MATLAB之小波包变换
MATLAB小波变换指令及其功能介绍(超级有用)解读

MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。
2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换-----------------------------------------------------------(1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
Matlab中的小波变换技术详解

Matlab中的小波变换技术详解1. 引言小波变换是一种数学工具,可将任意信号分解成不同尺度和频率成分。
它在信号处理、图像压缩等领域得到广泛应用。
Matlab作为一种功能强大的数值计算和数据可视化软件,提供了丰富的小波变换函数和工具箱。
本文将详细介绍Matlab中小波变换的原理、应用和实现方法。
2. 小波变换原理小波变换利用小波函数的一组基来表示信号。
小波函数是一种局部振荡函数,具有时域和频域局部化的特性。
通过将信号与小波函数进行内积运算,可以得到不同尺度和频率的小波系数,从而揭示信号的局部特征。
小波变换具有多分辨率分析的优势,能够在时间和频率上同时提供较好的分析结果。
3. 小波变换函数在Matlab中,可以使用wavelet工具箱提供的函数来进行小波变换。
最常用的函数是cwt,用于连续小波变换。
通过设置小波函数、尺度范围和采样频率等参数,可以得到连续小波系数矩阵。
另外,还有其他函数如dwt、idwt用于离散小波变换和反离散小波变换。
4. 小波函数小波变换的关键在于选择合适的小波函数。
常用的小波函数有多种,如哈尔、Daubechies、Symlets等。
这些小波函数在时域和频域上都有不同的特性,适用于不同类型的信号。
Matlab提供了丰富的小波函数库,可以根据需要选择合适的小波基函数。
5. 小波分析与信号处理小波变换在信号处理中有广泛的应用。
它可以用于信号去噪、特征提取、边缘检测等方面。
通过对小波系数进行阈值去噪,可以有效地去除信号中的噪声。
小波变换还能够提取信号的局部特征,捕捉信号的边缘信息。
此外,小波变换还可以用于图像压缩、图像分割等领域。
6. Matlab中的小波分析实例为了更好地理解Matlab中小波变换的应用,下面将给出一个实例。
假设我们有一个包含某种周期性成分和噪声的信号,我们希望通过小波变换将其分解成不同尺度的成分,并去除噪声。
首先,我们使用Matlab中的cwt函数对信号进行连续小波变换,并得到小波系数矩阵。
matlab小波变换信号分离

MATLAB小波变换(Wavelet Transform)是一种常用的信号处理工具,可用于信号的时频分析,特征提取和信号分离等应用。
本文将对MATLAB小波变换进行详细介绍,并利用其进行信号分离的实际应用。
1. 小波变换原理MATLAB小波变换是一种多尺度分析方法,通过将信号分解为不同频率和尺度的小波基函数,能够揭示信号的时频特性。
其原理是利用小波基函数对信号进行分解和重构,从而实现对信号的时频分析和特征提取。
2. MATLAB小波变换工具MATLAB提供了丰富的小波分析工具包,包括小波变换函数、小波滤波器设计函数等,能够方便地进行信号的小波分解和重构。
利用MATLAB小波变换工具,可以对信号进行多尺度分析,揭示信号中的细节和特征信息。
3. 信号分离应用利用MATLAB小波变换,可以实现对混合信号的分离和去噪。
在实际应用中,经常遇到多个信号叠加在一起的情况,通过小波变换可以将这些混合信号分解为各自的成分,从而实现信号的分离和分析。
4. 实例分析接下来,我们通过一个实际的示例来演示MATLAB小波变换在信号分离中的应用。
假设我们有两个信号叠加在一起,分别是正弦信号和方波信号。
我们首先使用MATLAB将这两个信号混合在一起,然后利用小波变换对其进行分析和分离。
我们使用MATLAB生成正弦信号和方波信号,并将它们叠加在一起。
利用小波变换将这两个信号进行分解,得到它们各自的小波系数。
我们根据小波系数重构出原始信号的各个成分,实现信号的分离和还原。
通过实例分析,我们可以看到MATLAB小波变换在信号分离中的有效性和实用性,能够帮助我们从混合信号中提取出感兴趣的成分,实现对信号的分析和处理。
5. 总结MATLAB小波变换是一种强大的信号处理工具,可以用于信号的时频分析、特征提取和信号分离等应用。
通过对小波变换原理和工具的详细介绍,以及实际的应用实例分析,我们深入理解了MATLAB小波变换在信号分离中的应用和优势。
MATLAB小波变换指令及其功能介绍(超级有用)解读

MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname'对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。
2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换----------------------------------------------------------- (1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
MATLAB小波变换指令及其功能介绍(超级有用).

