜率是()。

A. 0B. 1C. -1D. 25. 积分∫(0 to 1) (x^2 dx)的值是()。

A. 1/3B. 1/2C. 1D. 2二、填空题(每题4分,共20分)6. 函数f(x)=3x^2-6x+5的顶点坐标是()。

7. 函数y=ln(x)的定义域是()。

8. 函数y=x^3的二阶导数是()。

9. 曲线y=e^x与直线y=x相切的切点坐标是()。

10. 积分∫(0 to 1) (x dx)的值是()。

三、解答题(每题15分,共60分)11. 求函数f(x)=x^3-3x+2在区间[-1, 2]上的定积分,并画出积分图。

12. 求极限lim(x→∞) ((x^2+1)/(x^3+x))。

13. 求函数y=x^2-4x+3的极值点,并说明极值点的性质。

14. 求曲线y=x^2+2x-3在点(1, -2)处的切线方程。

四、附加题(10分)15. 证明:对于任意正整数n,有1/n^2 < 1/(n^2-1) + 1/(n^2+1)。

答案:一、选择题1. B2. B3. A4. C5. A二、填空题6. (1, 2)7. (0, +∞)8. 6x9. (1, e)10. 1/2三、解答题11. ∫(-1 to 2) (x^3-3x+2 dx) = (1/4x^4 - 3/2x^2 + 2x) | (-1 to 2) = 17/4积分图略。

12. 原式=lim(x→∞) (x^2+1)/(x^3+x) = lim(x→∞) (1/x + 1/x^3) = 013. y'=2x-4,令y'=0,得x=2,此时y=3,为极小值点。

