北师大版高中数学必修五课件章末归纳整合1

合集下载

北师大版高中数学(必修5)1.1《数列》

北师大版高中数学(必修5)1.1《数列》

• 二、数列的分类 • 1.根据数列的项数,可以将数列分为两 类: • (1)有穷数列:项数⑥________的数列; • (2)无穷数列:项数⑦________的数列.
• 2.根据数列的增减性,可以将数列分为 以下几类: • (1)递增数列:从第2项起,每一项都大于 它前面的一项的数列叫做⑧________; • (2)递减数列:从第2项起,每一项都小于 它前面的一项的数列叫做⑨________; • (3)常数数列:数列的各项都是常数的数列 叫做⑩________; • (4)摆动数列:从第2项起,有些项大于它 的前一项,有些项小于它的前一项的数列
• 友情提示:关于数列概念的理解应注意的 几点事项: • (1)数列是按一定“次序”排成的一列数, 一个数列不仅与组成数列的“数”有关, 而且与这些数的排列顺序有关.因此,如 果组成数列的数相同而排列次序不同,那 么它们就是不同的数列; • (2)数列与数集的区别与联系:数列与数集 都是具有某种共同属性的数的全体.数列 中的数是有序的,而数集中的元素是无序 的,同一个数在数列中可以重复出现,而
• (3)数列的项与它的项数是不同的概念:数 列的项是指这个数列中的某一个确定的数, 是一个函数值,也就是相当于f(n);而项数 是指这个数在数列中的位置序号,它是自 变量的值,相当于f(n)中的n; • (4)次序对于数列来讲是十分重要的,若两 个数列中有几个相同的数,由于它们的排 列次序不同,构成的数列就不是一个相同 的数列,显然数列与数集有本质的区别.
• 1.1 数列的概念 • 1.2 数列的函数特性
• 一、数列的概念 • 按照①________排列着的一列数都和它的序号有 关,排在第一位的数称为这个数列的第1 项(通常也叫做③________),排在第二位 的数称为这个数列的第2项……排在第n位 的数称为这个数列的第n项.所以,数列 的一般形式可以写成a1,a2,a3,…,

