混沌系统理论 ppt课件
混沌动力学PPT课件

为了深入研究这种现象,Lorenz把12个大 气动力学方程进一步简化为三个一阶的常微分 方程组,并进行了深入细致地分析,得到同样 的结论。这三个方程也便成了经典的混沌的例 子——Lorenz模型。
第7页/共71页
Lorenz通过对他所提出的方程进行研究表明: 短期的天气预报可行,但长时期天气预报是不可 能的。
“蝴蝶效应”:在南半球某地的一只蝴蝶偶 然扇动翅膀所带来的微小气流,几星期后可能变 成席卷北半球某地的一场龙卷风。
第8页/共71页
二、雷诺实验 在混沌研究中,另一类比较有代表意义的混沌
现象便是湍流。 雷诺(Reynold)实验: 在一个可控制流速的
园管中注入液体,并在园管中心轴线入口处引入一 丝有色液体,以便观察流体的运动状况。
但作为一个科学术语,一般认为李天岩和约克 (Yoke)在1975年的论文“周期3则混沌”是首次 引用Chaos一词。
第1页/共71页
3.1 引 言
“混沌”的来历
1973年4月的一天,在美国马里兰大学 数学系,一名叫李天岩的研究生百无聊赖地 走进导师约克教授的办公室,此时李的博士 论文正处于胶着阶段,一时未有进展。
:t时刻的昆虫数
K:昆虫繁殖后代的能力 L:环境容量,环境能够供养的最大昆虫数目。
其等于
的饱和值X*。
第22页/共71页
如果我们将环境容量取为1个单位,也即意味着 如果L=100万,那么昆虫数目 应以100万为单位。 上式变为:
x 此式的精确解为:
X(0)是
时的昆虫数。
t
昆虫繁衍的长期行为:当
饱和值
第37页/共ቤተ መጻሕፍቲ ባይዱ1页
2点周期:
(1)
说明 经过两次映射(两个f)又回到 ,如果定义 一个复合函数:
混沌理论

混沌理论混沌理论是当今世界最伟大的理论之一。
它是社会科学与自然科学最完美结合的理论.它研究如何把复杂的非稳定事件控制到稳定状态的方法,它研究世界如何在不稳定的环境中稳定发展的问题。
.混沌方法对于处理复杂多变、动荡不定的重大事件有特殊功效混沌世界是纷繁复杂多变的世界。
“相对论消除了关于绝对空间和时间的幻想;量子力学则消除了关于可控测量过程的牛顿式的梦;而混沌则消除了拉普拉斯关于决定论式可预测的幻想。
”一点就是未来无法确定。
如果你某一天确定了,那是你撞上了。
第二事物的发展是通过自我相似的秩序来实现的。
看见云彩,知道他是云彩,看见一座山,就知道是一座山,凭什么?就是自我相似。
这是混沌理论两个基本的概念。
混沌理论还有一个是发展人格,他有三个原则,一个是事物的发展总是向他阻力最小的方向运动。
第二个原则当事物改变方向的时候,他存在一些结构。
一混沌理论(Chaos theory)是一种兼具质性思考与量化分析的方法,用以探讨动态系统中(如:人口移动、化学反应、气象变化、社会行为等)无法用单一的数据关系,而必须用整体、连续的数据关系才能加以解释及预测之行为。
二混沌一词原指宇宙未形成之前的混乱状态,我国及古希腊哲学家对于宇宙之源起即持混沌论,主张宇宙是由混沌之初逐渐形成现今有条不紊的世界。
在井然有序的宇宙中,西方自然科学家经过长期的探讨,逐一发现众多自然界中的规律,如大家耳熟能详的地心引力、杠杆原理、相对论等。
这些自然规律都能用单一的数学公式加以描述,并可以依据此公式准确预测物体的行径。
三近半世纪以来,科学家发现许多自然现象即使可化为单纯的数学公式,但是其行径却无法加以预测。
如气象学家Edward Lorenz发现,简单的热对流现象居然能引起令人无法想象的气象变化,产生所谓的「蝴蝶效应」,亦即某地下大雪,经追根究底却发现是受到几个月前远在异地的蝴蝶拍打翅膀产生气流所造成的。