MATLAB 小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1 dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname'[cA,cD]=dwt(X,Lo_D,Hi_D别可以实现一维、二维和 N 维 DFT说明:[cA,cD]=dwt(X,'wname' 使用指定的小波基函数 'wname' 对信号X 进行分解,cA 、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2 idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname'X=idwt(cA,cD,Lo_R,Hi_RX=idwt(cA,cD,'wname',L函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L说明:X=idwt(cA,cD,'wname' 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L 和 X=idwt(cA,cD,Lo_R,Hi_R,L 指定返回信号 X 中心附近的 L 个点。
2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能--------------------------------------------------- dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换 -----------------------------------------------------------(1 wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOLY=wcodemat(X,NB,OPTY=wcodemat(X,NBY=wcodemat(X说明:Y=wcodemat(X,NB,OPT,ABSOL 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB ,缺省值 NB=16; OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分 ABSOL 是函数的控制参数(缺省值为 '1'),即: ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X1. 离散傅立叶变换的 Matlab实现(2 dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname'[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D说明:[cA,cH,cV,cD]=dwt2(X,'wname'使用指定的小波基函数 'wname' 对二维信号 X 进行二维离散小波变幻;cA ,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D 使用指定的分解低通和高通滤波器 Lo_D 和Hi_D 分解信号 X 。
MATLAB小波变换指令及其功能介绍(超级有用)

MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname'对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。
2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换----------------------------------------------------------- (1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
MATLAB之小波包变换

Fourier变换:使用的是一种全局的变换,无法表述非平稳信号最根 本和最关键的时—频局域性质。 加窗Fourier变换:把时域和频域分解为大小相等的小窗口,对信号 的任何部分都采用相同的时间和频率分辨率,不能在时间和频率两个 空间同时以任意精度逼近被测信号。 小波变换:是一种窗口大小(即窗口面积)固定但形状可以改变,时 间窗和频率窗都可以改变的时—频局部化分析方法,在高频段频率分 辨率较差,而在低频段时间分辨率较差。 小波包变换:将频带部分多层次划分,对多分辨率分析没有细分的高 频部分进一步分解,并能够根据被分析信号的特征,自适应地选择相 应的频带,使之与信号频谱相匹配,从而提高了时频分辨率。
小波包的定义
设 ( x)和 ( x)分别是尺度函数和小波 函数 令 0 ( x)= ( x)
1 ( x)= ( x)
k l
2l ( x)
k
h (2 x k )
k
2l 1 ( x)
g (2 x k )
k l
定义的函数 n }称为关于尺度函数 ( x)的小波包。 {
小 波 去 噪
小 波 包 去 噪
Fourier变换
1、处理稳定 和渐变信号。 2、实时信号 处理。
加窗Fourier变换
1、处理渐变信号。 2、实时信号处理。
小波变换
1、处理突 变信号或 具有孤立 奇异性的 函数。 2、自适应 信号处理。
U
5 6 0 0
3 1
U U U U U U U U
小波变换matlab

