第3章3-01高斯消元法,列住元法

合集下载

用列主元高斯消元法求线性代数方程组的解

用列主元高斯消元法求线性代数方程组的解

课程设计任务书前 言回顾普通解方程组的方法,一般都是先逐个削去未知变量,最终得到只有一个未知变量的方程,解之,把得到的值回代到消去变量过程中得到的方程组,逐个求出未知变量。

这种解线性方程组的基本方法就是这里要介绍的高斯消去法。

数学上,高斯消元法(或译:高斯消去法),是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵的逆矩阵。

当用于一个矩阵时,高斯消元法会产生出一个“行梯阵式”。

高斯消元法可以用在电脑中来解决数千条等式及未知数。

高斯消元法可以用来找出一个可逆矩阵的逆矩阵。

用关联矩阵表述网络拓扑结构,并根据厂站拓扑结构和网络拓扑结构等概念简化了电力系统的拓扑结构。

根据广义乘法和广义加法的运算规则,将改进的高斯消元算法应用于电力系统拓扑结构分析中,并引入稀疏、分块处理等技术提高了上述拓扑分析的效率。

采用上述高斯消元算法对山东电网220kV 以上的变电站进行拓扑结构分析,结果表明了运用该高斯消元法进行网络拓扑分析的正确性和有效性。

用列主元素法,选取每列的绝对值最大的元素作为消去对象并作为主元素。

然后换行使之变到主元位子上,在进行消元计算。

设)()(k k b X A ,确定第k 列主元所在位置k i ,在交换k i 行和k 行后,在进行消元,并用MATLAB 软件进行求解。

目录摘要....................................................................................... 错误!未定义书签。

第1章绪论 ......................................................................... 错误!未定义书签。

第2章高斯消元法的算法描述 (2)2.1高斯消元法的原理概述 (2)c231730658" 2.1.1高斯消元法的消元过程 (2)c231730658" 2.1.2高斯消元法的回带过程 (3)c231730658" 2.1.3高斯消元法的复杂度分析 (4)c231730658" 2.2列主高斯消元法原理简介 (5)c231730658" 2.2.1列主高斯消元法的消元过程 (6)c231730658" 2.2.2列主高斯消元法的回带过程 (6)c231730658" 2.2.3列主高斯消元法的算法描述 (6)c231730662"第3章高斯消元法的物理应用 (9)3.1c231730663"电网模型的描述 (9)c231730658" 3.2电网模型的问题分析 (9)c231730658"3.3求解计算 (11)c231730693"参考文献 (13)摘 要用列主元素高斯消去法法,选取每列的绝对值最大的元素作为消去对象并作为主元素。

第三节、高斯——若当消元

第三节、高斯——若当消元

0
1 1
3
0
1
0
1
0 0 9 18 0 0 1 5 上页 下页 返回
故原方程的解为 x 5,1,2T
第三章 第三节
二 逆矩阵
[ A E] 高斯—约当消元法[E A1]
矩阵的初等行变换
定理 设A为非奇异矩阵,方程组 AX In的增广矩
阵为 C A | In ,如果对C应用高斯---若当方法化为
In | B ,则 A1 B .
1 3 2
例2
用高斯——若当削元法求 的逆矩阵 A1
A 2 3
5 6
4 5
上页 下页 返回

第三章 第三节
1 3 2 1 0 0
C A | I3 2 5 4 0 1 0
3 6 5 0 0 1
1 0 2 5 3 0 1 3 2 1 0 0
0 1 0
2
1 0 0 1 0 2 1
第三章 第三节
第三节 高斯——若当消元法
一 高斯----若当消元
在高斯消元过程中,先将主元素化为1, 而后将主元所在列的其它元素均化为零,最后 将系数矩阵化为单位矩阵 E,无需回代就可求 得原方程的解,此法称为高斯—若当消元法。
例 1 用高斯——若当消元法求解线性方程组
上页 下页 返回
第三章 第三节
0
0 0 1 3 3 1 0 3 1 3 0 1
1 0 0 1 3 2
0 1 0 1 3 3 1
所以 1 3 2
A1
2
1
0
3 3 1
上页 下页 返回
例 1 用高斯——若当消元法求解线性方程组
2x1 8x2 2x3 14
x1
6 x2