一九六○年代,美国数学家Stephen Smale 发现,某些物体的行径经过某种规则性的变化之后,随后的发展并无一定的轨迹可寻,呈现失序的混沌状态。
(完整版)混沌系统介绍及例子

专业学术讲座报告班级:信计12-2学号:************ 姓名:**二零一五年六月二十二日目录1.混沌系统概念2.典型混沌系统介绍3.混沌金融系统的线性与非线性反馈同步4.混沌研究的发展方向及意义一、混沌系统概念混沌(chaos )是指确定性动力学系统因对初值敏感而表现出的不可预测的、类似随机性的运动。
又称浑沌。
英语词Chaos 源于希腊语,原始 含义是宇宙初开之前的景象,基本含义主要指混乱、无序的状态。
作为科学术语,混沌一词特指一种运动形态。
动力学系统的确定性是一个数学概念,指系统在任一时刻的状态被初始状态所决定。
虽然根据运动的初始状态数据和运动规律能推算出任一未来时刻的运动状态,但由于初始数据的测定不可能完全精确,预测的结果必然出现误差,甚至不可预测。
运动的可预测性是一个物理概念。
一个运动即使是确定性的,也仍可为不可预测的,二者并不矛盾。
牛顿力学的成功,特别是它在预言海王星上的成功,在一定程度上产生误解,把确定性和可预测性等同起来,以为确定性运动一定是可预测的。
20世纪70年代后的研究表明,大量非线性系统中尽管系统是确定性的,却普遍存在着对运动状态初始值极为敏感、貌似随机的不可预测的运动状态——混沌运动。
混沌是指现实世界中存在的一种貌似无规律的复杂运动形态。
共同特征是原来遵循简单物理规律的有序运动形态,在某种条件下突然偏离预期的规律性而变成了无序的形态。
混沌可在相当广泛的一些确定性动力学系统中发生。
混沌在统计特性上类似于随机过程,被认为是确定性系统中的一种内禀随机性。
二、典型混沌系统介绍Lorenz 系统混沌的最早实例是由美国麻省理工学院的气象学家洛伦兹在1963年研究大气运动时描述的。
他提出了著名的Lorenz 方程组:。
这是一个三阶常微分方程组。
它以无限平板间流体热对流运动的简化模型为基础,由于它的变量不显含时间t ,一般称作自治方程。
式中x 表示对流强度,y 表示向上流和向下流在单位元之间的温度差,z 表示垂直方向温度分布的非线性强度,-xz 和xy 为非线性项,b 是瑞利数,它表示引起对流和湍流的驱动因素 (如贝纳对流上下板的温度差△T)和抑制对流因素 (如(Prandtl)数粘性)之比,是系统(2-1)的主要控制参数。
混沌系统理论

混沌理论的特征
分形几何理论诞生于20世纪70年代中期,创始人是美国数学家--曼德布罗特(B.B.Mandelbrot),他1982年出 版的《大自然的分形 几何学》 (The Fractal Geometry of Nature)是这一学科经典之作。
康托尔三分集
谢尔宾斯基地毯
分 形 项 链
D即维数
D = logk/logλ
λ 其中:
为线度的放大倍数
k为“体积”的放大倍数
由于这样定义的维数D是一个分式所得出的比值,因此人们称之为 分数维。
容量维
柯尔莫戈洛夫(Kolmogorov)曾给分维这样定义:
对于d 维空间中的一个小集合E,我们可以用一些直径r的 d 维小球去覆盖它,如果完全覆盖所需的小球数目的最小值为 N(r) , 则该子集的柯尔莫戈洛夫容量维为:
实际上,混沌学研究从另一方面增加了人 们的预见能力。
貌似无序的高级有序性
