光的偏振特性研究

光的偏振特性研究
光的偏振特性研究

实验7 光的偏振特性研究

光的干涉衍射现象揭示了光的波动性,但是还不能说明光波是纵波还是横波。而光的偏振现象清楚地显示其振动方向与传播方向垂直,说明光是横波。1808年法国物理学家马吕斯(Malus,1775—1812)研究双折射时发现折射的两束光在两个互相垂直的平面上偏振。此后又有布儒斯特(Brewster,1781—1868)定律和色偏振等一些新发现。

光的偏振有别于光的其它性质,人的感觉器官不能感觉偏振的存在。光的偏振使人们对光的传播规律(反射、折射、吸收和散射)有了新的认识。本实验通过对偏振光的观察、分析和测量,加深对光的偏振基本规律的认识和理解。

偏振光的应用很广泛,从立体电影、晶体性质研究到光学计量、光弹、薄膜、光通信、实验应力分析等技术领域都有巧妙的应用。

一、实验目的

1. 观察光的偏振现象,了解偏振光的产生方法和检验方法。

2. 了解波片的作用和用1/4波片产生椭圆和圆偏振光及其检验方法。

3. 通过布儒斯特角的测定,测得玻璃的折射率。

4. 验证马吕斯定律。

二、实验原理

1. 自然光和偏振光

光是一种电磁波,电磁波中的电矢量E就是光波的振动矢量,称作光矢量。通常,光源发出的光波,其电矢量的振动在垂直于光的传播方向上作无规则的取向。在与传播方向垂直的平面内,光矢量可能有各种各样的振动状态,被称为光的偏振态。光的振动方向和传播方向所组成的平面称为振动面。按照光矢量振动的不同状态,通常把光波分为自然光、部分偏振光、线偏振光(平面偏振光)、圆偏振光和椭圆偏振光五种形式。

如果光矢量的方向是任意的,且在各方向上光矢量大小的时间平均值是相等的,这种光称为自然光。自然光通过介质的反射、折射、吸收和散射后,光波的电矢量的振动在某个方向具有相对优势,而使其分布对传播方向不再对称。具有这种取向特征的光,统称为偏振光。

偏振光可分为部分偏振光、线偏振光(平面偏振光)、圆偏振光和椭圆偏振光。如果光矢量可以采取任何方向,但不同方向的振幅不同,某一方向振动的振幅最强,而与该方向垂直的方向振动最弱,这种光为部分偏振光。如果光矢量的振动限于某一固定方向,则这种光称为线偏振光或平面偏振光。如果光矢量的大小和方向随时间作有规律的变化,且光矢量的末端在垂直于传播方向的平面内的轨迹是椭圆,则称为椭圆偏振光;如果是圆则称为圆偏振光。

将自然光变成偏振光的过程称为起偏,用于起偏的装置称为起偏器;鉴别光的偏振状态的过程称为检偏,它所使用的装置称为检偏器。实际上,起偏器和检偏器是可以通用的。本实验所用的起偏器和检偏器均为分子型薄膜偏振片。

2.线偏振光的产生

产生线偏振光的方法有反射产生偏振、多次折射产生偏振、双折射产生偏振和选择性吸收产生偏振等。

(1)反射产生偏振与布儒斯特定律

当自然光入射到各向同性的两种介质(如空气和玻璃)分界面时,反射光和透射(折射)光一般为部分偏振光。若改变入射角,则反射光的偏振程度也随之改变。设两介质的折射率分别为1n 和2n ,可以证明,当入射角为某一特定值p ψ

21

tan p n n ψ= (1) 时,反射光变为线偏振光,其振动面垂直于入射面,平行于入射面振动的光反射率为零,而透射光为部分偏振光,如图1所示,其中“”表示振动面垂直于入射面的线偏振光,短线“-”表示振动面平行于入射面的线偏振光,圆圈和短线的数量表示偏振程度。式(1)称为布儒斯特定律,p ψ为布儒斯特角,或称起偏振角。根据光反射的这一特性,就可用调节入射角的方法获得线偏振光,也可以通过测量p ψ来计算折射率2n 。例如,通过测量激光束从空气射向玻璃表面反射时的布儒斯特角p ψ可以测定玻璃相对空气的折射率。

(2)透射产生偏振

当光波的入射角为布儒斯特角时,虽然反射光为线偏振光,但反射率很低(如空气和玻璃界面,反射光强约为入射光强的8%)。对折射光而言,平行于入射面的振动分量全部透过界面,而垂直于入射面的振动分量仅一小部分被反射,大部分也透过了界面,所以透射光只是偏振化程度不高的部分偏振光。如果自然光以p ψ入射到重叠的互相平行的玻璃片堆上,则经过多次折射,最后从玻璃片堆透射出来的光一般是部分偏振光。如果玻璃片数目足够多时,则透射光也变为线偏振光,其振动面平行于入射面。

(3)晶体双折射产生偏振

当一束光射入各向异性的晶体时,产生折射率不同的两束光的现象称为双折射现象。当 图1 用玻璃片产生反射全偏振光

光垂直于晶体表面入射而产生双折射现象时,如果将晶体绕光的入射方向慢慢转动,按原入射方向传播的那一束光方向不变,这一束折射光的方向满足折射定律,称为寻常光(o 光),它在介质中传播时,各个方向的速度相同。另一束折射光线随着晶体的转动绕前一束光旋转,可见此光束不满足折射定律,它在各向异性介质内的速度随方向而变,称为非寻常光(e 光)。在一些双折射晶体中,有一个或几个方向,o 光和e 光的传播速度相同,这个方向称为晶体的光轴。光线在晶体内沿光轴传播时,不发生双折射,垂直于光轴传播时,e 光和o 光沿同一方向传播不再分离,但传播速度仍是不同。光轴和光线构成的平面称为主截面。o 光和e 光都是线偏振光,但其振动方向不同。o 光电矢量振动方向垂直于自己的主截面,e 光的电矢量振动方向在自己的主截面内,o 光和e 光电矢量互相垂直。