计算方法(3)第三章 线性代数方程组的解法

计算方法(3)第三章 线性代数方程组的解法

“回代”解得

xn

bn ann


xk

1 akk
[bk

n
akj x j ]
j k 1

其中aii 0 (i 1,2,......, n)
(k n 1, n 2, ,1)
返回变量
函数名
function X=backsub(A,b) 参数表
%Input—A is an n×n upper- triangular nonsingullar matrix % ---b is an n×1 matrix
x1

xi

b1 / a11
i 1
(bi aik
k 1
xk ) / aii
(i

2,3,
, n)
如上解三角形方程组的方法称为回代法.
二. 高斯消元法(Gaussian Elimination)
高斯消元法的求解过程,可大致分为两个阶段:首先, 把原方程组化为上三角形方程组,称之为“消元”过 程;然后,用逆次序逐一求出上三角方程组(原方程组的 等价方程组)的解,称之为“回代”过程.
符号约定:
1. (λEi )(Ei ): 第i个方程乘以非零常数λ。 2. (Ei +λEj )(Ei ): 第j个方程乘以非零常数λ
加到第i个方程。
3.(Ei )(Ej ): 交换第i个方程与第j个方程。
a11 x1 a12 x2 ... a1n xn b1
a21
x1 4 x4 x2 4 1 2 1
故解为(x1,x2 ,x3 ,x4 )T (1,2,0,1)T
A=[1 1 0 1;0 -1 -1 -5;0 0 3 13;0 0 0 -13] b=[4;-7;13;-13] X=backsub(A,b)

