MATLAB之小波包变换

合集下载

MATLAB小波变换指令及其功能介绍(超级有用)解读

MATLAB小波变换指令及其功能介绍(超级有用)解读

MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。

(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。

'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。

2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换-----------------------------------------------------------(1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。

Matlab中的小波变换技术详解

Matlab中的小波变换技术详解

Matlab中的小波变换技术详解1. 引言小波变换是一种数学工具,可将任意信号分解成不同尺度和频率成分。

它在信号处理、图像压缩等领域得到广泛应用。

Matlab作为一种功能强大的数值计算和数据可视化软件,提供了丰富的小波变换函数和工具箱。

本文将详细介绍Matlab中小波变换的原理、应用和实现方法。

2. 小波变换原理小波变换利用小波函数的一组基来表示信号。

小波函数是一种局部振荡函数,具有时域和频域局部化的特性。

通过将信号与小波函数进行内积运算,可以得到不同尺度和频率的小波系数,从而揭示信号的局部特征。

小波变换具有多分辨率分析的优势,能够在时间和频率上同时提供较好的分析结果。

3. 小波变换函数在Matlab中,可以使用wavelet工具箱提供的函数来进行小波变换。

最常用的函数是cwt,用于连续小波变换。

通过设置小波函数、尺度范围和采样频率等参数,可以得到连续小波系数矩阵。

另外,还有其他函数如dwt、idwt用于离散小波变换和反离散小波变换。

4. 小波函数小波变换的关键在于选择合适的小波函数。

常用的小波函数有多种,如哈尔、Daubechies、Symlets等。

这些小波函数在时域和频域上都有不同的特性,适用于不同类型的信号。

Matlab提供了丰富的小波函数库,可以根据需要选择合适的小波基函数。

5. 小波分析与信号处理小波变换在信号处理中有广泛的应用。

它可以用于信号去噪、特征提取、边缘检测等方面。

通过对小波系数进行阈值去噪,可以有效地去除信号中的噪声。

小波变换还能够提取信号的局部特征,捕捉信号的边缘信息。

此外,小波变换还可以用于图像压缩、图像分割等领域。

6. Matlab中的小波分析实例为了更好地理解Matlab中小波变换的应用,下面将给出一个实例。

假设我们有一个包含某种周期性成分和噪声的信号,我们希望通过小波变换将其分解成不同尺度的成分,并去除噪声。

首先,我们使用Matlab中的cwt函数对信号进行连续小波变换,并得到小波系数矩阵。

matlab小波变换信号分离

matlab小波变换信号分离

MATLAB小波变换(Wavelet Transform)是一种常用的信号处理工具,可用于信号的时频分析,特征提取和信号分离等应用。

本文将对MATLAB小波变换进行详细介绍,并利用其进行信号分离的实际应用。

1. 小波变换原理MATLAB小波变换是一种多尺度分析方法,通过将信号分解为不同频率和尺度的小波基函数,能够揭示信号的时频特性。

其原理是利用小波基函数对信号进行分解和重构,从而实现对信号的时频分析和特征提取。

2. MATLAB小波变换工具MATLAB提供了丰富的小波分析工具包,包括小波变换函数、小波滤波器设计函数等,能够方便地进行信号的小波分解和重构。

利用MATLAB小波变换工具,可以对信号进行多尺度分析,揭示信号中的细节和特征信息。

3. 信号分离应用利用MATLAB小波变换,可以实现对混合信号的分离和去噪。

在实际应用中,经常遇到多个信号叠加在一起的情况,通过小波变换可以将这些混合信号分解为各自的成分,从而实现信号的分离和分析。

4. 实例分析接下来,我们通过一个实际的示例来演示MATLAB小波变换在信号分离中的应用。

假设我们有两个信号叠加在一起,分别是正弦信号和方波信号。

我们首先使用MATLAB将这两个信号混合在一起,然后利用小波变换对其进行分析和分离。

我们使用MATLAB生成正弦信号和方波信号,并将它们叠加在一起。

利用小波变换将这两个信号进行分解,得到它们各自的小波系数。

我们根据小波系数重构出原始信号的各个成分,实现信号的分离和还原。

通过实例分析,我们可以看到MATLAB小波变换在信号分离中的有效性和实用性,能够帮助我们从混合信号中提取出感兴趣的成分,实现对信号的分析和处理。

5. 总结MATLAB小波变换是一种强大的信号处理工具,可以用于信号的时频分析、特征提取和信号分离等应用。

通过对小波变换原理和工具的详细介绍,以及实际的应用实例分析,我们深入理解了MATLAB小波变换在信号分离中的应用和优势。

MATLAB小波变换指令及其功能介绍(超级有用)解读

MATLAB小波变换指令及其功能介绍(超级有用)解读

MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname'对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。

(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。

'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。

2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换----------------------------------------------------------- (1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。

MATLAB小波变换指令及其功能介绍(超级有用).