利用晶体的双折射现象,可以做成复合棱镜,使其中一束折射光偏离原来的传播方向而得到线偏振光。实验中采用格兰棱镜做成的偏振器,用以产生或检验线偏振光。

(4)二向色性产生偏振与偏振片

有些晶体材料对自然光在其内部产生的偏振分量具有选择吸收作用,即对一种振动方向的线偏振光吸收强烈,而对与这一振动方向垂直的线偏振光吸收较少,这种现象称做二向色性。例如,电气石天然晶体(铝硼硅酸盐)仅需约1mm 的厚度,就能将寻常光完全吸收,只透过非寻常光,即获得线偏振光。

偏振片是人工制造的具有二向色性的膜片。每个偏振片的最易透过电场分量的方向叫做透振方向,也称偏振化方向。即当光波穿过它时,平行于透振方向振动的光容易透过,垂直于透振方向振动的光则被吸收,从而获得线偏振光。因此,自然光通过偏振片后,透射光基本上成为电矢量的振动方向与偏振化方向平行的线偏振光。利用这类材料制成的偏振片可获得较大截面积的偏振光束,但由于吸收不完全,所得的偏振光只能达到一定的偏振度。实验室常用偏振片得到偏振光。偏振片既可以用作起偏器又可以作为检偏器。

3.马吕斯定律

如果自然光通过起偏器后变成强度为I 0的线偏振光,再通过一个理想检偏器后,成为强度为I 的线偏振光,其透射光的强度为

I = I 0 cos 2θ (2)

此式称为马吕斯定律。其中θ为起偏器与检偏器两个透振方向之间的夹角,改变θ角可以改变透过检偏器的光强。根据马吕斯定律,线偏振光透过检偏器的光强随偏振面和检偏器的偏振化方向之间夹角θ将发生周期性变化。当θ为0或π时,透射光强度最大;而当θ为2π或32

π时,透射光强度为零,即当检偏器转动一周会出现两次消光现象。如用普通偏振片做检偏器,则需引入透射系数k ,式(2)可改为

I =kI 0 cos 2θ (3) 显然,当以光的传播方向为轴旋转检偏器时,每转900透射光强将交替出现极大和消光位置。如果部分偏振光或椭圆偏振光通过检偏器,当旋转检偏器时,虽然透射光强每隔900

也从极大变为极小,再由极小变为极大,但无消光位置。而圆偏振光通过检偏器,当旋转检偏器时,透射光强则无变化。

4.椭圆偏振光和圆偏振光的产生

若使线偏振光垂直射入厚度为d 的晶体中,发生双折射现象。设晶体对o 光和e 光的折射率分别为0n 和e n ,则通过晶体后两束光的光程差为

()o e n n d

δ=- (4)

经过晶体后,其位相差为 2()o e n n d π?λ?=

- (5)

其中λ是光在真空中的波长。 如果以平行光轴方向为x 坐标,垂直方向为y 坐标,由晶片出射后的o 光和e 光的振动可以用两个互相垂直、同频率、有固定位相差的简谐振动方程式表示:

sin e x A t ω= (6)

sin()o y A t ω?=+? (7)

两式联立消去t ,可得合振动方程:

222222cos()sin ()e o e o

x y xy A A A A ??+-?=? (8) 一般来说,此式为椭圆方程,合振动矢量的端点轨迹,一般是椭圆,因此称为椭圆偏振光。决定椭圆形的因素是入射光的振动方向与光轴的夹角α和晶片的厚度d 。但是,当

2k ?π?= (k =1,2,3,…)或(21)k ?π?=+ (k =0,1,2,…) (9) 时,式(8)变为直线方程

e o A x y A =或e o A x y A =- (10) 代表两个不同方向振动的线偏振光。而当

(21)

2k π??=+(k =0,1,2,…) (11)

时,光程差 ()o e n n d δ=-(21)4k λ=+ (12)

式(8)成为正椭圆方程。当o 45=α时,o e A A =合振动就是圆偏振光。

把双折射晶体沿光轴切割成平行平板,平板表面平行于光轴,这就是晶片。能使振动互相垂直的两束线偏振光产生一定位相差的晶片叫做波片。选定晶体后,对于某一波长的单色

光,??只取决于波片的厚度。波片是从单轴双折射晶体上平行于光轴方向截下的薄片,它可以改变偏振光的偏振态。

(1) 当2k ?π?=(k =1,2,3,…)时,光程差()o e n n d δ=-k λ=或o e k d n n λ

=-,

即这样的晶片能使o 光和e 光产生k λ的光程差,称为全波片(或λ波片)。此时由式(8)可得直线方程,表示合振动为线偏振光(与入射线偏振光方向平行)。

(2) 当(21)k ?π?=+(k =0,1,2,…)时,则光程差()o e n n d δ=-(21)