高斯列主元消去法

高斯列主元消去法

高斯列主元消去法2.3高斯列主元消去法解线性方程组一:问题的提出我们都知道,高斯列主元素消去法是计算机上常用来求解线性方程组的一种直接的方法。

就是在不考虑舍入误差的情况下,经过有限步的四则运算可以得到线性方程组的准确解的一类方法。

实际运算的时候因为只能有限小数去计算,因此只能得到近似值。

在实际运算的时候,我们很多时候也常用高斯消去法。

但是高斯消去法在计算机中运算的时候常会碰到两个问题。

1.一旦遇到一些主元等于0,消元过程便无法进行下去。

2.在长期使用中还发现,即使消元过程能进行下去,但是当一些主元的绝对值很小时,求解出的结果与真实结果相差甚远。

为了避免高斯消去法消元过程中出现的上述两个问题,一般采用所谓的选择主元法。

其中又可以分为列选主元和全面选主元两种方法。

目前计算机上常用的按列选主元的方法。

因此我在这里做的也是列选主元高斯消去法。

二、算法的基本思想大家知道,如果一个线性方程组的系数矩阵是上三角矩阵时,即这种方程组我们称之为上三角方程组,它是很容易求解的。

我们只要把方程组的最下面的一个方程求解出来,在把求得的解带入倒数第二个方程,求出第二个解,依次往上回代求解。

然而,现实中大多数线性方程组都不是上面所说的上三角方程组,所以我们有可以把不是上三角的方程通过一定的算法化成上三角方程组,由此我们可以很方便地求出方程组的解。

高斯消元法的目的就是把一般线性方程组简化成上三角方程组。

于是高斯消元法的基本思想是:通过逐次消元将所给的线性方程组化为上三角形方程组,继而通过回代过程求解线性方程组。

三、算法的描述1、设有n元线性方程组如下:=2、第一步:如果a11!=0,令li1= ai1/a11, I= 2,3,……,n用(-li1)乘第一个方程加到第i个方程上,得同解方程组:a(1)11a(1)12...a(1)1nx1b(1)1a(1)21a(1)22...a(1)2nx2b(1)2 .......=.a(1)n-11 a(1)n-12 . .a(1)n-1nxn-1b(1)n-1a(1)n1a(1)n2. . . a(1)nnxnb(1)n简记为:A(2)x=b(2)其中a(2)ij = a(1)ij – li1 a(1)1j ,I ,j = 2,3,..,nb(2)I = b(1)I – li1 b(1)1 ,I = 2,3,...,n第二步:如果a(2)22!=0,令li2= a(2)i2/a(2)22, I= 3,……,n依据同样的原理,对矩阵进行化间(省略),依次下去,直到完成!最后,得到上三角方程组:a(1)11a(1)12...a(1)1nx1b(1)1a(1)22 ...a(1)2nx2b(1)2 .......=.. .a(n-1)n-1nxn-1b(n-1)n-1. . . a(n)nnxnb(n)n简记为:A(n)x=b(n)最后从方程组的最后一个方程进行回代求解为:n = b(n) / a(n)nni = ( b(k)k - a(k)kjxj ) / a(k)kk以上为高斯消去法的基本过程。

高斯消元法(完整)

高斯消元法(完整)

高斯消元法解线性方程组 在工程技术和工程管理中有许多问题经常可以归结为线性方程组类型的数学模型,这些模型中方程和未知量个数常常有多个,而且方程个数与未知量个数也不一定相同。

那么这样的线性方程组是否有解呢?如果有解,解是否唯一?若解不唯一,解的结构如何呢?这就是下面要讨论的问题。

一、线性方程组 设含有n 个未知量、有m 个方程式组成的方程组(3.1)a x a x a x b a x a x a x b a x a x a x b n n n n m m mn n m11112211211222221122+++=+++=+++=⎧⎨⎪⎪⎩⎪⎪ 其中系数,常数都是已知数,是未知量(也称为未知数)。

当右端常数项a ij b j x i , , …, 不全为0时,称方程组(3.1)为非齐次线性方程组;当== … =b 1b 2b m b 1b 2= 0时,即b m (3.2)a x a x a x a x a x a x a x a x a x n n n n m m mn n 111122121122221122000+++=+++=+++=⎧⎨⎪⎪⎩⎪⎪ 称为齐次线性方程组。

由n 个数, , …, 组成的一个有序数组(, , …, ),如果将它们k 1k 2k n k 1k 2k n 依次代入方程组(3.1)中的, , …, 后,(3.1)中的每个方程都变成恒等式,x 1x 2x n 则称这个有序数组(, , …, )为方程组(3.1)的一个解。

显然由=0, k 1k 2k n x 1=0, …, =0组成的有序数组(0, 0, …, 0)是齐次线性方程组(3.2)的一个解,x 2x n 称之为齐次线性方程组(3.2)的零解,而当齐次线性方程组的未知量取值不全为零时,称之为非零解。

(利用矩阵来讨论线性方程组的解的情况或求线性方程组的解是很方便的。

因此,我们先给出线性方程组的矩阵表示形式。

)非齐次线性方程组(3.1)的矩阵表示形式为:AX = B其中A = ,X = ,B = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a a a a a 212222111211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n x x x 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n b b b 21称A 为方程组(3.1)的系数矩阵,X 为未知矩阵,B 为常数矩阵。

应用数值分析(第四版)课后习题答案第3章

应用数值分析(第四版)课后习题答案第3章

第三章习题解答1.试讨论a 取什么值时,下列线性方程组有解,并求出解 。

123123123123212312311(1)1(2)1ax x x ax x x x ax x x ax x a x x ax x x ax a⎧++=++=⎧⎪⎪++=++=⎨⎨⎪⎪++=++=⎩⎩ 解:(1)111111111a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 经初等行变换化为1001/(2)0101/(2)0011/(2)a a a +⎡⎤⎢⎥+⎢⎥⎢⎥+⎣⎦ 当2a ≠-时,方程组有解,解为111(,,).222Tx a a a =+++ (2)21111111a A a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 经初等行变换化为2100(1)/(2)0101/(2)001(21)/(2)a a a a a a -++⎡⎤⎢⎥+⎢⎥⎢⎥+++⎣⎦当2a ≠-时,方程组有解,解为21121(,,).222Ta a a x a a a +++=-+++2.证明下列方程组Ax=b12341123421233234432432385x x x x b x x x x b x x x b x x x b+--=⎧⎪-+-=⎪⎨+-=⎪⎪-+-=⎩ 当(1)(10,4,16,3).T b =-时无解;(2)(2,3,1,3).T b =时有无穷多组解。