北师大版高中数学必修5同步学案:第1章 等差数列的概念及其通项公式

北师大版高中数学必修5同步学案:第1章 等差数列的概念及其通项公式

§2 等差数列2.1 等差数列第1课时等差数列的概念及其通项公式学习目标核心素养1.理解等差数列的概念.(难点)2.掌握等差数列的判定方法.(重点) 3.会求等差数列的通项公式及利用通项公式求特定的项.(重点、难点) 1.通过等差数列概念的学习培养学生的数学抽象素养.2.借助于等差数列的通项公式提升学生的数学运算素养.1.等差数列的概念阅读教材P10~P11例1以上部分,完成下列问题.文字语言从第2项起,每一项与它前一项的差等于同一个常数,这样的数列就叫作等差数列.这个常数称为等差数列的公差,通常用字母d 表示符号语言若a n-a n-1=d(n≥2),则数列{a n}为等差数列思考:(1)数列{a n}的各项为:n,2n,3n,4n,…,数列{a n}是等差数列吗?[提示] 不是,该数每一项与其前一项的差都是n,不是常数,所以不是等差数列.(2)若一个数列从第二项起每一项与它前一项的差都是常数,这个数列一定是等差数列吗?[提示] 不一定,当一个数列从第二项起每一项与它前一项的差都是同一个常数时,这个数列才是等差数列.如数列:1,2,3,5,7,9,就不是等差数列.2.等差数列的通项公式如果等差数列{a n}的首项为a1,公差为d,那么它的通项公式为a n=a1+(n-1)d.思考:(1)若已知等差数列{a n}的首项a1和第二项a2,可以求其通项公式吗?[提示] 可以,可利用a2-a1=d求出d,即可求出通项公式.(2)等差数列的通项公式一定是n的一次函数吗?[提示] 不一定,当公差为0时,等差数列的通项公式不是n的一次函数,而是常数函数.3.等差数列通项公式的推导如果等差数列{a n}的首项是a1,公差是d,根据等差数列的定义得到a2-a1=d,a3-a2=d,a4-a3=d,…所以a2=a1+d,a 3=a 2+d =a 1+d +d =a 1+2d, a 4=a 3+d =a 1+2d +d =a 1+3d, ……由此归纳出等差数列的通项公式为a n =a 1+(n -1)d .1.等差数列{a n }中a 1=2,公差d =3,则a n =( ) A .2n +1 B .3n +1 C .2n -1D .3n -1D [a n =a 1+(n -1)d =2+3(n -1)=3n -1.] 2.在等差数列{a n }中,a 1=0,a 3=4,则公差d =( ) A .4 B .2 C .-4D .-2B [a 3-a 1=4-0=2d,故d =2.]3.等差数列32,-12,-52,…的第10项为( )A .-372B .-332C .372D .332B [由a 1=32,d =-12-32=-2,得a n =32+(n -1)(-2)=-2n +72.所以a 10=-2×10+72=-332.]4.已知等差数列{a n }中,d =-13,a 7=8,则a 1=________.10 [由a 7=a 1+6d =8且d =-13代入解得a 1=8-6d =8+2=10.]等差数列的判定【例1(1)a n =3-2n ;(2)a n =n 2-n.[解] (1)因为a n +1-a n =[3-2(n +1)]-(3-2n)=-2,是常数,所以数列{a n }是等差数列.(2)因为a n +1-a n =[(n +1)2-(n +1)]-(n 2-n)=2n,不是常数,所以数列{a n }不是等差数列.等差数列的判断方法——定义法等差数列的定义是判断一个数列是否为等差数列的重要依据,要证明一个数列是等差数列,可用a n +1-a n =d(常数)或a n -a n -1=d(d 为常数且n≥2).但若要说明一个数列不是等差数列,则只需举出一个反例即可.[提醒] 当d >0时,等差数列{a n }是递增数列; 当d <0时,等差数列{a n }是递减数列; 当d =0时,等差数列{a n }是常数列.1.若数列{a n }满足a n +1=a n2a n +1,a 1=1,求证:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列.[证明] 由a n +1=a n 2a n +1得1a n +1=2a n +1a n =2+1a n ,即1a n +1-1a n =2,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为2的等差数列.等差数列的通项公式及应用【例2】 (1)求等差数列8,5,2,…的第20项;(2)在等差数列{a n }中,已知a 6=12,a 18=36,求通项公式a n . [解] (1)由a 1=8,a 2=5,得d =a 2-a 1=5-8=-3, 故a n =8-3(n -1)=11-3n, 则a 20=11-3×20=-49.(2)由题意可得⎩⎪⎨⎪⎧a 1+5d =12,a 1+17d =36,解得d =2,a 1=2,故a n =2n.等差数列通项公式的四个应用(1)已知a n ,a 1,n,d 中的任意三个量,可以求出第四个量.