2k λ=+。此时晶片的厚度可使o 光和e 光产生(21)2k λ

+光程差,称为二分之一波片(或2

λ波片)由式(8)得直线方程,表示合振动仍为线偏振光(但与入射光的振动方向有2α的夹角)。

(3) 当2/)12(π?+=?k (k =0,1,2,…)时,则光程差()o e n n d δ=-(21)4k λ=+,此时晶片的厚度可是o 光和e 光产生(21)4k λ

+光程差,称为四分之一波片(或4

λ波片)由式(8)得到正椭圆方程。表示合振动为正椭圆偏振光。

4λ波片主要用于产生或检验椭圆偏振光和圆偏振光。对于线偏振光垂直射入

4

λ波片时,且振动方向与波片光轴成α角时,合成的光偏振状态还有以下几种情况 ① 当0=α时,0=o A 可得到振动方向平行于光轴的线偏振光。

② 当2πα=

时,0e A =可得到振动方向垂直于光轴的线偏振光。 ③ 当4

π

α=时,o e A A =可得到圆偏振光。 ④ 当α为其它值时,e o A A ≠经

4λ波片透出的光为椭圆偏振光。

图2 偏振光实验仪结构示意

1—涂黑反射镜;2—旋转载物台;3—玻璃堆;4—白屏;5—半导体激光器及调整架;6—白炽灯;7—旋光管;8—偏振片组;9—半波片;10—1/4波片;11—聚光镜;12—光电接收器;13—检流计数显箱;14—导轨平台;15—二维磁力滑座;16—一维磁力滑座

三、实验仪器

WZP-1型偏振光实验仪。

1. 仪器简介

WZP-1型偏振光实验仪由导轨平台、磁力滑座、光源、偏振部件、光电接收单元和聚光镜及白屏(观察实验现象)组成,图2为其结构示意图。导轨带有导向凸台并附有标尺,实验时根据需要选择部件并将磁力滑座的基准面靠入导轨凸台,旋转磁力滑座可进行升降调节使系统达到同轴。

2. 使用方法

在导轨平台上靠近两端各放置光源及光电接收器,检流计数显箱后面板有两排插孔,上面两孔接插硅光电池,旁边的换档开关向上拨到光电池档。先对激光器调焦:把接收器换成白屏,轻旋激光器上调焦镜,观察白屏上光斑最小(约2~3mm)即可。撤掉白屏换上接收器,如图3。利用激光器调整架调节光束发射角度,与二维磁力滑座联调使光信号进入接收

1.

向平行时,光最强,偏振化方向垂直时,光最暗。将检偏器旋转一周,光强变化四次,两明两暗。固定检偏器,旋转起偏器可产生同样的现象。

通过实验我们知道光通过偏振片后成为偏振光,偏振片起到了起偏器和检偏器的作用。

2. 验证马吕斯(Malus)定律

依照实验1的方法安置仪器,使起偏器和检偏器正交,记录光电接收的示值I,然后将检偏器间隔10~15°转动一次并记录一次,直至转动90°为止,利用所得实验数据验证马吕斯定律。

对激光器进行调焦,按照载物台以上约三分之二玻璃堆高度调整入射光,如图6所示。

(2) 玻璃堆置于载物台上,使玻璃堆垂直光轴,此时入射光通过玻璃堆的法线射向光电池。放入偏振片、白屏。旋转内盘使入射光以50°~60°射入玻璃堆,反射光射到白屏上并使偏振片、白屏与反射光垂直。旋转偏振片,观察到光的亮度有强、弱变化,说明玻璃堆起到了起偏器的作用。旋转偏振片使光斑处于较暗的位置,如图7所示。

(3)转动内盘,观察白屏看反射光亮度的改变,如果亮度渐渐变弱,再旋转偏振片使亮

度更弱。

反复调整直至亮度最弱,接近全暗。这时再转偏振片,如果反射光的亮度由黑变亮,再变黑,

,代入式(1)计算玻璃的折射率2n ,并估算折射率2n 的不确定度。

此方法不是唯一测量方法,可以自己动手设计其它实验方法。

4.椭圆偏振光和圆偏振光

由物理光学知道,平面偏振光通过1/4波片后,透射光一般是椭圆偏振光,当4πα=时(α为平面偏振光的振动方向与波片光轴的夹角),则为圆偏振光;但当0=α和2π时,椭圆偏振光退化为平面偏振光。也就是说,1/4波片可将平面偏振光变成椭圆偏振光或圆偏振光;也可将椭圆偏振光或圆偏振光变成平面偏振光。

如果平面偏振光的振动方向与1/2波片光轴的夹角为α,则通过1/2波片后的光仍为平面偏振光,但其振动面相对于入射光的振动面转过2α角。

如果1/4波片的光轴与起偏的偏振化方向不成45°角,则由波片出来的光为椭圆偏振光,旋转检偏可看到光强在各个方向上有强弱变化。

取下1/4波片,使两偏振片正交,视场最暗。将1/2波片(波片的指标线对至0°)放入两偏振片之间,使1/2波片的光轴与起偏的偏振化方向成α角,视场变亮。旋转检偏使视场最暗,此时检偏的转盘刻度相对于起偏器转动了2α角。说明线偏振光经1/2波片后仍为线偏振光,但振动面旋转了2α角。

5. 旋光现象

在光源前放入两偏振片使其正交,将装有糖溶液的旋光管放入两偏振片之间。由于糖溶液的旋光作用,视场由暗变亮,将偏振片旋转某一角度后,视场由亮变暗。说明偏振光透过旋光物质后仍是偏振光,但其振动面旋转了一个角度。

五、预习要求

1. WZP-1型偏振光实验仪的基本结构和使用方法。

2. 怎样测布儒斯特角?掌握布儒斯特定律和马吕斯定律的内容。

3. 怎样鉴别一束光是线偏振光?