解:(1) r(A)=3≠r(A,b)=4 当(10,4,16,3).T b =-时无解;(2) r(A)=3,r(A,b)=3 当(2,3,1,3).T b =时有无穷多组解。

3.用列主元高斯消元法求解Ax=b2233(1)477,12457A b ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦ 1231(2)234,13462A b ⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1)x=(2,-2,1)T (2)x=(0,-7,5)T4.证明上(下)三角方阵的逆矩阵任是上(下)三角方阵。

列主元高斯消去法和列主元三角分解法解线性方程

列主元高斯消去法和列主元三角分解法解线性方程

计算方法实验报告1课题名称用列主元高斯消去法和列主元三角分解法解线性方程目的和意义高斯消去法是一个古老的求解线性方程组的方法,但由它改进得到的选主元的高斯消去法则是目前计算机上常用的解低阶稠密矩阵方程组的有效方法;用高斯消去法解线性方程组的基本思想时用矩阵行的初等变换将系数矩阵A 约化为具有简单形式的矩阵上三角矩阵、单位矩阵等,而三角形方程组则可以直接回带求解 用高斯消去法解线性方程组b Ax =其中A ∈Rn ×n 的计算量为:乘除法运算步骤为32(1)(1)(21)(1)(1)262233n n n n n n n n n n nMD n ----+=+++=+-,加减运算步骤为(1)(21)(1)(1)(1)(25)6226n n n n n n n n n n AS -----+=++=;相比之下,传统的克莱姆法则则较为繁琐,如求解20阶线性方程组,克莱姆法则大约要19510⨯次乘法,而用高斯消去法只需要3060次乘除法;在高斯消去法运算的过程中,如果出现absAi,i 等于零或过小的情况,则会导致矩阵元素数量级严重增长和舍入误差的扩散,使得最后的计算结果不可靠,所以目前计算机上常用的解低阶稠密矩阵方程的快速有效的方法时列主元高斯消去法,从而使计算结果更加精确; 2、列主元三角分解法高斯消去法的消去过程,实质上是将A 分解为两个三角矩阵的乘积A=LU,并求解Ly=b 的过程;回带过程就是求解上三角方程组Ux=y;所以在实际的运算中,矩阵L 和U 可以直接计算出,而不需要任何中间步骤,从而在计算过程中将高斯消去法的步骤进行了进一步的简略,大大提高了运算速度,这就是三角分解法采用选主元的方式与列主元高斯消去法一样,也是为了避免除数过小,从而保证了计算的精确度计算公式1、 列主元高斯消去法设有线性方程组Ax=b,其中设A 为非奇异矩阵;方程组的增广矩阵为第1步k=1:首先在A 的第一列中选取绝对值最大的元素1l a ,作为第一步的主元素:111211212222112[,]n n n l n nn n a a a a b a a a b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦a b然后交换A,b 的第1行与第l 行元素,再进行消元计算;设列主元素消去法已经完成第1步到第k -1步的按列选主元,交换两行,消元计算得到与原方程组等价的方程组 Akx=bk第k 步计算如下:对于k=1,2,…,n -11按列选主元:即确定t 使 2如果t ≠k,则交换A,b 第t 行与第k 行元素; 3消元计算消元乘数mik 满足:4回代求解2、 列主元三角分解法 对方程组的增广矩阵 经过k -1步分解后,可变成如下形式:111max 0l i i n a a ≤≤=≠(1)(1)(1)(1)(1)1112111(2)(2)(2)(2)22222()(()1)()()()()()1,1()(,)()[,][,] k k k k nk k nk n k k k k k kk kn k k k k n k k k n nn a a a a b a a a b a a b a b b a a a +++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A