(2)由等差数列的通项公式可以求出该数列中的任意项,也可以判断某一个数是不是该数列中的项. (3)根据等差数列的两个已知条件建立关于“基本量”a 1和d 的方程组,求出a 1和d,从而确定通项公式,求出待求项.(4)若数列{a n }的通项公式是关于n 的一次函数或常数函数,则可判断数列{a n }是等差数列.2.(1)等差数列{a n }中,a 2=4,公差d =3,a n =22,求n ;(2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项?[解] (1)由条件知⎩⎪⎨⎪⎧a 1+3=4,a 1+3(n -1)=22,解得a 1=1,n =8;(2)由a 1=-5,d =-9-(-5)=-4,得这个数列的通项公式为a n =-5+(n -1)×(-4)=-4n -1. 由题意,令-401=-4n -1,得n =100, 即-401是这个数列的第100项.等差数列的实际应用[1.一种游戏软件的租金,第一天5元,以后每一天比前一天多1元,那么第n(n≥2)天的租金怎样表示?每天的租金数有什么特点?[提示] 每天的租金构成以5为首项,以1为公差的等差数列,a n =5+(n -1)×1=n +4(n≥2). 2.直角三角形三边长成等差数列,你能求出三边的比吗?[提示] 设直角三角形的三边长分别为a,a +d,a +2d(a >0,d >0),则(a +2d)2=a 2+(a +d)2,即a 2-2ad -3d 2=0,解得a =3d,则三边长分别为3d,4d,5d, 故三边长的比为3∶4∶5.【例3】 某市出租车的计价标准为1.2 元/km,起步价为10元,即最初的4 km(不含4 km)计费10元,如果某人乘坐该市的出租车去往14 km 处的目的地,且一路畅通,等候时间为0,那么需要支付多少车费?思路探究:某人需支付的车费构成等差数列,运用等差数列的知识去解决.[解] 根据题意,当该市出租车的行程大于或等于4 km 时,每增加1 km,乘客需要支付1.2元.所以,可以建立一个等差数列{a n }来计算车费. 令a 1=11.2,表示4 km 处的车费,公差d =1.2, 那么当出租车行至14 km 处时,n =11,此时需要支付车费a 11=11.2+(11-1)×1.2=23.2(元).即需要支付车费23.2元.1.(变条件)在例3中,若某人乘坐该市的出租车去往18.5 km(不足1 km,按1 km 计费),且一路畅通,等候时间为0,那么,需支付多少车费?[解] 由题意知,当出租车行至18.5 km 处时,n =16,此时需支付车费a 16=11.2+(16-1)×1.2=29.2(元).2.(变结论)在例3中,若某人乘坐该市的出租车去往n km(n ∈ N +)处的目的地,求其需支付的车费a n .[解] 当n ∈{1,2,3}时,a n =10,当n ∈N +,且n≥4时,a n =11.2+(n -4)×1.2=1.2n +6.4.所以a n =⎩⎪⎨⎪⎧10,n ∈{1,2,3},1.2n +6.4,n≥4且n ∈N +.应用等差数列解决实际问题的步骤(1)审题,读懂题意,把握已知条件与求解问题. (2)将实际问题抽象为等差数列模型. (3)利用等差数列解决问题.(4)验证答案是否符合实际问题的意义.1.等差数列的通项公式为a n =a 1+(n -1)d,已知a 1,n,d,a n 这四个量中的三个,可以求得另一个量. 2.等差数列的判定关键是看a n +1-a n (或a n -a n -1(n≥2))是否为一个与n 无关的常数. 3.对于通项公式的理解.a n =a 1+(n -1)d ⇒a n =nd +(a 1-d),所以,当d≠0时,a n 是关于n 的一次函数,一次项系数就是等差数列的公差,当d =0时,等差数列{a n }为常数列:a 1,a 1,a 1,…,a 1,…1.判断正误(正确的打“√”,错误的打“×”) (1)常数列是等差数列.( )(2)-1,-2,-3,-4,-5不是等差数列.( ) (3)若数列{a n }是等差数列,则其公差d =a 7-a 8.( ) [答案] (1)√ (2)× (3)×[提示] (1)正确,(2)不正确,数列-1,-2,-3,-4,-5是公差为-1的等差数列;(3)不正确,公差d =a 8-a 7.2.下列数列是等差数列的是( ) A .13,15,17,19 B .1,3,5,7 C .1,-1,1,-1D .0,0,0,0D [由等差数列的定义知:0,0,0,0是等差数列,选D .] 3.在等差数列{a n }中,a 2=4,a 8=a 6+3,则a 1=________.52 [由已知得⎩⎪⎨⎪⎧a 1+d =4,a 1+7d =a 1+5d +3,解得a 1=52.]4.在等差数列{a n }中,a 5=10,a 12=31,求a 20,a n . [解] 由a 5=10,a 12=31, 得7d =a 12-a 5=21,所以d =3,a 1=a 5-4d =10-4×3=-2. 所以a 20=a 1+19d =-2+19×3=55,a n =a 1+(n -1)d =-2+3(n -1)=3n -5(n ∈N +).。