(完整word版)高等数学试题及答案.docx

(完整word版)高等数学试题及答案.docx

高学试题及答案选择题(本大题共40 小题,每小题 2.5 分,共 100 分)1.设 f(x)=lnx,且函数 (x) 的反函数1(x)= 2(x+1) ,则 f(x)( B)x-2 x+22-xx-1 x+2lnlnlnlnA. x+2B.x-2C. x+2D. 2-xe t2 dt2. lime tx1 cosx(A )x 0A . 0B . 1C .-1D .3.设y f ( x 0 x) f ( x 0 ) 且函数 f (x) 在 x x 0 处可导,则必有( A)A. lim y 0B. y 0C.dy 0D. y dyx 04.设函数 f(x)=2x 2, x 1,则 f(x) 在点 x=1处( C)3x1,x 1A. 不连续B. 连续但左、右导数不存在C.连续但不可导D.可导5.设 xf(x)dx=e-x 2C ,则 f(x)= ( D)A.xe6. 设 I-x 2B.-xe -x 2C.2e -x 2D.-2e-x 2( x2y 2 ) dxdy,其中 D 由 x 2y 2 a 2 所围成,则 I =( B ).D(A)2 a 2rdra4(B)2 a 2rdr1 a4dadr22 a 2dr2 a 32a2adr2 a4(C)dr (D)da37. 若 L 是上半椭圆x a cost ,ydxxdy 的值为 ( C ).y 取顺时针方向 , 则b sin t ,L(A)0(B)ab (C)ab(D)28. 设 a 为非零常数 , 则当 ( B )时 , 级数a 收敛 .n 1 rnab(A) | r | | a |(B)| r | | a | (C) | r | 1(D)| r | 19. lim u n 0 是级数u n 收敛的 ( D )条件 .nn 1(A) 充分 (B) 必要 (C) 充分且必要 (D) 既非充分又非必要10. 微分方程 y y0 的通解为 ____B______.(A)y cos x c(B) y c 1 cos x c 2(C) y c 1 c 2 sin x(D) yc 1 cos x c 2 sin x11. 若 a , b 为共线的单位向量,则它们的数量积a b( D ).( A ) 1(B ) -1( C ) 0( D ) cos(a, b)12. 设平面方程为 Bx Cz D 0 ,且 B , C , D 0 , 则平面(C ).( A )平行于 x 轴( B )垂直于 x 轴( C )平行于 y 轴( D )垂直于 y 轴13. 设 f ( x, y)( x 2y 2 ) sin x 2 1 y 2,x 2 y 20 , 则在原点 (0,0) 处 f (x, y) ( D ).0, x 2y 2(A) 不连续 (B)偏导数不存在(C)连续但不可微 (D)可微14. 二元函数 z 3( x y)x 3 y 3 的极值点是 ( D ).(A) (1,2)(B) (1, -2 ) (C) (1,-1)(D) (-1,-1)15. 设 D 为 x 2y 2 1,则11 dxdy=(C ).Dx 2 y 2(A) 0(B)(C) 2(D) 416.1 1 x)0 dxf ( x, y ) dy =( C1 x 11 1 xf ( x , y ) dx (A)0 dyf ( x , y ) dx(B) 0dy11 y f ( x , y ) dx11f ( x , y ) dx(C)dy(D) dy17.x a cost ,ydxxdy 的值为 ( C ).若 L 是上半椭圆取顺时针方向 , 则Lyb sin t ,(A) 0(B)ab(C)ab(D)ab218. 下列级数中 , 收敛的是 ( B ).(A)(5 )n1(B)( 4 ) n 1(C)( 1) n 1( 5) n 1(D)(54)n 1n 1 4n 1 5n 1 4 n 1 4519. 若幂级数a n x n 的收敛半径为 R 1 : 0R 1,幂级数b n x n 的收敛半径为 R 2 : 0 R 2,n 0n 0则幂级数(a nb n ) x n 的收敛半径至少为 ( D )n 0(A) R1R2(B)R1 R2(C)max R1, R2(D)min R1 , R220.下列方程为线性微分方程的是( A )(A)y(sin x) y e x(B)y x sin y e x(C)y sin x e y(D)xy cos y11x21. a b a b 充分必要条件是( B )(A) a ×0(B) a b0(C)a b 0(D) a b 0 b22. 两平面x 4 y z50与 2x 2 y z 30的夹角是( C )(A)6(B)3(C)4(D)223. 若f y(a, b) 1 ,则 lim f a, b y f a,b y=( A )y 0y(A)2(B)1(C)4(D)024.若 f x ( x0 , y0 ) 和 f y ( x0 , y0 ) 都存在,则 f ( x, y) 在 (x 0 , y 0 ) 处( D )(A)连续且可微(C)可微但不一定连续(B)连续但不一定可微(D)不一定连续且不一定可微25.下列不等式正确的是( B )(A)(x3y3 )d0(B)(x2y2 ) d0x 2y 21x2 y 2 1(C)x 2y2(x y)d0(D)x2 y 2( x y)d0 1126.11xf (x, y)dy =( C) dx(A)1 xdy1(B)1 1 x f ( x, y) d x 0f ( x, y)d x dy0011y11f (x, y)d x(C)dy0f (x, y)d x(D)dy00027. 设区域 D 由分段光滑曲线L 所围成, L 取正向, A 为区域 D 的面积,则( B )(A)11 Aydx xdy(B) A xdy ydx2 L 2 L(C) A1xdy ydx(D) Axdy ydx2LLn28. 设a n 是正项级数,前 n 项和为 s na k ,则数列 s n 有界是a n 收敛的( C )n 1k 1n 1(A) 充分条件(B) 必要条件(C) 充分必要条件(D) 既非充分条件,也非必要条件29. 以下级数中,条件收敛的级数是( D )(A)( 1) Nn (B)( 1) n11N 12n10n 1n 3(C)( 1) n 1 ( 1 )n (D)( 1) n13 n12 n 1n30.设 xf(x)dx=e-x 2C ,则 f(x)= (D )A.xe -x 2B.-xe -x 2C.2e -x 2D.-2e-x 231、已知平面: x2 y z4 0 与直线 L :x1y2 z 1 的位置关系是( D )31 1( A )垂直(B )平行但直线不在平面上( C )不平行也不垂直 ( D )直线在平面上 32、 lim3xy( B)x 02xy 1 1y 0( A )不存在 ( B ) 3( C ) 6( D )33、函数 z2 z及2 zD 内f ( x, y) 的两个二阶混合偏导数在区域 D 内连续是这两个二阶混合偏导数在x y y x相等的( B )条件 .( A )必要条件( B )充分条件( C )充分必要条件 ( D )非充分且非必要条件34、设d4 ,这里 a0 ,则 a =( A)x 2y 2a( A ) 4( B )2 ( C ) 1( D ) 035、已知 xay dxydy为某函数的全微分,则 a ( C)x y 2( A ) -1 (B ) 0( C ) 2( D ) 136、曲线积分ds(C ),其中y 2 Lx 2 z 2( A )( B )2( C )x 2 y 2 z 210L :1.z3(D )4555537、数项级数a n 发散,则级数ka n ( k 为常数)( B)n 1n 1(A )发散( B )可能收敛也可能发散( C )收敛 ( D )无界38、微分方程xy y 的通解是( C )(A )y C1x C2(B )y x2C( C)y C1x2 C 2( D)y 1 x2C2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