b A b ()()max 0k k tk ik k i na a ≤≤=≠,(1,,)ik ik ik kka a m i k n a ←=-=+, (,1,,), (1,,)ij ij ik kji i ik k a a m a i j k n b b m b i k n ←+=+⎧⎨←+=+⎩⎪⎪⎩⎪⎪⎨⎧--=-←←∑+=)1,,2,1(,)(1n n i a x a b x a b x ii n i j j ij i i nnn n [,]A A b =11121,11111222,122221,11,1,1,211,11,2121,112,112,1k k k k k k k j n k k j n k k k i i i k n n kk kj kn k ik ij in i nknjk k k j k n n nnk k n a a a b A a u u u u u u y l l l l l l ll l l l u u u u u y u u u u y a a b a a b l a -------------⎡→⎣⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦第k 步分解,为了避免用绝对值很小的数kku 作除数,引进量1111 (,1,,;1,2,,) ()/ (1,2,,;1,2,,)k kj kj km mj m k ik ik im mk kkm u a l u j k k n k n l a l u u i k k n k n -=-=⎧=-=+=⎪⎪⎨⎪=-=++=⎪⎩∑∑11(,1,,)k i ik im mk m s a l u i k k n -==-=+∑,于是有kk u =ks ;如果 ,则将矩阵的第t 行与第k 行元素互换,将i,j 位置的新元素仍记为jjl 或jja ,然后再做第k 步分解,这时列主元高斯消去法程序流程图max t ik i n s s ≤≤= ()/ 1,2,,)1 (1,2,,),kk k k t iki k ik u s s s l s s i k k n l i k k n ===++≤=++即交换前的,(且列主元高斯消去法Matlab主程序function x=gauss1A,b,c %列主元法高斯消去法解线性方程Ax=bif lengthA~=lengthb %判断输入的方程组是否有误disp'输入方程有误'return;enddisp'原方程为AX=b:' %显示方程组Abdisp'------------------------'n=lengthA;for k=1:n-1 %找列主元p,q=maxabsAk:n,k; %找出第k列中的最大值,其下标为p,qq=q+k-1; %q在Ak:n,k中的行号转换为在A中的行号if absp<cdisp'列元素太小,detA≈0';break;elseif q>ktemp1=Ak,:; %列主元所在行不是当前行,将当前行与列主Ak,:=Aq,:; 元所在行交换包括bAq,:=temp1;temp2=bk,:;bk,:=bq,:;bq,:=temp2;end%消元for i=k+1:nmi,k=Ai,k/Ak,k; %Ak,k将Ai,k消为0所乘系数Ai,k:n=Ai,k:n-mi,kAk,k:n; %第i行消元处理bi=bi-mi,kbk; %b消元处理endenddisp'消元后所得到的上三角阵是'A %显示消元后的系数矩阵bn=bn/An,n; %回代求解for i=n-1:-1:1bi=bi-sumAi,i+1:nbi+1:n/Ai,i;endclear x;disp'AX=b的解x是' x=b;调用函数解题列主元三角分解法程序流程图列主元三角分解法Matlab主程序①自己编的程序:function x=PLUA,b,eps %定义函数列主元三角分解法函数if lengthA~=lengthb %判断输入的方程组是否有误disp'输入方程有误'return;enddisp'原方程为AX=b:' %显示方程组Abdisp'------------------------'n=lengthA;A=A