混沌现象给人们的第一印象往往是混乱 不 堪,毫无规则,但混沌不等于混乱,是一种 貌似无序的复杂有序。 混沌绝不是简单地无序,而是被无序掩盖 着的高级有序,貌似无序的复杂有序,有人 称其为混沌序。
逻辑斯蒂方程的有序性
倒分叉
周期窗口
长期行为的不可预见性
由于其内在非线性机制造成对初值的敏感 依赖性,混沌系统的长期行为是不可预测的。 任何实际系统的初始条件都不可能绝对精确 地确定,误差是不可避免的。
混沌是由确定性系统产生的,它的短期行 为是可以预测的。
只要系统处于混沌区,我们就无法对它的 长期行为作出预测,但是混沌运动并非绝对 不可预测。
lim inf fn(x)fn(y)0
则称 f ( x ) 描述的系统为混沌系统,S 为 f 的混沌集。
混沌理论

混沌理论简介混沌理论(Chaos theory)是一种兼具质性思考与量化分析的方法,用以探讨动态系统中(如:人口移动、化学反应、气象变化、社会行为等)无法用单一的数据关系,而必须用整体、连续的数据关系才能加以解释及预测之行为。
混沌理论是一种兼具质性思考与量化分析的方法。
混沌理论的主导思想是,宇宙本身处于混沌状态,在其中某一部分中似乎并无关联的事件间的冲突,会给宇宙的另一部分造成不可预测的后果。
这意味着,系统具有放大作用。
一个微小的运动经过系统的放大,最终影响会远远超过该运动的本身。
所以,当有人说,因为英国的一只蝴蝶扇了一下翅膀,中国可能会遭受一场台风时,他的观点里就包含着混沌理论的思想。
两个基本的概念:第一,未来无法确定。
如果你某一天确定了,那是你撞上了。
第二,事物的发展是通过自我相似的规律来实现的。
看见云彩,知道他是云彩,看见一座山,就知道是一座山,凭什么?就是自我相似。
有三个原则:1、能量永远会遵循阻力最小的途径。
2、始终存在着通常不可见的根本结构,这个结构决定阻力最小的途径。
3、这种始终存在而通常不可见的根本结构,不仅可以被发现,而且可以被改变。
起因混沌现象起因于物体不断以某种规则复制前一阶段的运动状态,而产生无法预测的随机效果。
所谓「差之毫厘,失之千里」正是此一现象的最佳批注。
具体而言,混沌现象发生于易变动的物体或系统,该物体在行动之初极为单纯,但经过一定规则的连续变动之后,却产生始料所未及的后果,也就是混沌状态。
但是此种混沌状态不同于一般杂乱无章的的混乱状况,此一混沌现象经过长期及完整分析之后,可以从中理出某种规则出来。
混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间相互牵引,混沌现象尤为多见。
如股票市场的起伏、人生的平坦曲折、教育的复杂过程。
混沌理论的特性混沌理论有以下几个特性:1,随机性.2,敏感性. 3,分维性. 4,普适性.5,标度律.运用混沌理论在教育行政、课程与教学、教育研究、教育测验等方面已经有些许应用的例子。
混沌理论及其应用实例精品PPT课件

3
牛顿第二定律研究自由落体:
m dv mg , dt dx v dt
xt0 , vt0
通常我们所处理的是线性系统:原因处理方法简单 (数理方法)
建立微分方程组
只要知道了物体在某一时刻的运动状态以及作用于
这个物体的外部的力,就可以准确地确定这个物体
Period 4
25
Case 4
sufficient small
R
Irregular Random Nonperiodic orbit disclosed orbit
Chaos
26
Attractors of Chua’s circuit
27
28
实验现象的观察一
周期一
周期二
29
实验现象的观察二
铁条
磁铁
y
Duffing方程 yvy (y3y)Fsitn