共 5 页 第 1 页
08-09-3
高数A (期中)试卷参考答案
09.4.17
一.填空题(本题共5小题,每小题4分,满分20分) 1.交换积分次序
20242
42
2
d (,)d d (,)d d (,)d y x x y f x y x y f x y x x f x y y +---+=⎰

⎰⎰⎰

2.
设e 10z -=,则Re ln 2z =,Im 2,0,1,2,3
z k k π
π=-
+=±± ;
3.设(,)z z x y =是由方程22()y z xf y z +=-所确定的隐函数,其中f 可微,则全微分
21
d d d 1212f xyf z x y xzf xzf '-=
+''
++;
4.设C 为由x y π+=与x 轴,y 轴围成的三角形的边界,e
d x y
C
s +=⎰
e 2)2π+-
5.设(,)f x y 连续,{
}2
(,)01,0D x y x y x
=≤≤≤≤,且(,)(,)d d D
f x y x y f x y x y
=+⎰⎰

1
(,)d d 8
D
f x y x y =
⎰⎰
. 二.单项选择题(本题共4小题,每小题4分,满分16分)
6.函数22
,(,)(0,0)(,)0,(,)(0,0)xy
x y x y f x y x y ⎧≠⎪+=⎨⎪=⎩
在点(0,0)处 [ C ]
(A)连续且偏导数存在 (B) 连续但偏导数不存在
(C)不连续但偏导数存在 (D) 不连续且偏导数不存在
7设{
}
22
(,)1D x y x y =+≤,1D 为D 在第一象限部分,则下列各式中不成立的是[ B ] (A

1
d 4d D
D x y x y = (B )1
d d 4d d D
D xy x y xy x y =⎰⎰⎰⎰
(C )
32()d d 0D
x x y x y +=⎰⎰ (D )2332
d d d d D
D
x y x y x y x y =⎰⎰⎰⎰ 8设()[0,)f t C ∈+∞,2222
222()()d x y z R I R f x y z v ++≤=
++⎰⎰⎰
,则当0R +→时,()I R [ D ]
(A )是R 的一阶无穷小 (B )是R 的二阶无穷小
共 5 页 第 2 页
(C )是R 的三阶无穷小 (D )至少是R 的三阶无穷小 9.设(,)f x y 在原点的某邻域内连续,且2200
(,)(0,0)
lim
01sin cos x y f x y f a x x y y →→-=>+--,则 [ B]
(A )(,)f x y 在原点处取得极大值 (B )(,)f x y 在原点处取得极小值 (C )不能断定(,)f x y 在原点处是否取得极值 (D )原点一定不是(,)f x y 的极值点 三.计算下列各题(本题共5小题,每小题8分,满分40分) 10.计算二重积分
2223d D
x y x y σ++⎰⎰,其中{}
22
(,)1,1D x y x y x y =+≤+≥. 解 12122220cos sin 23555d d d (cos sin )d 5224D
D x y x y x y x y πσσϕϕϕρπ+++==+=-++⎰⎰⎰⎰⎰⎰ 11.计算曲面积分()d z y A ∑
+⎰⎰
,其中∑是由0,1z z ==与2
221z x y +=+所围成的立体
的表面.
解 2211:0x y z ⎧+≤∑⎨=⎩,2222:1x y z ⎧+≤∑⎨=⎩,22231:01x y z z ⎧+=+∑⎨≤≤⎩,2212
:0
x y D z ⎧≤+≤⎨=⎩
1
2
3
()d d d d d 2d D
z y A z A z A z A z A x y π∑