4. 怎样区分自然光和圆偏振光;部分偏振光和椭圆偏振光?

5. 如何由自然光获得线偏振光和椭圆偏振光?

【注意事项】

1. 激光器发光强度的起伏对实验有影响,应配置稳压电源,并预热半小时。

2. 仪器应保持清洁,光学件表面灰尘应用皮老虎吹掉,或用脱脂棉轻轻擦拭,切勿用手触摸表面。导轨面可涂少许润滑剂。

3. 眼睛不要正视激光束,以免造成眼睛的伤害。

4. 正确调节激光器的方位,使激光束照射到硅光电池上。正确使用激光器的强度调节旋钮和光电检流计的衰减旋钮,使检流计读数较大而又不超过最大量程。在测量光强度时,通过调整衰减器,以抵消外部光线的影响。

5. 光学仪器(偏振片、波片、反射镜等)要轻拿轻放,特别是本实验所用的偏振片和波片的支架较重,而波片本身又易碎,所以需要格外爱护。

6. 进行光的起偏和检偏时,起偏器和检偏器的放置方向要一致;进行反射光的偏振实验时,要仔细旋转内盘和偏振片,以准确测出反射光是线偏振光时的入射角。

7. 在轨道上移动元件时,磁锁打开,其余时间一定使之处于锁定状态,以免掉落在地面而损坏。

六、思考与讨论

1. 在测定布儒斯特角过程中,需要改变几个参量?采用怎样的步骤能最快地找到全偏振的反射光?

cos 的函数图形不是直线,而是一扁椭圆,试分析原因?

2. 若测得I与2

3. 在两正交偏振片之间再插入一偏振片,并转动一周,会有什么现象?如何解释?

4. 假如有自然光、圆偏振光、自然光与圆偏振光的混合光3种光分别从3个洞口射出,怎样识别每个口射出来的是什么光?

5. 用什么简易方法能够大致判断无标志偏振片的透振方向?

光的偏振现象的研究

图2 二向色性起偏 图1 平面偏振光、自然光和部分偏振光 实验名称 光的偏振现象的研究 姓 名 学 号 班 级 桌 号 教 室 基础教学楼1406 实验日期 20 年 月 日 时段 指导教师 一. 实验目的 1. 观察光的偏振现象,加深对光偏振基本规律的认识。 2. 了解产生和检验偏振光的基本方法。 3. 验证马吕斯定律。 4.1/4波片,1/2波片的研究; 5.利用旋光现象测定蔗糖溶液浓度 二. 实验仪器 导轨和机座, 氦氖激光器(功率约5mW ), 激光器架, 偏振片波片架, 滑动座(5个), 光传感器(光电探头),光功率测试仪,偏振片(两个),1/4波片(波长632.8nm ),1/2波片(波长632.8nm ),透明蔗糖溶液,螺丝刀 三. 实验原理(请携带并参阅大学物理课本) 1. 偏振光的基本概念 光波是一种电磁波,它的电矢量 和磁矢量 相互垂直,并垂直于光的传播方向C 。通常人们用电矢量 代表光的振动方向,并将电矢量和光的传播方向C 所构成的平面称为光的振动面。在传播过程中,电矢量的振动方向始终在某一确定方向的光称为平面偏振光或线偏振光,如图1(a)所示。振动面的取向和光波电矢 量的大小随时间作有规律的变化,光波电矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆时,称为椭圆偏振光或圆偏振光,人眼逆光来看,若电矢量末端按照顺时针方向旋转,则称 评 分 教师签字

图3 双折射起偏原理图 为右旋椭圆或右旋圆偏振光,反之为左旋。通常光源发出的光波有与光波传播方向相垂直的一切可能的振动方向,没有一个方向的振动比其它方向更占优势。这种光源发射的光对外不显现偏振的性质,称为自然光,如图1(b)所示;如果光波电矢量的振动在传播过程中只是在某一确定方向上占优势,则此偏振光称为部分偏振光,如图1(c)所示。将自然光变成偏振光的器件称为起偏器,用来检验偏振光的器件称为检偏器。实际上,起偏器和检偏器是互为通用的。下面介绍几种常用的起偏和检偏方法。 2. 二向色性起偏、马呂斯定律、双折射起偏及波片 物质对不同方向的光振动具有选择吸收的性质,称为二向色性。当自然光射到偏振片上时,振动方向与透振方向垂直的光被吸收,振动方向与透振方向平行的光透过偏振片,从而获得偏振光。自然光透过偏振片后,只剩下沿透光方向的光振动,透射光成为平面偏振光(见图2所示)。 若在偏振片P 1后面再放一偏振片P 2,P 2就可以用作检验经P 1后的光是否为偏振光,即P 2 起了检偏器的作用。当起偏器P 1和检偏器P 2的偏振化方向间有一夹角,则通过检偏器P 2的偏振光强度满足马呂斯定律: (1) 当θ= 时,I=I 0, 光强最大;当θ= 时,I =0,出现消光现象;当θ为其它值时,透射光强介于0~I 0之间。 (1)双折射起偏 某些单轴晶体(如方解石和石英等)具有双折射现象。当一束自然光射到这些晶体上时,在界面射入晶体内部的折射光常为传播方向不同的两束折射光线,这两束折射光是光矢量振动方向不同的线偏振光。其中一束折射光 ,称为寻常光(或O 光);另一束折射光 ,其振动在 内,称为非常光(或e 光),如图3所示。 研究发现,这类晶体存在这样一个方向,沿该方向传播的光 ,该方向称为光轴。 主平面: 主截面: (2)反射和折射时光的偏振 自然光在两种透明媒质的界面上反射和折射时,反射光和折射光就能成为部分偏振光或平面偏振光,而且反射光中垂直入射面的振动较强,折射光中平行入射面的振动较强。实验发现,当改变入射角i 时,反射光的偏振程度也随之改变,当i 等于特定角0i 时,反射光只有垂直于入