b; %将A与b合并,得到增广矩阵for r=1:nif r==1for i=1:nc d=maxabsA:,1; %选取最大列向量,并做行交换if c<=eps %最大值小于e,主元太小,程序结束break;elseendd=d+1-1;p=A1,:;A1,:=Ad,:;Ad,:=p;A1,i=A1,i;endA1,2:n=A1,2:n;A2:n,1=A2:n,1/A1,1; %求u1,ielseur,r=Ar,r-Ar,1:r-1A1:r-1,r; %按照方程求取ur,iif absur,r<=eps %如果ur,r小于e,则交换行p=Ar,:;Ar,:=Ar+1,:;Ar+1,:=p;elseendfor i=r:nAr,i=Ar,i-Ar,1:r-1A1:r-1,i; %根据公式求解,并把结果存在矩阵A中endfor i=r+1:nAi,r=Ai,r-Ai,1:r-1A1:r-1,r/Ar,r; %根据公式求解,并把结果存在矩阵A中endendendy1=A1,n+1;for i=2:nh=0;for k=1:i-1h=h+Ai,kyk;endyi=Ai,n+1-h; %根据公式求解yiendxn=yn/An,n;for i=n-1:-1:1h=0;for k=i+1:nh=h+Ai,kxk;endxi=yi-h/Ai,i; %根据公式求解xiendAdisp'AX=b的解x是'x=x'; %输出方程的解②可直接得到P,L,U并解出方程解的的程序查阅资料得子函数PLU1,其作用是将矩阵A分解成L乘以U的形式;PLU2为调用PLU1解题的程序,是自己编的Ⅰ.function l,u,p=PLU1A %定义子函数,其功能为列主元三角分解系数矩阵A m,n=sizeA; %判断系数矩阵是否为方阵if m~=nerror'矩阵不是方阵'returnendif detA==0 %判断系数矩阵能否被三角分解error'矩阵不能被三角分解'endu=A;p=eyem;l=eyem; %将系数矩阵三角分解,分别求出P,L,Ufor i=1:mfor j=i:mtj=uj,i;for k=1:i-1tj=tj-uj,kuk,i;endenda=i;b=absti;for j=i+1:mif b<abstjb=abstj;a=j;endendif a~=ifor j=1:mc=ui,j;ui,j=ua,j;ua,j=c;endfor j=1:mc=pi,j;pi,j=pa,j;pa,j=c;endc=ta;ta=ti;ti=c;endui,i=ti;for j=i+1:muj,i=tj/ti;endfor j=i+1:mfor k=1:i-1ui,j=ui,j-ui,kuk,j;endendendl=trilu,-1+eyem;u=triuu,0Ⅱ.function x=PLU2A,b %定义列主元三角分解法的函数l,u,p=PLU1A %调用PLU分解系数矩阵A m=lengthA; %由于A左乘p,故b也要左乘p v=b;for q=1:mbq=sumpq,1:mv1:m,1;endb1=b1 %求解方程Ly=b for i=2:1:mbi=bi-sumli,1:i-1b1:i-1;endbm=bm/um,m; %求解方程Ux=y for i=m-1:-1:1bi=bi-sumui,i+1:mbi+1:m/ui,i;endclear x;disp'AX=b的解x是' x=b;调用函数解题①②编程疑难这是第一次用matlab编程,对matlab的语句还不是非常熟悉,因此在编程过程中,出现了许多错误提示;并且此次编程的两种方法对矩阵的运算也比较复杂;问题主要集中在循环控制中,循环次数多了一次或者缺少了一次,导致数据错误,一些基本的编程语句在语法上也会由于生疏而产生许多问题,但是语句的错误由于系统会提示,比较容易进行修改,数据计算过程中的一些逻辑错误,比如循环变量的控制,这些系统不会提示错误,需要我们细心去发现错误,不断修正,调试;。