高中数学第5章函数应用章末综合提升课件必修第一册高一第一册数学课件

高中数学第5章函数应用章末综合提升课件必修第一册高一第一册数学课件




合 使区间长度尽量小.

·

(2)计算时注意依据给定的精度,及时检验计算所得的区间是否 章


层 满足精度的要求.

题 型 探
(3)二分法在具体使用时有一定的局限性,首先二分法只能一次
合 测
究 求得一个零点,其次f(x)在(a,b)内有不变号零点时,不能用二分法 评
求得.


12/8/2021
B.(1,2)



题 型
C.(2,3)
D.(3,4)





·


12/8/2021

第五页,共二十五页。
·





ex,x≤0,

知 识 整
(2)已知函数f(x)=
ln
x,x>0,
g(x)=f(x)+x+a.若g(x)存在2个零
化 训


点,则a的取值范围是( )



A.[-1,0)
B.[0,+∞)


升 层
方程f(x)=0的一个近似根.]
末 综







·


12/8/2021

第十七页,共二十五页。
·
函数的实际应用


固 层
【例3】 《中华人民共和国个人所得税法》规定,个人所得税 题

知 识 整
起征点为3
500元(即3
500元以下不必纳税,超过3

新教材2023版高中数学章末复习课1第一章数列课件北师大版选择性必修第二册

新教材2023版高中数学章末复习课1第一章数列课件北师大版选择性必修第二册
章末复习课 1
考点一 传统文化中的数列问题 1.在以实用为主的古代数学中,数列是研究的热点问题. 2.通过对优秀传统文化的学习,提升学生的数学建模、数学运算素 养.
例1 (1)《九章算术》是我国古代内容极为丰富的数学名著,书中
有如下问题:“今有禀粟,大夫、不更、簪裹、上造、公士,凡五人,
一十五斗.今有大夫一人后来,亦当禀五斗.仓无粟,欲以衰出之,
项公式要分段表示. (3)求数列的前n项和,根据数列的不同特点,常有方法:公式法、裂项相
消法、错位相减法、分组求和法. (4)通过对数列通项公式及数列求和的考查,提升学生的逻辑推理、数学
运算素养.
例4 已知数列{an}的前n项和Sn满足2Sn=(n+1)an(n∈N*)且a1=2. (1)求数列{an}的通项公式; (2)设bn= an − 1 2an.求数列{bn}的前n项和Tn.
于织布,从第二天起,每天比前一天多织相同量的布,现在该女子一
个月(按30天计)共织布390尺,最后一天织布21尺,则该女子第一天织
布( )
A.3尺
B.4尺
C.5尺
D.6尺
答案:C
解析:由题意可设该女子第n天织布的数量为an,则数列{an}是等差数列,设其
21 公差为d.则ቐ390 =
= a1 30a1
2(an≠0)⇔{an}是等比数列.
(3)通项公式法:an=kn+b(k,b是常数)⇔{an}是等差数列;an=c·qn(c,q
为非零常数)⇔{an}是等比数列.
(4)前n项和公式法:Sn=An2+Bn(A,B为常数,n∈N*)⇔{an}是等差数列;
Sn=Aqn-A(A,q为常数,且A≠0,q≠0,q≠1,n∈N*)⇔{an}是等比数