小波变换是一种在信号和图像处理中广泛应用的工具。
在Matlab 中,你可以使用内置的函数来进行小波变换。
以下是一个基本的示例,显示了如何在Matlab中使用小波变换:
```matlab
首先,我们需要导入图像或者信号
I = imread('lena.bmp'); 导入图像
转换为灰度图像
I = rgb2gray(I);
使用'sym4'小波基进行小波分解
[C, S] = wavedec2(I, 1, 'sym4');
显示小波分解的结果
figure, wave2gray(C, S, -6);
```
在这个例子中,我们首先导入了图像,然后将其转换为灰度图像。
接着,我们使用`wavedec2`函数和`'sym4'`小波基进行小波分解。
最后,我们使用`wave2gray`函数显示小波分解的结果。
这只是使用Matlab进行小波变换的一个基本示例。
实际上,你
可以根据你的需求来选择不同的小波基(例如'haar'、'Daubechies'、'Symlet'、'Coiflet'等)以及进行不同级别的小波分解。
同时,Matlab也提供了其他的小波变换函数,例如`wavelet`和`wfilters`等,可以满足不同的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
U
5 6 0 0
3 1
U U U U U U U U
0 0
1
2
7 0
U U U
0 0 0 1 0 2
0 3
U U U U U U U U V U
0 0 0 0 0 0 0
0
1
2
3
4
5
6
7 0
0
3
3
U U
1 1
1 2
U
3 4 0 0
2 1
U
5 6 0 0
3 1
U
7 0
1 1
U U U
0 4 5 0
3 1
U
10(20)
0 3
U
1 2
3(11)
1 2
3
7(12)
4
5
11(13)
U
0 0
U U
0
1
2 0
U
(4)
3 0
(3)
如果原信号的长度为 N ,则最佳基算法的计算复杂度为 O N log N
小波包的压缩和重构方法
由于小波包对信号进行了更细致的频率划分,将不同的频率分量分解到 相应的频段上,这些分量具有不同的频率特性,其小波包分解系数间的关系 也不一样,对每个节点上的分解系数分别设定阈值,将更有利于保留有用信 息,舍弃噪声点,因此比直接小波分解进行压缩和采用统一的阈值进行压缩 的效果更好。
代价函数的基本要求: 1.单调性。 2.可加性(次可加性)
“最优基”的搜索方法:
在一般情况下,具有最小代价函数值的序列不易计算出来。所幸的是, 在实际应用中我们通常考虑的是 L2(R)的一个子空间的小波包分解,这种 分解可以用一个小波包二叉树表示,我们可以采取自底向顶的快速搜索法 发现最佳小波包基。
科学技术的迅速发展使人类进入了信息时代。在信息社会中人们在 各种领域中都会涉及各种信号(语音、音乐、医学信号、图像……)的 分析、加工、识别、传输和压缩、存储等问题。
Fourier变换:使用的是一种全局的变换,无法表述非平稳信号最根 本和最关键的时—频局域性质。 加窗Fourier变换:把时域和频域分解为大小相等的小窗口,对信号 的任何部分都采用相同的时间和频率分辨率,不能在时间和频率两个 空间同时以任意精度逼近被测信号。 小波变换:是一种窗口大小(即窗口面积)固定但形状可以改变,时 间窗和频率窗都可以改变的时—频局部化分析方法,在高频段频率分 辨率较差,而在低频段时间分辨率较差。 小波包变换:将频带部分多层次划分,对多分辨率分析没有细分的高 频部分进一步分解,并能够根据被分析信号的特征,自适应地选择相 应的频带,使之与信号频谱相匹配,从而提高了时频分辨率。
2
kZ
常用的一些信息代价函数: (1)幅值大于某阈值的系数个数 (2) l p 范数的集中度(concentration) (3)对数熵
M u log uk ,约定 log 0 0
2 kZ
(4)信息熵
H u pk log pk
kZ
2 2
pk
u k
g
h
g
h
g
h
g
1
2
3
4
5
6
7
8
dss sds dds
ssd dsd
sdd ddd
50
32(50)
22
14
6 7 8
20
22
10(20)
11
12
2
3
13
14
6 7 8
3(11)
1 2
3
7(12)
4
5
11(13)
1
4
5
(1)
32(50)
22
14
6 7 8
(2)
M1
M2
选择准则:
M3
若M 1 M 2 M 3 , 则选 M 2 M 3; + 否则,选 M 1。
例:
x s
0
x s
h
1
x s
2
x s
3
x d
4
h
0 1 2 3 0