作业一 高斯消元法和列主元消元法

作业一 高斯消元法和列主元消元法

用高斯消元法和列主元消去法求解线性代数方程组(X*是方程组的精确解)1 高斯消去法1.1 基本思想及计算过程高斯(Gauss )消去法是解线性方程组最常用的方法之一,它的基本思想是通过逐步消元,把方程组化为系数矩阵为三角形矩阵的同解方程组,然后用回代法解此三角形方程组得原方程组的解。

为便于叙述,先以一个三阶线性方程组为例来说明高斯消去法的基本思想。

⎪⎩⎪⎨⎧=++II =++I =++III)(323034)(5253)(6432321321321x x x x x x x x x 把方程(I )乘(23-)后加到方程(II )上去,把方程(I )乘(24-)后加到方程(III )上去,即可消去方程(II )、(III )中的x 1,得同解方程组⎪⎩⎪⎨⎧=+-II -=-I =++III)(20223)(445.0)(64323232321x x x x x x x将方程(II )乘(5.03)后加于方程(III ),得同解方程组: ⎪⎩⎪⎨⎧-=-II -=-I =++III)(42)(445.0)(6432332321x x x x x x由回代公式(3.5)得x 3 = 2,x 2 = 8,x 1 = -13。

下面考察一般形式的线性方程组的解法,为叙述问题方便,将b i 写成a i , n +1,i = 1, 2,…,n 。

⎪⎪⎩⎪⎪⎨⎧=++++=++++=+++++++1,3322111,223232221211,11313212111n n n nn n n n n n n n n n a x a x a x a x a a x a x a x a x a a x a x a x a x a(1-1)如果a 11 ≠ 0,将第一个方程中x 1的系数化为1,得)1(1,1)1(12)1(121+=+++n n n a x a x a x其中)0(11)0()1(1aa aijj=, j = 1, …, n + 1(记ij ij a a =)0(,i = 1, 2, …, n ; j = 1, 2, …, n + 1)从其它n –1个方程中消x 1,使它变成如下形式⎪⎪⎩⎪⎪⎨⎧=++=++=++++++)1(1,)1(2)1(2)1(1,2)1(22)1(22)1(1,1)1(12)1(121n n n nn n n n n n n n a x a x a a x a x a a x a x a x(1-2)其中n i a m a aij i ij ij ,,2)1(1)1( =⋅-=,1,,3,211)1(11+==n j a a m i i由方程(1-1)到(1-2)的过程中,元素11a 起着重要的作用,特别地,把11a 称为主元素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1, k
2,L
, n)
bi(k`) bi(k ) mikbk(k )
回代过程
上三角形方程组 A(n) x b(n) 求解过程
xn
b(n) n
a(n) nn
b(i) i
n
,(i n 1, n 2,L ,1 )
a(i ij
)
x
j
xi
j i 1
a(i) ii
顺序高斯消去法的使用条件 使用条件之一
第3章 线性代数方程组的数值解法
3.1 高斯消去法 3.2 矩阵三角分解法 3.3 平方根法 3.4 向量和矩阵的范数 3.5 方程组的形态和误差分析 3.6 迭代法 3.7 迭代法的收敛性
n个未知量n个方程的线性代数方程组
矩阵形式 Ax=b,其中
或写成
n
aij x j bi
j 1
i 1, 2,L , n
引进记号
a(1) 11
A(k )
矩阵形式
a(1) 12
L
a(2) 22Βιβλιοθήκη LOLL LL
a(k) kk
L
LL
a(k) kn
L
a(1) 1n
a(2) 2n M
a(k) kn

b(k
)
b(1) 1
b(2) 2
M bk (k )
,(k 1, 2,L
, n)
L a(k)
nn
顺序高斯消去法消元过程: 依从左到右、自上而下的次序将主对角元下方的
元素化为零。 1 不作行交换。 2 用不等于零的数乘某行,加至另一行。
用高斯消去法解下列线性方程组
2x1 x2 x3 4
x1
3x2
2x3
6
x1 2x2 2x3 5
解 对 线 性 方 程 组 第 1 次 消 元 , a11 2 0 , 确 定 乘 数
12x3 y3
x1 1 / 2 x2 1 / 2 x3 3 / 2
下三角形方程组
7
7
2 3
2
4 5 6 10
顺代可求得
y1
1
2 y1 y2
7
3 y1 2 y2 y3 3
y1 1 y2 9 y3 18
上二对角方程组 回代求解,得
4 5
2
0 4
3
上三 角形方程组
4x1 5x2 6x3 10
2x2
3x3
3
7x3 7
回代求解,得
4 5
2
6 10
3
3
7 7
u11 x1 u12 x2 u1n xn y1
u22 x2 u2n xn y2
unn xn yn
2 x1 x2 x3 y1
3x2 5x3 y2
顺序高斯消去法的计算量
消元中各步需乘除法次数
第i 步
1 2
乘法次数 (n 1)2
(n 2)2
M n 1
合计
M
M
1
n (n 1)(2 n 1) 6
除法次数
n 1 n2
1
n (n 1) 2
3.1.2 列主元高斯消去法
为什么列选主:数值不稳定
当高斯消去法的主元
a(k) kk
0时
,
尽管“当
A
非奇异时,
例如 n 20 ,乘法次数为1021 。计算量很大!
两类数值解法: 直接解法:假定计算过程没有舍入误差的情况下,
经过有限步算术运算后能求得线性方程组精确解的 方法。经过有限步运算就能求得精确解的方法,但 实际计算中由于舍入误差的影响,这类方法也只能 求得近似解;例如:高斯消去法、三角分解法等。
迭代解法:构造适当的向量序列,用某种极限过 程去逐步逼近精确解。例如:雅可比迭代法、高斯赛德尔迭代法等。
a32 a22
1.5 2.5
0.6 ,有
2x1 x2 x3 4 0 2.5x2 1.5x3 4 (3) m32 (2) 0 0 0.6x3 0.6
回代
x3 1, x2 1, x1 1
系数行列式的计算:

消元过程
主元为2,2.5,0.6 det A=2×2.5×0.6=3
det A≠0,方程组有唯一解”,也不能实现高斯消去法求
解。 例
A
0 1
1 1 , A 非奇异,det A≠0,方程组有
唯一解,但
3
7 7
下二对角方程组 顺代可求得
7 4 6 0 2
7
0
4
3 3
3.1 高斯消去法
3.1.1 顺序高斯消去法
(按方程和未知量的自然顺序进行) 基本思想:用逐次消去未知数的方法把原方 程组化为上三角形方程组进行求解 。求解 分成 两步: 1.消元过程:用初等行变换将原方程组的系 数矩阵化为上三角形矩阵(简称上三角阵)。 2.回代过程:对上三角形方程组的最后一个 方程求解,将求得的解逐步往上一个方程代入求 解。
M
b(k ) n
A(k ) x b(k ) , (k 1, 2,L , n)
消元过程

主元
a (1) 11
0,
a(2) 22
0,L
,
a(n) nn
0
消元过程
mik ai(jk 1)
a(k) ik
a(k) kk
(k
1,
a(k) ij
mik
2,L a(k)
kj
, n 1) (i,
j
k
m21
a21 a11
1 2
0.5 , m31
a31 a11
1 2
0.5 ,则有
2x1 x2 x3 4 (2) m21 (1) 0x1 2.5x2 1.5x3 4 ,第 2 次消元,a22 2.5 0 , (3) m31 (1) 0x1 1.5x2 1.5x3 3
确定乘数 m32
若矩阵A 非奇异,方程组有惟一解,可用克莱姆(Cra mer )
法则求解
xk
Dk D
,( k
1, 2,L
,n)
其中 D det A , Dk 是用向量b 代替A 的第k 列后所得矩阵的行
列式。
克莱姆法则解线性方程组的计算量(乘法次数)
Sn (n 1) n! (n 1) (n 1) !(n 1)
定理 线性方程组系数矩阵A的顺序主子 矩阵Ak (k=1,2,…,n)非奇异 ,则顺序高斯消去 法能实现方程组的求解。
即方程组能用顺序高斯消去法求解的充 要条件是系数行列式的顺序主子式非零。
高斯消去法能按顺序进行到底的充要条件是
在原方程组的系数矩阵中如何反映出这个条件呢? A的k阶顺序主子矩阵Ak的行列式
使用条件之二
n阶矩阵A为严格对角占优矩阵是指其每个主对 角元的绝对值大于同一行其他元素绝对值之和,即
一阶严格对角占优矩阵指一个非零数。
18 2 4 3
A
3
22
6
3
2 2 34 2
3
4
5
20
引理:严格对角占优矩阵非奇异。
定理 方程组系数矩阵A为严格对角占优矩阵则可实现用 顺序高斯消去法求解。
相关文档
最新文档