北师大版高中数学必修第一册 第五章 1-《方程解的存在性及方程的近似解》课件PPT

北师大版高中数学必修第一册 第五章 1-《方程解的存在性及方程的近似解》课件PPT
下:750,875,812,843,859,851,经过6次可以猜中价格.
随堂小测
1.已知函数()的图象如图,其中零点的个数及可以用二分法求其零点的个数分别为( D )
A.4,4
B.3,4
C.5,4
D.4,3
解析 由题图知函数()与轴有4个公共点,因此零点个数为4,从左往右数第4个公共
点横坐标的左右两侧的函数值同号,因此不能用二分法求该零点,而其余3个均可使用二
不能用二分法求解.
3.二分法的步骤的记忆口诀:
定区间,找中点,中值计算两边看;
同号去,异号算,零点落在异号间;
周而复始怎么办?精确度上来判断.
即时巩固
1.下列函数图象与x轴均有公共点,其中不能用二分法求图中函数零点的是( B )
2.若函数() = − 3 + log3的一个零点附近的函数值用二分法逐次计算,参考数据如下:
分法来求.故选D.
2.用二分法求函数() = −3 − 3 + 5的近似零点时的初始区间是( B )
A.(-3,1)
B.(1,2)
C.(-2,-1)
D.(-3,-2)
解析 本题考查对用二分法求函数零点近似值的理解及初始区间的选择.
∵(1) = 1, (2) = −9, (−1) = 9, (−2) = 19, (−3) = 41,
格”的游戏形式,将各类商品和大规模的互动体验结合起来,充分激发了观众的参与热情.每位选手只要
在规定时间内猜出的某商品价格在主持人展示的区间内,就可以把它拿走.当选手说出一个价格不在规
定区间内时,主持人会提示“高了”或“低了”.
如果选手想用尽可能少的次数猜对价格,应该采用什么样的猜价方法呢?
一、二分法

北师大版高二数学上册必修5第一章数列第一课数列的概念课件(共21张PPT)

北师大版高二数学上册必修5第一章数列第一课数列的概念课件(共21张PPT)
明朝未及,我只有过好每一个今天,唯一的今天。
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选

2021_2022学年新教材高中数学第五章计数原理4.2二项式系数的性质课件北师大版选择性必修第一册

2021_2022学年新教材高中数学第五章计数原理4.2二项式系数的性质课件北师大版选择性必修第一册

微练习1
在(a+b)n的展开式中,第2项与第6项的二项式系数相等,则n=(
答案 A
解析 由已知n1 = n5 ,可知 n=1+5=6.
)
微练习2
在(1+x)2n+1的展开式中,二项式系数最大的项是(
)
A.第n项和第n+1项
B.第n-1项和第n项
C.第n+1项和第n+2项
D.第n+2项和第n+3项
n+1-n+1-2
答案 D
解析 令x=1,则2+22+…+2n=2n+1-2.
)
1 10
2. 的展开式中,系数最大的项是(

A.第6项
B.第3项
C.第3项和第6项
D.第5项和第7项
)
答案 D
5
4
6
4
解析 展开式第 6 项系数为-C10
,第 5 项和第 7 项系数分别为C10
, C10
,且C10
=
1
2
≥ +1 ,
8-
∴ 2
解得 5≤k≤6.
1

,
9-
又0≤k≤8且k∈N,∴k=5或k=6.
故系数的绝对值最大的项是第6项和第7项.
(2)二项式系数最大的项为中间项,即第5项,
20
4∴T5=C84 ·24· 2 =1
120x-6.
(3)由(1)知展开式中的第 6 项和第 7 项系数的绝对值最大,而第 6 项的系数为
②若 n 为奇数,则中间两项(即第
项与第
+1 项)的二项式系数相等且
2
2