光的偏振特性研究

实验7 光的偏振特性研究 光的干涉衍射现象揭示了光的波动性,但是还不能说明光波是纵波还是横波。而光的偏振现象清楚地显示其振动方向与传播方向垂直,说明光是横波。1808年法国物理学家马吕斯(Malus,1775—1812)研究双折射时发现折射的两束光在两个互相垂直的平面上偏振。此后又有布儒斯特(Brewster,1781—1868)定律和色偏振等一些新发现。 光的偏振有别于光的其它性质,人的感觉器官不能感觉偏振的存在。光的偏振使人们对光的传播规律(反射、折射、吸收和散射)有了新的认识。本实验通过对偏振光的观察、分析和测量,加深对光的偏振基本规律的认识和理解。 偏振光的应用很广泛,从立体电影、晶体性质研究到光学计量、光弹、薄膜、光通信、实验应力分析等技术领域都有巧妙的应用。 一、实验目的 1. 观察光的偏振现象,了解偏振光的产生方法和检验方法。 2. 了解波片的作用和用1/4波片产生椭圆和圆偏振光及其检验方法。 3. 通过布儒斯特角的测定,测得玻璃的折射率。 4. 验证马吕斯定律。 二、实验原理 1. 自然光和偏振光 光是一种电磁波,电磁波中的电矢量E就是光波的振动矢量,称作光矢量。通常,光源发出的光波,其电矢量的振动在垂直于光的传播方向上作无规则的取向。在与传播方向垂直的平面内,光矢量可能有各种各样的振动状态,被称为光的偏振态。光的振动方向和传播方向所组成的平面称为振动面。按照光矢量振动的不同状态,通常把光波分为自然光、部分偏振光、线偏振光(平面偏振光)、圆偏振光和椭圆偏振光五种形式。 如果光矢量的方向是任意的,且在各方向上光矢量大小的时间平均值是相等的,这种光称为自然光。自然光通过介质的反射、折射、吸收和散射后,光波的电矢量的振动在某个方向具有相对优势,而使其分布对传播方向不再对称。具有这种取向特征的光,统称为偏振光。 偏振光可分为部分偏振光、线偏振光(平面偏振光)、圆偏振光和椭圆偏振光。如果光矢量可以采取任何方向,但不同方向的振幅不同,某一方向振动的振幅最强,而与该方向垂直的方向振动最弱,这种光为部分偏振光。如果光矢量的振动限于某一固定方向,则这种光称为线偏振光或平面偏振光。如果光矢量的大小和方向随时间作有规律的变化,且光矢量的末端在垂直于传播方向的平面内的轨迹是椭圆,则称为椭圆偏振光;如果是圆则称为圆偏振光。 将自然光变成偏振光的过程称为起偏,用于起偏的装置称为起偏器;鉴别光的偏振状态的过程称为检偏,它所使用的装置称为检偏器。实际上,起偏器和检偏器是可以通用的。本实验所用的起偏器和检偏器均为分子型薄膜偏振片。

偏振光的观测与研究~~实验报告

偏振光的观测与研究 光的干涉与衍射实验证明了光的波动性质。本实验将进一步说明光就是横波而不就是纵波,即其E与H的振动方向就是垂直于光的传播方向的。光的偏振性证明了光就是横波,人们通过对光的偏振性质的研究,更深刻地认识了光的传播规律与光与物质的相互作用规律。目前偏振光的应用已遍及于工农业、医学、国防等部门。利用偏振光装置的各种精密仪器,已为科研、工程设计、生产技术的检验等,提供了极有价值的方法。 【实验目的】 1.观察光的偏振现象,加深偏振的基本概念。 2.了解偏振光的产生与检验方法。 3.观测布儒斯特角及测定玻璃折射率。 4.观测椭圆偏振光与圆偏振光。 【实验仪器】 光具座、激光器、偏振片、1/4波片、1/2波片、光电转换装置、光点检流计、观测布儒斯特角装置 图1 实验仪器实物图 【实验原理】 1.偏振光的基本概念 按照光的电磁理论,光波就就是电磁波,它的电矢量E与磁矢量H相互垂直。两者均垂直于光的传播方向。从视觉与感光材料的特性上瞧,引起视觉与化学反应的就是光的电矢量,通常用电矢量E代表光的振动方向,并将电矢量E与光的传播方向所构成的平面称为光振动面。 在传播过程中,光的振动方向始终在某一确定方位的光称为平面偏振光或线偏振光,如图2(a)。光源发射的光就是由大量原子或分子辐射构成的。由于热运动与辐射的随机性,大量原子或分子发射的光的振动面出现在各个方向的几率就是相同的。一般说,在10-6s内各个方向电矢量的时间平均值相等,故出现如图2(b)所示的所谓自然光。有些光的振动面在某个特定方向出现的几率大于其她方向,即在较长时间内电矢量在某一方向较强,这就就是如图2(c)所示的所谓部分偏振光。还有一些光,其振动面的取向与电矢量的大小随时间作有规则的变化,其电矢量末端在垂直于传播方向的平面上的移动轨迹呈椭圆(或圆形),这样的光称为椭圆偏振光(或圆偏振光),如图2(c)所示。 图2 光波按偏振的分类 2.获得偏振光的常用方法 (1)非金属镜面的反射。 通常自然光在两种媒质的界面上反射与折射时,反射光与折射光都将成为部分偏振光。并且当入射角增大到某一特定值时,镜面反射光成为完全偏振光,其振动面垂直于入射面,如图3所示,这时入射角称为布儒斯特角,也称为起偏角。