10
yvy (y3y)Fsitn
F 0 y 1, y 1 y0
两个稳态 一个非稳态
11
双稳态系统 U(x)1kx21x4
24
x
k
k
12
v, F 0
不规则运动
13
yvy(y3y)Fcots v0.3,F0
14
15
16
17
Experiment of Shaw(1984)
以往和未来的全部运动状态
4
无阻尼单摆
d2
d2t
g l
sin
0
m
d21
d2t
gl sin1
0
d22
d2t
gl sin2
0
d2(d12 t2)g lsin1 (2)0
混沌系统理论 ppt课件

非周期定态
在奇怪吸引子上的运动是系统的一种稳 定定态行为。 在奇怪吸引子上的运动具有回归性,但 混沌的回归性是不严格的,是非周期的。 非周期运动也可能是定态行为,非周期 定态未必都是混沌。
{ { 回归性
严格的周期性 周期性
准周期性
{混沌式非周期
非周期性
非混沌式非周期
非线性回归 完备分类
对初始条件的敏感依赖性
dz d
bz
xy
x -对流的翻动速率 y -比例于上流与下流液体之间的温差 z-是垂直方向的温度梯度
无量纲因子
b-速度阻尼常数
r -相对瑞利数 r = R/RC。
这是一个三维系统,x、y、z为状态变量,σ、r、b为控 制参量。
洛伦兹方程
在r 较小的情况下,系统是稳定的,随着的r 增加,系统 趋于复杂,出现不稳定的极限环,在r =28时达到混沌 状态。所以, σ = 10 ,b = 8/3 ,r = 28 时利用 Matlab编程,得到下图:
“上帝的指纹”
混沌理论的特征
分形几何理论诞生于20世纪70年代中期,创始人是美国数学家--曼德布罗特(B.B.Mandelbrot),他1982年出 版的《大自然的分形 几何学》 (The Fractal Geometry of Nature)是这一学科经典之作。
康托尔三分集
谢尔宾斯基地毯
分 形 项 链
在离散系统中,通常取逻辑斯蒂方程为典型系 统。
Logistic Equation:
x n 1 a x n (1 x n ) 或
xn1 1 x 2
虫口模型
逻辑斯蒂方程在生态学中的应用是无世代交叠的 虫口系统,x为状态变量,a或λ为控制变量。方程 给出第n代虫口数与第n+1代虫口数的确定性关系。 0<x<1, 0<a<4
混沌系统的理论及其应用

混沌系统的理论及其应用混沌系统是在确定性条件下表现出无规律有序行为的非线性动力学系统。
其最初的研究起源于20世纪60年代的美国洛斯阿拉莫斯国家实验室。
混沌系统具有高度复杂性和敏感性,进而极大的扩展了物理学理论和应用领域。
本文将着重讨论混沌系统的理论及其应用。
一、混沌系统的理论混沌系统是因为开普勒行星运动时,根据质心运动定律来进行计算结果与实际测量结果出入极大,引起科学家们的共同关注,并最终发现这是由于天文学的实验误差所导致的不可预测性。
后来,经过系统的分析,混沌理论得到了进一步的发展。
混沌系统的本质特征是敏感依赖条件。
敏感依赖条件是指初始条件的微小改变在时间积累下将会被放大到显著改变系统行为的程度。
换而言之,小变化是会引起大的效应的。
混沌系统常是由三个特征所描述。
一是系统的非线性,超过线性阈值的物理系统具有多个平衡点或受周期性力的影响。
二是系统的灵敏性,包括在一定范围内的系统初值对后续轨迹产生巨大影响。
三是系统的混沌性,敏感依赖条件和确定性同时存在,系统的状态表现出随时间变化而无规律的行为。
二、混沌系统的应用混沌系统的应用十分广泛,主要分为两个方面:基础科学和工程领域的应用。
下面将分别进行阐述。