MATLAB小波变换指令及其功能介绍(超级有用).

MATLAB 小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1 dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname'[cA,cD]=dwt(X,Lo_D,Hi_D别可以实现一维、二维和 N 维 DFT说明:[cA,cD]=dwt(X,'wname' 使用指定的小波基函数 'wname' 对信号X 进行分解,cA 、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。

(2 idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname'X=idwt(cA,cD,Lo_R,Hi_RX=idwt(cA,cD,'wname',L函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L说明:X=idwt(cA,cD,'wname' 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。

'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L 和 X=idwt(cA,cD,Lo_R,Hi_R,L 指定返回信号 X 中心附近的 L 个点。

2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能--------------------------------------------------- dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换 -----------------------------------------------------------(1 wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOLY=wcodemat(X,NB,OPTY=wcodemat(X,NBY=wcodemat(X说明:Y=wcodemat(X,NB,OPT,ABSOL 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB ,缺省值 NB=16; OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分 ABSOL 是函数的控制参数(缺省值为 '1'),即: ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X1. 离散傅立叶变换的 Matlab实现(2 dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname'[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D说明:[cA,cH,cV,cD]=dwt2(X,'wname'使用指定的小波基函数 'wname' 对二维信号 X 进行二维离散小波变幻;cA ,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D 使用指定的分解低通和高通滤波器 Lo_D 和Hi_D 分解信号 X 。

MATLAB小波变换指令及其功能介绍(超级有用)

MATLAB小波变换指令及其功能介绍(超级有用)

MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname'对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。

(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。

'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。

2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换----------------------------------------------------------- (1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。

MATLAB之小波包变换

MATLAB之小波包变换
科学技术的迅速发展使人类进入了信息时代。在信息社会中人们在 各种领域中都会涉及各种信号(语音、音乐、医学信号、图像……)的 分析、加工、识别、传输和压缩、存储等问题。
Fourier变换:使用的是一种全局的变换,无法表述非平稳信号最根 本和最关键的时—频局域性质。 加窗Fourier变换:把时域和频域分解为大小相等的小窗口,对信号 的任何部分都采用相同的时间和频率分辨率,不能在时间和频率两个 空间同时以任意精度逼近被测信号。 小波变换:是一种窗口大小(即窗口面积)固定但形状可以改变,时 间窗和频率窗都可以改变的时—频局部化分析方法,在高频段频率分 辨率较差,而在低频段时间分辨率较差。 小波包变换:将频带部分多层次划分,对多分辨率分析没有细分的高 频部分进一步分解,并能够根据被分析信号的特征,自适应地选择相 应的频带,使之与信号频谱相匹配,从而提高了时频分辨率。
小波包的定义
设 ( x)和 ( x)分别是尺度函数和小波 函数 令 0 ( x)= ( x)
1 ( x)= ( x)
k l
2l ( x)
k
h (2 x k )
k

2l 1 ( x)
g (2 x k )
k l

定义的函数 n }称为关于尺度函数 ( x)的小波包。 {
小 波 去 噪
小 波 包 去 噪
Fourier变换
1、处理稳定 和渐变信号。 2、实时信号 处理。
加窗Fourier变换
1、处理渐变信号。 2、实时信号处理。
小波变换
1、处理突 变信号或 具有孤立 奇异性的 函数。 2、自适应 信号处理。
U
5 6 0 0
3 1
U U U U U U U U

小波变换matlab

小波变换matlab

小波变换是一种在信号和图像处理中广泛应用的工具。

在Matlab 中,你可以使用内置的函数来进行小波变换。

以下是一个基本的示例,显示了如何在Matlab中使用小波变换:
```matlab
首先,我们需要导入图像或者信号
I = imread('lena.bmp'); 导入图像
转换为灰度图像
I = rgb2gray(I);
使用'sym4'小波基进行小波分解
[C, S] = wavedec2(I, 1, 'sym4');
显示小波分解的结果
figure, wave2gray(C, S, -6);
```
在这个例子中,我们首先导入了图像,然后将其转换为灰度图像。