光的偏振 实验报告.doc

光的偏振 实验仪器: 光具座、半导体激光器、偏振片、1/4波片、激光功率计。 实验原理: 自然光经过偏振器后会变成线偏振光。偏振片既可作为起偏器使用,亦可作为检偏器使用。 马吕斯定律:马吕斯指出:强度为I0的线偏振光,透过检偏片后,透射光的强度(不考虑吸收)为I=I0cos2。(是入射线偏振光的光振动方向和偏振片偏振化方向之间的夹角。) 当光法向入射透过1/4波片时,寻常光(o光)和非常光(e光)之间的位相差等于π/2或其奇数倍。当线偏振光垂直入射1/4波片,并且光的偏振和云母的光轴面成θ角,出射后成椭圆偏振光。特别当θ=45°时,出射光为圆偏振光。 实验1、2光路图: 实验5光路图: 实验步骤: 1.半导体激光器的偏振特性: 转动起偏器,观察其后的接受白屏,记录器功率最大值和最小值,以及对应的角度,求出半导体激光的偏振度。 2。光的偏振特性——验证马吕斯定律: 利用现有仪器,记录角度变化与对应功率值,做出角度与功率关系曲线,并与理论值进行比较。 5.波片的性质及利用: 将1/4波片至于已消光的起偏器与检偏器间,转动1/4波片观察已消光位置,确定1/4波片光轴方向,改变1/4波片的光轴方向与起偏器的偏振方向的夹角,对应每个夹角检偏器转动一周,观察输出光的光强变化并加以解释。

实验数据: 实验一: 实验二: 实验五: 数据处理: 实验一: 计算得半导体激光的偏振度约为 故半导体激光器产生的激光接近于全偏振光。实验二: 绘得实际与理论功率值如下:

进行重叠发现二者的图线几乎完全重合,马吕斯定律得到验证。实验五:见“实验数据”中的表格

总结与讨论: 本次实验所用仪器精度较高,所得数据误差也较小。 当光法向入射透过1/4波片时,寻常光(o光)和非常光(e光)之间的位相差等于π/2或其奇数倍。当线偏振光垂直入射1/4波片,并且光的偏振和云母的光轴面成θ角,出射后成椭圆偏振光。特别当θ=45°时,出射光为圆偏振光,这就是实验五中透过1/4波片的线 偏光成为不同偏振光的原因。XX大学生实习报告总结 3000字 社会实践只是一种磨练的过程。对于结果,我们应该有这样的胸襟:不以成败论英雄,不一定非要用成功来作为自己的目标和要求。人生需要设计,但是这种设计不是凭空出来的,是需要成本的,失败就是一种成本,有了成本的投入,就预示着的人生的收获即将开始。 小草用绿色证明自己,鸟儿用歌声证明自己,我们要用行动证明自己。打一份工,为以后的成功奠基吧! 在现今社会,招聘会上的大字板都总写着“有经验者优先”,可是还在校园里面的我们这班学子社会经验又会拥有多少呢?为了拓展自身的知识面,扩大与社会的接触面,增加个人在社会竞争中的经验,锻炼和提高自己的能力,以便在以后毕业后能真正的走向社会,并且能够在生活和工作中很好地处理各方面的问题记得老师曾说过学校是一个小社会,但我总觉得校园里总少不了那份纯真,那份真诚,尽管是大学高校,学生还终归保持着学生身份。而走进企业,接触各种各样的客户、同事、上司等等,关系复杂,但你得去面对你从没面对过的一切。记得在我校举行的招聘会上所反映出来的其中一个问题是,学生的实际操作能力与在校的理

光的偏振现的研究

图 2 二向色性起偏 图1 平面偏振光、自然光和部分偏振光 实验名称 光的偏振现象的研究 姓 名 学 号 班 级 桌 号 教 室 基础教学楼1406 实验日期 20 年 月 日 时段 指导教师 一. 实验目的 1. 观察光的偏振现象,加深对光偏振基本规律的认识。 2. 了解产生和检验偏振光的基本方法。 3. 验证马吕斯定律。 4.1/4波片,1/2波片的研究; 5.利用旋光现象测定蔗糖溶液浓度 二. 实验仪器 导轨和机座, 氦氖激光器(功率约5mW ), 激光器架, 偏振片波片架, 滑动座(5个), 光传感器(光电探头),光功率测试仪,偏振片(两个),1/4波片(波长632.8nm ),1/2波片(波1. 偏振光的基本概念 光波是一种电磁波,它的电矢量 和磁矢量 相互垂直,并垂直于光的传播方向C 。通常人们用电矢量 代表光的振动方在传播过程中,电矢量的振动方向始终在某一确定方向的光称为平面偏振光或线偏振光,如图1(a)所示。振动面的取向和光波电矢 量的大小随时间作有规律的变化,光波电矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆时,称为椭圆偏振光或圆偏振光,人眼逆光来看,若电矢量末端按照顺时针方向旋转,则称 评 分 教师签字