g
x
5
x d
6
x d
7
50
g
d
h
1
2
3
20
22
g
dd 0
dd 1
11
ss0
ss1
ds 0
ds1
sd 0
sd 1
12
13
14
h
sss
小 波 去 噪
小 波 包 去 噪
Fourier变换
1、处理稳定 和渐变信号。 2、实时信号 处理。
加窗Fourier变换
1、处理渐变信号。 2、实时信号处理。
小波变换
1、处理突 变信号或 具有孤立 奇异性的 函数。 2、自适应 信号处理。
小波包的定义
设 ( x)和 ( x)分别是尺度函数和小波 函数 令 0 ( x)= ( x)
1 ( x)= ( x)
k l
2l ( x)
k
h (2 x k )
k
2l 1 ( x)
g (2 x k )
k l
定义的函数 n }称为关于尺度函数 ( x)的小波包。 {
小波与小波包消噪方法比较
原 始 信 号 小波分解与小波包分解都能去除 振动信号中的噪声,而小波包去 噪明显优于小波去噪的结果: 1、小波包去噪时对信号在低频 段和高频段同时进行正交分解, 能保留更多的高频分量在逼近信 号中,无冗余、无泄漏、信息量 更完整; 2、小波包分析去噪时可以得到 任意频段的频率成分,比小波去 噪具有更为精确的局部分析能力, 大大提高了信号的信噪比,为爆 破振动信号的研究获得更加准确 的信息。
U U U
0 0 0 1 0 2
0 3
V U
3
0 3
U U
1 1
1 2
U
U
3 1
1 2
U
3 4 0 0
2 1
U
7 0
1 1
小波正交基:
0 3
U U U U U U U U
0 0 0 01256U
0 0
U
1 0
U U U
0 0 0 1 0 2
0 3
V U
3
U U
1 1
1 2
U
3 4 0 0
2 1
2 1
U U U U U U U U
0 0 0 0
1
2
5
6
7 0
U U U U
0 0 0
4
5
6
7 0
最佳小波包基的选取
信息代价函数 把信号 f t 在一个正交小波包基下展开,使得它与一个小波包系数 序列 u uk 对应, 我们在该序列上定义一个信息代价函数 M,它满足
如下两个条件:
一个逼近空间的小波分解及小波包分解
0 VL U L
L3
U
0 3
V
V
V
0
1
3
2
W2
U U
0 0 0 1
0 2
U U
1 1
1 2
W1
0
U
3 4 0 0
2 1
U
5 6 0 0
3 1
V W
U U U U U U U U
0 0
1
2
7 0
小波分解
小波包分解
小波变换的多分辨分析仅将光滑分量(低频信号)逐级进行分解, 而细节分量(高频信号)却没有进行逐级分解。随着分解级数增加, 相应的小波基函数的频域分辨率变好,而时域分辨率变差。 小波包变换在多分辩分解的基础上将各尺度下的细节分量作进一步 分解,从而实现对随尺度变小而变宽的频率窗口再划分,提高信号 高频部分频率的分辨率,使故障特征提取能够在更加细化的频带内 进行 。
U U U U U U U U
0 0
1
2
U U
0
0
1 0
U U U
0 0 0 1 0 2
0 3
V U
3
0 3
在上图的二分树 上取一组子空间 集合,如果其直 和恰能将 V3空间 覆盖,相互间又 不重叠,则这组 空间集合的正交 规范基便组成一 个小波包正交基。
U U
1 1
1 2
U
U
3 1
0 2
U
3 4 0 0
kZ
2 2
u k
0log 0 0
M u uk log uk ,log 0 0
kZ
常用的一些信息代价函数: 1、数列中大于给定门限的系数的个数。即预先给定一门限值 并计数数列中绝对值大于 的元素的个数。
0
,
2、范数。
M ({xk }) {xk } 通常选, xk }= x kp ) { (
以2阶小波包分解为例,将信号分解后,对每个节点系数分别设 定不同的阈值后得到保留的有用系数,最后再重构回原信号。小波包 的分解和重构利用了改进的快速算法,大大减少了计算量。
信号小波包分析的基本实现步骤如下:
1、选择适当的小波滤波器,对给定的采样信号进行小波包变换, 获得树形结构的小波包系数。 2、选择信息代价函数,利用最佳小波包基选取算法选取最佳基。 3、对最佳正交小波包基对应的小波包系数进行处理。 4、对处理后的小波包系数采用小波包重构算法得到重构信号。
(1)可加性条件 M uk M uk , M 0 0
(2)代价函数M的取值应该反映系数的集中程度。 最佳小波包基 对于一个给定信息代价函数M,小波包基 B称为信号f(t)相对于该代价函数 的最佳基,如果在 L ( R) 的所有小波包基中,f(t)在小波包基 B下对应的 小波包系数序列具有最小的信息代价值。