1.基础科学的应用混沌系统在基础科学研究中的应用范围非常广泛。
例如混沌系统可以解释非线性物理系统的行为模式,如热力学系统、流体力学系统、光学系统等。
另外,混沌系统也可以解释生态系统、社会系统等不稳定和复杂的系统行为。
此外,混沌系统还具有对天文学、气象学、地球物理学等领域的研究支持。
2.工程领域的应用混沌系统的确切行为表现也离不开应用相关工程技术,其应用较为常见的即挖掘和利用混沌信号。
混沌信号是混沌系统输出的信号,其难以预测和分析依靠特殊技术进行处理。
混沌信号应用于信息传输加密,使用混沌信号可以更好的保证信息的安全性。
此外,混沌系统的灵敏性也使得其成为应用于前沿科学领域的动力学模型,例如混沌变换器、混沌涡旋、混沌雷达等等都有很好的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D log N(r) 或 log(1/ r)
DlimlogN(r) r0 log1(/ r)
一般地,我们就把这样定义的容量维叫做豪斯道夫 维数,把豪斯道夫维数是分数的物体称为分形,把此
时的D 值称为该分形的分形维数,简称分维。也有人
把该维数称为分数维。
奇怪吸引子
奇怪吸引子又叫分形吸引子,因为它们都是相空间的分形点集, 不能用传统的规则几何图形表示。一个耗散系统的相空间当时间 趋于无穷大时,如果收缩到一个非整数维的点集,这就是一个奇 怪吸引子。
混沌系统理论 ppt课件
蝴蝶效应
1979年12月,洛伦兹在华盛顿的美国科学促进会的一次 演讲中提出:一只南美洲的蝴蝶,偶尔扇动几下翅膀,在两 周以后可以引起美国德克萨斯州的一场龙卷风。
此效应说明,事物发展的结果, 对初始条件具有极为敏感的依赖 性,初始条件的极小偏差,将会 引起结果的极大差异,甚至会呈 现一种混沌状态。
dz d
bz
xy
x -对流的翻动速率 y -比例于上流与下流液体之间的温差 z-是垂直方向的温度梯度
无量纲因子
b-速度阻尼常数
r -相对瑞利数 r = R/RC。
这是一个三维系统,x、y、z为状态变量,σ、r、b为控 制参量。 Nhomakorabea伦兹方程
在r 较小的情况下,系统是稳定的,随着的r 增加,系统 趋于复杂,出现不稳定的极限环,在r =28时达到混沌 状态。所以, σ = 10 ,b = 8/3 ,r = 28 时利用 Matlab编程,得到下图:
xn1axn(1xn)
它经常被用来描述没有世代交叠的昆虫群体的繁殖 演化,称为虫口模型。a为控制参数,虫口数x为状 态变量,xn为第n代虫口数,虫口模型给出第n代虫 口与第n+1代虫口的关系,知道n代虫口就可以按 逻辑斯蒂方程计算第n+1代虫口。
虫口模型
0
=1
=3
4
横轴a为控制空间,纵轴x为相空间,共同形成 2维的乘积空间,a—x平面。0<a<a∞为系统的 周期区,a∞<a <4为系统的混沌区。
洛伦兹方程
在连续系统中,通常以洛伦兹方程为为典型系统。
洛伦兹利用流体力学中的纳维叶-斯托克斯(Navier-Stokes)方程、热传导方 程和连续性方程,处理贝耐特对流,推导出描述大气对流的微分方程,即著 名的洛伦兹方程。
Lorentz Equation:
dx
d dy
d
(x y) rx y xz
分形花
分 形 树
分形山
分维的概念
1. 整数维(拓扑维或传统的维数 ) a. 点 —— 零维 b. 线 —— 一维 c. 面 —— 二维
d. 体 —— 三维
分维的概念
2. 分数维
现在我们从测量的角度引入了维数概念,将维 数从整数扩大到分数。即:
如果某图形是由把原图缩小为1/λ的相 似的k个图形所组成,有:k= λD
非周期定态
在奇怪吸引子上的运动是系统的一种稳 定定态行为。 在奇怪吸引子上的运动具有回归性,但 混沌的回归性是不严格的,是非周期的。 非周期运动也可能是定态行为,非周期 定态未必都是混沌。
混沌的数学定义
定义:令 f ( x ) 为区间 I 到自身的连续映射,如果满足以下
条件
(1)f 的周期点的周期无上界
(2)存在 I 的不可数子集S ,满足
a.对于任何 x, y S ,当 x y 时有(n)
limsupfn(x)fn(y)0
b.对于任何x, y S ,有(n)
liminf fn(x)fn(y)0
“上帝的指纹”
混沌理论的特征
分形几何理论诞生于20世纪70年代中期,创始人是美国数学家--曼德布罗特(B.B.Mandelbrot),他1982年出 版的《大自然的分形 几何学》 (The Fractal Geometry of Nature)是这一学科经典之作。
康托尔三分集
谢尔宾斯基地毯
分 形 项 链
有科学家称之为混沌学。
混沌的定义
科学家给混沌下的定义
混沌 是指发生在确定性系统中的,貌似随机的不规则
运动,一个确定性理论描述的系统,其行为却表现为不 确定性,不可重复、不可预测,这就是混沌现象。混沌 是非线性动力系统的固有特性,是非线性系统普遍存在 的现象。
混沌理论是系统从有序突然变为无序状态的一种演化
1、埃侬吸引子
xn+1 1xn2 yn
yn+1 bxn
取参数 =1.4,b=0.3(即 b <1 的耗散体系),进行计算,结果 显示在(x , y)相平面上。此吸引子 的分维D。=1.26
奇怪吸引子
2、洛伦兹吸引子
在洛伦兹方程中,取参数 =10,b = 8/3,随参数 r 增加,出现一次
新分岔-霍夫分岔,平衡点 C1 与 C2 将失稳发展成为奇怪吸引子。 取 r = 28 时计算的结果如下。它的容量维D。=2.06
则称 f ( x ) 描述的系统为混沌系统,S 为 f 的混沌集。
分形几何
分形几何理论诞生于20世纪70年代中期,创始人是美国数学 家---曼德布罗特(B.B.Mandelbrot),他1982年出 版的《大自 然的分形几何学》 (The Fractal Geometry of Nature)是这一 学科经典之作。
在离散系统中,通常取逻辑斯蒂方程为典型系 统。
Logistic Equation:
x n 1 a x n (1 x n ) 或
xn1 1 x 2
虫口模型
逻辑斯蒂方程在生态学中的应用是无世代交叠的 虫口系统,x为状态变量,a或λ为控制变量。方程 给出第n代虫口数与第n+1代虫口数的确定性关系。 0<x<1, 0<a<4
D即维数
D = logk/logλ
λ 其中:
为线度的放大倍数
k为“体积”的放大倍数
由于这样定义的维数D是一个分式所得出的比值,因此人们称之为 分数维。
容量维
柯尔莫戈洛夫(Kolmogorov)曾给分维这样定义:
对于d 维空间中的一个小集合E,我们可以用一些直径r的 d 维小球去覆盖它,如果完全覆盖所需的小球数目的最小值为 N(r) , 则该子集的柯尔莫戈洛夫容量维为:
理论,是对确定性系统中出现的内在“随机过程”形成 的途径、机制的研讨。
混沌系统理论
典型系统
分形几何与奇怪吸引子
非周期定态
混
对初值的敏感依赖性
沌
的
确定性随机性
特 点
长期行为的不可预见性
混沌序:貌似无序的高级有序性
通向混沌的道路
他组织混沌
典型系统
所谓典型系统,一是能鲜明地表现出混沌的主要特 征,二是数学模型简单,容易处理。