接着,我们使用`wavedec2`函数和`'sym4'`小波基进行小波分解。

最后,我们使用`wave2gray`函数显示小波分解的结果。

这只是使用Matlab进行小波变换的一个基本示例。

实际上,你
可以根据你的需求来选择不同的小波基(例如'haar'、'Daubechies'、'Symlet'、'Coiflet'等)以及进行不同级别的小波分解。

同时,Matlab也提供了其他的小波变换函数,例如`wavelet`和`wfilters`等,可以满足不同的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

U
5 6 0 0
3 1
U U U U U U U U
0 0
1
2
7 0
U U U
0 0 0 1 0 2
0 3
U U U U U U U U V U
0 0 0 0 0 0 0
0
1
2
3
4
5
6
7 0
0
3
3
U U
1 1
1 2
U
3 4 0 0
2 1
U
5 6 0 0
3 1
U
7 0
1 1
U U U
0 4 5 0
3 1
U
10(20)
0 3
U
1 2
3(11)
1 2
3
7(12)
4
5
11(13)
U
0 0
U U
0
1
2 0
U
(4)
3 0
(3)
如果原信号的长度为 N ,则最佳基算法的计算复杂度为 O N log N
小波包的压缩和重构方法
由于小波包对信号进行了更细致的频率划分,将不同的频率分量分解到 相应的频段上,这些分量具有不同的频率特性,其小波包分解系数间的关系 也不一样,对每个节点上的分解系数分别设定阈值,将更有利于保留有用信 息,舍弃噪声点,因此比直接小波分解进行压缩和采用统一的阈值进行压缩 的效果更好。
代价函数的基本要求: 1.单调性。 2.可加性(次可加性)
“最优基”的搜索方法:
在一般情况下,具有最小代价函数值的序列不易计算出来。所幸的是, 在实际应用中我们通常考虑的是 L2(R)的一个子空间的小波包分解,这种 分解可以用一个小波包二叉树表示,我们可以采取自底向顶的快速搜索法 发现最佳小波包基。
科学技术的迅速发展使人类进入了信息时代。在信息社会中人们在 各种领域中都会涉及各种信号(语音、音乐、医学信号、图像……)的 分析、加工、识别、传输和压缩、存储等问题。
Fourier变换:使用的是一种全局的变换,无法表述非平稳信号最根 本和最关键的时—频局域性质。 加窗Fourier变换:把时域和频域分解为大小相等的小窗口,对信号 的任何部分都采用相同的时间和频率分辨率,不能在时间和频率两个 空间同时以任意精度逼近被测信号。 小波变换:是一种窗口大小(即窗口面积)固定但形状可以改变,时 间窗和频率窗都可以改变的时—频局部化分析方法,在高频段频率分 辨率较差,而在低频段时间分辨率较差。 小波包变换:将频带部分多层次划分,对多分辨率分析没有细分的高 频部分进一步分解,并能够根据被分析信号的特征,自适应地选择相 应的频带,使之与信号频谱相匹配,从而提高了时频分辨率。
2
kZ
常用的一些信息代价函数: (1)幅值大于某阈值的系数个数 (2) l p 范数的集中度(concentration) (3)对数熵
M u log uk ,约定 log 0 0
2 kZ
(4)信息熵
H u pk log pk
kZ
2 2
pk
u k
g
h
g
h
g
h
g
1
2
3
4
5
6
7
8
dss sds dds
ssd dsd
sdd ddd
50
32(50)
22
14
6 7 8
20
22
10(20)
11
12
2
3
13
14
6 7 8
3(11)
1 2
3
7(12)
4
5
11(13)
1
4
5
(1)
32(50)
22
14
6 7 8
(2)
M1
M2
选择准则:
M3
若M 1 M 2 M 3 , 则选 M 2 M 3; + 否则,选 M 1。
例:
x s
0
x s
h
1
x s
2
x s
3
x d
4
h
0 1 2 3 0
g
x
5
x d
6
x d
7
50
g
d
h
1
2
3
20
22
g
dd 0
dd 1
11
ss0
ss1
ds 0
ds1
sd 0
sd 1
12
13
14
h
sss
小 波 去 噪
小 波 包 去 噪
Fourier变换
1、处理稳定 和渐变信号。 2、实时信号 处理。
加窗Fourier变换
1、处理渐变信号。 2、实时信号处理。
小波变换
1、处理突 变信号或 具有孤立 奇异性的 函数。 2、自适应 信号处理。
小波包的定义
设 ( x)和 ( x)分别是尺度函数和小波 函数 令 0 ( x)= ( x)
1 ( x)= ( x)
k l
2l ( x)
k
h (2 x k )
k