2021_2022学年新教材高中数学第五章计数原理1计数原理课件北师大版选择性必修第一册202105

2021_2022学年新教材高中数学第五章计数原理1计数原理课件北师大版选择性必修第一册202105

(2)完成一件事需要分成 A,B 两个步骤,在实行 A 步骤时有 m1 种方法,在实行 B 步骤时有 m2 种方法,即 card(A)=m1,card(B)=m2,那么完成这件事的不同方法 种数就是 card(A·B)=card(A)·card(B)=m1·m2.这就是当 n=2 时的分步乘计数原 理.当 n>2 时可类似得出.
2.分步乘法计数原理
完成一件事需要经过n个步骤,缺一不可,做第1步有m1种不同的方法,做第2 步有m2种不同的方法……做第n步有mn种不同的方法,那么,完成这件事共有N =_m_1_·__m_2·__…__·__m_n_种方法.(也称“乘法原理”)
【思考】 分步乘法计数原理有什么特点? 提示:①完成一件事需要经过n个步骤; ②完成每一步有若干种方法,且每一步对其他步没有影响; ③把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数.
【解析】(1)需要老师、男同学、女同学各 1 人,则分 3 步,第一步选老师,有 3 种不同的选法;第二步选男同学,有 8 种不同的选法;第三步选女同学,有 5 种 不同的选法.共有 3×8×5=120 种不同的选法; (2)第一步选老师有 3 种不同的选法,第二步选学生有 8+5=13 种不同的选法, 共有 3×13=39 种不同的选法.
(2)完成“组成无重复数字的四位数”这件事,可以分四步:第一步,从 1,2,3,4 中选取一个数字做千位数字,有 4 种不同的选取方法;第二步,从 1,2,3,4 中剩余的三个数字和 0 共四个数字中选取一个数字做百位数字,有 4 种不同的选 取方法;第三步,从剩余的三个数字中选取一个做十位数字,有 3 种不同的选取 方法;第四步,从剩余的两个数字中选取一个数字做个位数字,有 2 种不同的选 取方法.由分步乘法计数原理,可以组成不同的四位数共有 N=4×4×3×2=96 个.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

已知 【例 2】{an}为等差数列,分别根据下列条件写出它的通项公 式. (1)a3=5,a7=13; (2)前三项为:a,2a-1,3-a. (3)am=n,an=m,m≠n,求am+n. [思路探索]欲写出等差数列的通项公式,只需确定它的首 项a1与公差d,代入an=a1+(n-1)d即得.

利用公式 an=Sn-Sn-1(n≥2)可使数列 {an}的前 n 项和公式 Sn 与通项公式 an 之间相互转化.在使用 an=Sn-Sn-1(n≥2)时, 必须验证 n= 1 时是否也成立,否则通项公式只能用 an =
S1 n= 1, Sn- Sn-1 n≥ 2
来表示.
(1)法一 设首项为 a1,公差为 d,则
a1= 1, 解得 d= 2.
a3= a1+ 2d= 5, a7= a1+ 6d= 13,
∴ an=a1+ (n- 1)d=1+ (n- 1)×2= 2n-1. ∴通项公式是 an=2n- 1. 法二 a7- a3 13-5 ∵ d= = = 2, 7- 3 7- 3