图3 双折射起偏原理图 为右旋椭圆或右旋圆偏振光,反之为左旋。通常光源发出的光波有与光波传播方向相垂直的一切可能的振动方向,没有一个方向的振动比其它方向更占优势。这种光源发射的光对外不显现偏振的性质,称为自然光,如图1(b)所示;如果光波电矢量的振动在传播过程中只是在某一确定方向上占优势,则此偏振光称为部分偏振光,如图1(c)所示。将自然光变成偏振光的器件称为起偏器,用来检验偏振光的器件称为检偏器。实际上,起偏器和检偏器是互为通用的。下面介绍几种常用的起偏和检偏方法。 2. 二向色性起偏、马呂斯定律、双折射起偏及波片 物质对不同方向的光振动具有选择吸收的性质,称为二向色性。当自然光射到偏振片上时,振动方向与透振方向垂直的光被吸收,振动方向与透振方向平行的光透过偏振片,从而获得偏振光。自然光透过偏振片后,只剩下沿透光方向的光振动,透射光成为平面偏振光(见图2所示)。 若在偏振片P 1后面再放一偏振片P 2,P 2就可以用作检验经P 1后的光是否为偏振光,即P 2 起了检偏器的作用。当起偏器P 1和检偏器P 2的偏振化方向间有一夹角,则通过检偏器P 2的偏振光强度满足马呂斯定律: (1) 当θ= 时,I=I 0, 光强最大;当θ= 时,I =0,出现消光现象;当θ为其它值时,透射光强介 于0~I 0之间。 (1)双折射起偏 某些单轴晶体(如方解石和石英等)具有双折射现象。当一束自然光射到这些晶体上时,在界面射入晶体内部的折射光常为传播方向不同的两束折射光线,这两束折射光是光矢量振动方向不同的线偏振光。其中一束折射光 ,称为寻常光(或O 光);另一束折射光 ,其振动在 内,称为非常光(或e 光),如图3所示。 研究发现,这类晶体存在这样一个方向,沿该方向传播的光 ,该方向称为光轴。 主平面: 主截面: (2)反射和折射时光的偏振 自然光在两种透明媒质的界面上反射和折射时,反射光和折射光就能成为部分偏振光或平面偏振光,而且反射光中垂直入射面的振动较强,折射光中平行入射面的振动较强。实验发现,当改变入射角i 时,反射光的偏振程度也随之改变,当i 等于特定角0i 时,反射光只有垂直于入

(最新整理)反射光的偏振特性

(完整)反射光的偏振特性 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)反射光的偏振特性)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)反射光的偏振特性的全部内容。

反射光的偏振特性—布儒斯特角的测量 1808年马吕斯(1775-1812)发现了光的偏振现象。通过深入研究,证明了光波是横波,使 人们进一步认识了光的本质。随着科学技术的发展,偏振光技术在各个领域都得到了广泛应用, 特别是在光学计量、实验应力分析、晶体性质研究和激光等方面更为突出.在我们日常生活和工 作中,太阳光、照明用光一般多为自然光。而自然光经过一些材料的反射和透射后可能变成部分 偏振光.自然光经过一些特殊材料,如偏振片或双折射晶体材料制作的棱镜后,就会变成线偏振光. 线偏振光经过波片后就可能成为椭圆偏振光。 【目的与要求】 1.用最小偏向角法测量棱镜材料的折射率。 2.测量通过起偏器、1/4波片后的光的偏振特性,了解线偏振光、圆偏振光和椭圆偏振光的特点. 3。通过观察从棱镜材料表面反射回来的光的偏振特性,了解反射光的偏振特性,测量出布儒斯特角。 4.用测量值验证布儒斯特角公式的正确性。 【实验原理】 一、棱镜材料的折射率的测量 当一束光斜入射于棱镜表面时,其光路如图1所示。

n 为材料的折射率. 同理出射角γ/ 为sinγ/= sini//n (–1) 根据几何关系可以证明入射光与出射光之间的夹角为:δ=i+γ/-A,而且δ有一个极小值δmin ,可以证明:当光束偏转角为δmin时,有i=γ/γ= i/, 此时δ=2i-A 即i=(δ+A)/2 而A=γ+i/=2γγ=A/2 由(–1)式可得: n=sin[(A+δmin)/2]/sin(A/2)(–2)因此,只要我们测量出δmin,用(–2)就可得到材料相对于该测量光的折射率n。 二、偏振光 光是一种横波,它的振动方向是与传播方向相互垂直的。偏振是指光波的振动方向在空间上的一种相对取向的现象。当这个振动方向在垂直于传播方向的平面内可取所有可能的方向,并且没有一个方向占优势时,我们称之为自然光或非偏振光。而如果有某一个方向上的振动占优势时,则称之为部分偏振光。只有一个单一的振动方向的光叫线偏振光,而在一个振动周期内其振动矢量的端点的轨迹为一个圆或椭圆时,我们称之为圆偏振光或椭圆偏振光。 在我们日常生活和工作中,太阳光、照明用光一般多为自然光。而自然光经过一些材料的反射和透射后可能变成部分偏振光.自然光经过一些特殊材料,如偏振片或双折射晶体材料制作的棱镜后,就会变成线偏振光,一些激光器也可产生很好的线偏振光。线偏振光经过波片后就可能成为椭圆偏振光。 在本实验中,我们将通过多种实验手段来产生线偏振光和椭圆偏振光(圆偏振光被看成是一个特例)。 偏振光的数学描述: 对于线偏振光和椭圆偏振光,在数学上我们常用两个垂直振动的合成来描述。在与光传播方向相垂直的平面内取一个直角坐标系,将代表振动特性的电矢量E分解成Ex和Ey,它们是同频ω,假设相位相差δ,振幅分别为Ax和Ay,即