∑∑∑+==++=+⎰⎰
⎰⎰⎰⎰⎰⎰⎰⎰
522d 3ππρπ⎫=+=⎪⎭
12.求
2222
d d d d x y z y z x x y z

∧+∧++⎰⎰
,其中∑为圆柱体222
y z R +≤, (0)x R R ≤>的表面,取外侧.
解 2221:y z R x R ⎧+≤∑⎨=-⎩取后侧,2222:y z R x R ⎧+≤∑⎨=⎩取前侧,2223:y z R
x R
⎧+=⎪∑⎨≤⎪⎩取外侧,
{}
(,),zx D z x z R x R =≤≤,
123
22222222222222d d d d d d d d d d x y z y z x R y z R y z y z x
x y z R y z R y z x R ∑
∑∑∑∧+∧∧∧∧=+++++++++⎰⎰
⎰⎰⎰⎰⎰⎰
共 5 页 第 3 页
2
2202d 2
zx
D R z x x R π=+=+⎰⎰
13.求由曲面221,1x z y z +=+=和0z =所围成的质量均匀分布的立体的质心坐标. 解 由对称性知0x y ==, 质量120
08d (1)d 2x
m x x y μ
μ=-=⎰
⎰,
对xOy 平面的静力矩2
110
28d d d 3x
x xy M x y z z μ
μ-==

⎰⎰
, 1
3
xy M z m == 另解 0x y ==,
用切片法(
(2
1
02
1
d 13
d xy z z
M z m
z
μμ=
=
=⎰⎰ 14.已知解析函数()f z 的实部22
(,)2x
u x y xy x y =++,求()f z 的表达式(用变量z 表示)
和(i)f '.
解 ()222222122v u y y y x x y x y ∂∂==-+∂∂++,2
22()y v y x x y ϕ=-++, ()()22222222()2v xy u xy x x x y x y x y ϕ∂∂'=+=-=-+∂∂++,2
()x x C ϕ=--, ()21
()i f z z C z
=
-+, (i)3f '= 另解:因为解析,所以))
(22())(2()(2
2222222y x xy
x i y x x y y iu u z f y x +--+-+=-=' 从而z i z
z f 21)(2
--
='C iz z z f +-=⇒21
)( 四(15)(本题满分8分)求函数2
2
2
23u x y z =++在球面2
2
2
1x y z ++=和平面
0x y +=的交线上的最大值与最小值.
解 首先根据条件得2
2
2
2
2
2
2332333u x y z y x x =++=--=-≤,且在点(0,0,1)±
处,max 3u =,继续由条件得()()22
2
22133
33122
2z u x z z z ⎛⎫-=+=+=+≥ ⎪⎝⎭,且在点
共 5 页 第 4 页
⎛⎫ ⎪⎝
⎭处,min 32u = 五(16)(本题满分8分)试求过直线20
530
x y x y z +-=⎧⎨---=⎩,且与曲面22z x y =+相切的平
面方程.
解 设过直线20
530x y x y z +-=⎧⎨
---=⎩
的平面方程为(1)(15)230x y z λλλλ++----=,
设切点为000(,,)x y z ,则0000022
000
(1)(15)230(1)
221(2)
115(3)x y z x
y z x y λλλλλλλ
++----=⎧⎪
⎪==⎨+-⎪⎪=+⎩ 由(2),(3)解得00115,22x y λλλλ+-==,22
02(1)(15)4z λλλ
++-=, 代入(1)得2
7810λλ-+=,解得121
1,7
λλ==
,从而两切平面方程分别为 2450x y z ---=和82170x y z +--=。

六(17)(本题满分8分)设0ab ≠,(,)f x y 具有二阶连续偏导数,且22
2
222
0f f a b x y ∂∂+=∂∂ ,(,)f ax bx ax =,2(,)x f ax bx bx =,求(,)xx f ax bx ,(,)xy f ax bx ,(,)yy f ax bx . 解 对(,)f ax bx ax =的等号两端关于x 求导,得x y af bf a +=,(1) 对2(,)x f ax bx bx =的等号两端关于x 求导,得2xx xy af bf bx +=,(2) 对(1)式的等号两端关于x 求导,得22
20xx xy yy a f abf b f ++=,(3)
从(2),(3)及条件22
2
2220f f a b x y
∂∂+=∂∂解得 (,)0xy f ax bx =,2(,)xx b f ax bx x a =
,2(,)yy a
f ax bx x b
=-
共 5 页第5 页。

相关文档
最新文档