由于函数
9 2 105 9 f(x) =- 2 x- + 在 0, 上是增函数,在 4 8 4
9 ,+∞ 上是减函数,故当 4
n= 2 时,f(n)=- 2n2+ 9n+ 3 取
得最大值 13,所以数列{- 2n2+ 9n+ 3}的最大项为 a2= 13.
(2)当 n≤ 17, n∈ N+时, n n- 1 |a1|+ |a2|+…+ |an|= a1+ a2+…+ an= na1+ d= 2 3 2 103 - n+ n, 2 2 当 n≥ 18, n∈ N+ 时 |a1 |+ |a2 |+…+ |an |= a1 + a2+…+ a17 - a18- a19-…- an= 3 2 103 2(a1+ a2+…+ a17)- (a1+ a2+…+ an)= n - n+ 884, 2 2 3 2 103 ∴当 n≤ 17, n∈ N+时,{|an|}前 n 项和为- n + n, 2 2 3 2 103 当 n≥ 18, n∈ N+ 时,{|an|}前 n 项和为 n - n+ 884. 2 2
专题五
等比数列的概念和性质
新课标要求理解等比数列的概念,掌握等比数列的通项公 式,并能在具体问题情境中识别数列的等比关系,还要求我 们了解等比数列与指数函数的关系. (1)等比数列的性质是等比数列基本规律的深刻体现,是解决 1. 等比数列问题既快捷又方便的工具,应有意识去应用. (2)在应用性质时要注意性质的前提条件,有时需要进行适当 变形. (3)“巧用性质、减少运算量”在等比数列的计算中非常重要, 使用“基本量法”,并树立“目标意识”,“需要什么,就求什 么”,既要充分合理地运用条件,又要时刻注意题的目标, 往往能取得与“巧用性质”解题相同的效果.
∴am+ n=am+ [(m+ n)-m]· d= n+ n· (-1)=0.
规律方法
由等差数列的通项公式可证明: an- am=(n-
an-am m)d(n、m∈N+,n≠m)或 d= ,当 m=1 时,即为 an n-m =a1+(n-1)d.
专题三
等差数列的性质
运用等差数列的性质解题时,要注意序号与项的对应关 系.在等差数列的学习过程中,最常见的错误是对等差数 列性质的误用.公式am+an=ap+aq(其中p+q=m+n, m、n、p、q∈N+)表明,在等差数列中若每两项的序号和 相等,则其对应项的和也相等,否则不成立.例如:我们 有a2+a4=a1+a5=2a3,但不能得出a6=a2+a4.
高中数学课件
灿若寒星整理制作
章末归纳整合
专题一
数列的概念与函数特性
1.数列中的数是按一定“顺序”排列的,可以看成一个定义域 为正整数集(或它的有限子集)的函数当自变量从小到大依 次取值时对应的一系列函数值.因此,数列的表示方法中 就有了类似于函数表示方法中的列表法、图像法、通项公 式法. 2.数列的分类:按项数有限还是无限分为有穷数列和无穷数 列;按项与项之间的大小关系可分为递增数列、递减数 列、摆动数列和常数列.
专题二
等差数列通项公式
1.等差数列的通项公式为an=a1+(n-1)d,其中包含四 个元素:an,a1,n和d,很显然我们可以做到“知三求 一”. 2.在解题时,我们往往通过解方程(组)来确定a1和d,从 而就可以确定等差数列了,但是,有时这种解法运算 过程稍微复杂了一点,如果能够灵活使用另一个公式 an=am+(n-m)d可以简化运算.
3.数列是项关于序号的函数,是一种特殊的函数,其特殊性在 于数列的定义域是N+(或其有限子集{1,2,3,…,n}),在我 们利用数列的通项公式求其最大项(或最小项)时,要特别注 意这一点,否则会产生错解.
求数列 {-2n2+9n+3}的最大项. 【例1 】
解 已知- 2n
2
9 2 105 + 9n+ 3=- 2n- + . 4 8
规律方法 在证明时,要根据题目条件选择合适的方法, 从而为解题带来方便.
专题六
数列新题秀
数列作为高中数学的一个主干知识,是很多命题人关 注的一个焦点,因此其中的新题也层出不穷.为使同 学们认识和了解这些新题,我们特意安排了一场数列 新题秀(展示).
1.概念创新型
an+2-an+1 【例6】 若在数列{an}中,对任意 n∈N+,都有 =k(k an+1-an 为常数),则称{an}为“等差比数列”.下面对“等差比数列” 的判断:
1,公比为 2 的等比数列.
Sn+ 1 Sn- 1 (2)由 (1)知 = 4· (n≥ 2). n+ 1 n- 1 Sn - - - = 2n 1,∴ Sn= n· 2n 1,∴ an= Sn- Sn- 1=(n+ 1)2n 2(n≥ 2). n Sn- 1 于是 Sn+1= 4(n+ 1)· = 4an(n≥ 2). n- 1 又 a2= 3S1= 3,故 S2= a1+ a2= 4= 4a1. 因此对于任意正整数 n,都有 Sn+1= 4an.
①k不可能为0;②等差数列一定是“等差比数列”;③等比 数列一定是“等差比数列”;④通项公式为an=a· bn+ c(a≠0,b≠0,1)的数列一定是“等差比数列”. 其中正确的判断为( ). A.①②B.①④C.③④D.②③
[思路探索 ] 若 k= 0,则 an+2- an+1= 0(n∈ N+ ),用 n- 1 代 an+2- an+1 换 n,可得 an+ 1- an= 0,此时 = k 无意义,故①中 an+1- an 判断正确;数列 a, a, …, a(a≠ 0)既是等差数列,又是等 an+2- an+1 比数列,但不满足 = k,故②③中判断不正确;当 an+1- an an = a· b
规律方法 (1)由于数列是特殊函数,因此可以用研究函 数的思想方法来研究数列的相关性质,如单调性、最大 值、最小值等;此时要注意数列的定义域为正整数集(或 其子集)这一条件.
an-1≤ an, (2)可以利用不等式组 an≥ an+ 1, 找到数列的最大项;利
an-1≥ an, 用不等式组 找到数列的最小项. an≤ an+ 1,
已知数列 {an},{bn}均为等差数列,且{an}为2,5,8,…, 【例 3】 {bn}为1,5,9,…,它们的项数均为40,则它们有多少个彼 此具有相同数值的项? 解 由已知两等差数列的前3项,容易求得它们的通项公 式分别为:an=3n-1,bm=4m-3(m、n∈N+,且 1≤n≤40,1≤m≤40).令an=bm,得3n-1=4m-3,
Sn 证明:(1)数列 是等比数列; (2)Sn+1= 4an. n
证明
n+2 (1)因为 an+1=Sn+1-Sn,an+1= S, n n
所以(n+2)Sn=n(Sn+1-Sn). Sn+ 1 2Sn 整理得 nSn+1=2(n+1)Sn.所以 = . n+1 n
Sn 故 是首项为 n
2.等比数列的概念、性质、通项公式是高考的必考内容,特 别是与其他知识的交汇点,一直是考查的重要热点之一, 常见的考题有: (1)判断、证明数列是等比数列; (2)运用通项公式求数列中的项; (3)解决数列与函数、三角、向量、几何等知识交汇点问 题; (4)涉及递推关系的推理及运算问题.
n+2 【例5】 数列{an}的前 n 项和记为 Sn,已知 a1=1,an+1= n Sn(n = 1,2,3,… ).
在等差数列 {an}中,a10=23,a25=-22, 【例 4】 (1)数列{an}前多少项和最大? (2)求{|an|}前n项和.