2l 1 ( x)
g (2 x k )
k l

定义的函数 n }称为关于尺度函数 ( x)的小波包。 {
小波与小波包消噪方法比较
原 始 信 号 小波分解与小波包分解都能去除 振动信号中的噪声,而小波包去 噪明显优于小波去噪的结果: 1、小波包去噪时对信号在低频 段和高频段同时进行正交分解, 能保留更多的高频分量在逼近信 号中,无冗余、无泄漏、信息量 更完整; 2、小波包分析去噪时可以得到 任意频段的频率成分,比小波去 噪具有更为精确的局部分析能力, 大大提高了信号的信噪比,为爆 破振动信号的研究获得更加准确 的信息。
U U U
0 0 0 1 0 2
0 3
V U
3
0 3
U U
1 1
1 2
U
U
3 1
1 2
U
3 4 0 0
2 1
U
7 0
1 1
小波正交基:
0 3
U U U U U U U U
0 0 0 01256U
0 0
U
1 0
U U U
0 0 0 1 0 2
0 3
V U
3
U U
1 1
1 2
U
3 4 0 0
2 1
2 1
U U U U U U U U
0 0 0 0
1
2
5
6
7 0
U U U U
0 0 0
4
5
6
7 0
最佳小波包基的选取
信息代价函数 把信号 f t 在一个正交小波包基下展开,使得它与一个小波包系数 序列 u uk 对应, 我们在该序列上定义一个信息代价函数 M,它满足
如下两个条件:
一个逼近空间的小波分解及小波包分解
0 VL U L
L3
U
0 3
V
V
V
0
1
3
2
W2
U U
0 0 0 1
0 2
U U
1 1
1 2
W1
0
U
3 4 0 0
2 1
U
5 6 0 0
3 1
V W
U U U U U U U U
0 0
1
2
7 0
小波分解
小波包分解
小波变换的多分辨分析仅将光滑分量(低频信号)逐级进行分解, 而细节分量(高频信号)却没有进行逐级分解。随着分解级数增加, 相应的小波基函数的频域分辨率变好,而时域分辨率变差。 小波包变换在多分辩分解的基础上将各尺度下的细节分量作进一步 分解,从而实现对随尺度变小而变宽的频率窗口再划分,提高信号 高频部分频率的分辨率,使故障特征提取能够在更加细化的频带内 进行 。
U U U U U U U U
0 0
1
2
U U
0
0
1 0
U U U
0 0 0 1 0 2
0 3
V U
3
0 3
在上图的二分树 上取一组子空间 集合,如果其直 和恰能将 V3空间 覆盖,相互间又 不重叠,则这组 空间集合的正交 规范基便组成一 个小波包正交基。
U U
1 1
1 2
U
U
3 1
0 2
U
3 4 0 0
kZ
2 2
u k
0log 0 0
M u uk log uk ,log 0 0
kZ
常用的一些信息代价函数: 1、数列中大于给定门限的系数的个数。即预先给定一门限值 并计数数列中绝对值大于 的元素的个数。

0

2、范数。
M ({xk }) {xk } 通常选, xk }= x kp ) { (
以2阶小波包分解为例,将信号分解后,对每个节点系数分别设 定不同的阈值后得到保留的有用系数,最后再重构回原信号。小波包 的分解和重构利用了改进的快速算法,大大减少了计算量。
信号小波包分析的基本实现步骤如下:
1、选择适当的小波滤波器,对给定的采样信号进行小波包变换, 获得树形结构的小波包系数。 2、选择信息代价函数,利用最佳小波包基选取算法选取最佳基。 3、对最佳正交小波包基对应的小波包系数进行处理。 4、对处理后的小波包系数采用小波包重构算法得到重构信号。
(1)可加性条件 M uk M uk , M 0 0
(2)代价函数M的取值应该反映系数的集中程度。 最佳小波包基 对于一个给定信息代价函数M,小波包基 B称为信号f(t)相对于该代价函数 的最佳基,如果在 L ( R) 的所有小波包基中,f(t)在小波包基 B下对应的 小波包系数序列具有最小的信息代价值。
相关文档
最新文档