a1+ 9d= 23 (1)由 a1+ 24d=- 22 a1= 50, 得 d=- 3,
53 ∴ an= a1+ (n- 1)d=- 3n+ 53,令 an>0,得: n< , 3 ∴当 n≤ 17, n∈ N+ 时, an>0; 当 n≥ 18, n∈ N+时, an<0, ∴ {an}前 17 项和最大.
∴ an=a3+ (n- 3)d=5+ (n- 3)×2= 2n-1. ∴通项公式是 an=2n- 1.
(2)解
∵ a,2a- 1,3- a 是等差数列的前三项, 且 a2- a1= a3
- a2= d,∴ 2a- 1- a= 3- a-(2a- 1), 5 1 解得 a= .∴ d= 2a- 1- a= a- 1= . 4 4 5 1 1 ∴ an= a1+ (n- 1)d= + (n- 1)× = n+ 1. 4 4 4 1 ∴通项公式为 an= n+ 1. 4 (3)法一 设等差数列{an}的首项为 a1, 公差为 d, 则依题意,
a1= m+ n- 1, 解得 d=- 1.
a1+ m- 1 d= n, 得 a1+ n- 1 d= m,
∴am+ n=a1+(m+n-1)d=m+n-1+(m+n-1)· (-1)=0. 法二 am-an ∵am= an+(m- n)d,m≠n,∴d= =- 1. m-n
相关文档
最新文档