大学物理实验《偏振光的观测与研究》

实验3.8 偏振光的观测与研究 偏振光的理论意义和价值是,证明了光是横波。同时,偏振光在很多技术领域得到了广泛的应用。如偏振现象应用在摄影技术中可大大减小反射光的影响,利用电光效应制作电光开关等。 【实验目的】 1.通过观察光的偏振现象,加深对光波传播规律的认识。 2.掌握偏振光的产生和检验方法。 3.观察布儒斯特角及测定玻璃折射率。 4.观测圆偏振光和椭圆偏振光。 【实验仪器】 光具座、激光器、光点检流计、起偏器、检偏器、1/4波片、1/2波片、光电转换装置、观测布儒斯特角装置、带小孔光屏、钠光灯。 【实验原理】 按照光的电磁理论,光波就是电磁波,电磁波是横波,所以光波也是横波。在大多数情况下,电磁辐射同物质相互作用时,起主要作用的是电场,因此常以电矢量作为光波的振动矢量。其振动方向相对于传播方向的一种空间取向称为偏振,光的这种偏

振现象是横波的特征。 根据偏振的概念,如果电矢量的振动只限于某 一确定方向的光,称为平面偏振光,亦称线偏振光; 如果电矢量随时间作有规律的变化,其末端在垂直于传播方向的平面上的轨迹呈椭圆(或圆),这样的光称为椭圆偏 振光(或圆偏振光);若电矢量的取向与大小都随时间作无规则变 化,各方向的取向率相同,称为自然光,如图3-26所示;若电矢 量在某一确定的方向上最强,且各向的电振动无固定相位关系, 则称为偏振光。 1.获得偏振光的方法 (1)非金属镜面的反射,当自然光从空气照射在折射率为n 的非金属镜面(如玻璃、水等)上,反射光与折射光都将成为部 分偏振光。当入射角增大到某一特定值φ0时,镜面反射光成为完 全偏振光,其振动面垂直于射面,这时入射角φ称为布儒斯特角, 也称起偏振角,由布儒斯特定律得: 0tan n φ= (3-51) 其中,n 为折射率。 (2)多层玻璃片的折射,当自然光以布儒斯特角入射到叠在 一起的多层平行玻璃片上时,经过多次反射后透过的光就近似于 线偏振光,其振动在入射面。 图3-26 自然光

偏振光的观察与研究

实验报告 PB09214023葛志浩 PB09214047卢焘 2011-11-22 得分: 实验题目:偏振光的观察与研究 实验目的:1.观察光的偏振现象,加深偏振的基本概念。 2.了解偏振光的分类以及产生和检验方法,掌握马吕斯定律。 3.观测布儒斯特角及测定玻璃折射率。 4.观测椭圆偏振光和圆偏振光。 实验仪器:激光器,起偏器,检偏器,硅光电池,1/4波片,光电流放大器,分束板。 实验原理: 一,偏振光的基本概念和分类 光的偏振是指光的振动方向不变,或光矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆的现象。光有五种偏振态:自然光(非偏振光),线偏振光,部分偏振光,圆偏振光,椭圆偏振光 二,产生偏振光的方法: 1,利用光在界面反射和透射时光的偏振现象。 反射光中的垂直于入射面的光振动(称s 分量)多于平行于入射面的光振动(称p 分量);而透射光则正好相反。在改变入射角的时候,出现了一个特殊的现象,即入射角为一特定值(称为布雷斯特角)时,反射光成为完全线偏振光(s 分量)。折射光为部分偏振光,而且此时的反射光线和折射光线垂直,这种现象称之为布儒斯特定律。该方法是可以获得线偏振光的方法之一。通过测量介质的布雷斯特角可以得到介质的折射率。 1 2 n n tg =α )1( 2,利用光学棱镜,如尼科尔棱镜,格兰棱镜等。 3,利用偏振片。 三,改变光的偏振态的元件——波晶片。 平面偏振光垂直入射晶片,如果光轴平行于晶片表面,会产生比较特殊的双折射现象,这时非常光e 和寻常光o 的传播方向是一致的,但速度不同,因而从晶片出射时会产生相位差。 线偏振光垂直入射1/4波片,其振动方向与波片光轴成角θ,则出射光的偏振态与θ的关系如下: 1,2 0π θ或=时,出射光为线偏振光; 2,4 π θ= 时,出射光为圆偏振光; 3,θ为其它值时,出射光为椭圆偏振光。 利用偏振片可以由自然光得到线偏振光,利用1/4波

第十一节反射光和折射光的偏振

§10.11 反射光和折射光的偏振 一、反射光和折射光的偏振 当自然光在介质表面反射、折射时,偏振度要发生变化。其反射光是部分偏振光,反射光垂直入射面的分量垂直分量)比例大(·多| 少):折射光也是部分偏振光,平行入射面的分量(平行分量)比例大( | 多·少)。 随着入射角i变化,反射光、折射光的偏振度也变。 二、布儒斯特定律( Brewster Law) 1 布儒斯特角 设:入射角为i0,折射角为r0,若有i0+r0=900(反射光与入射光垂直),则:反射光是垂直于入射面的完全偏振光,折射光是平行于入射面的部分偏振光。 即当i = i0时,反射光是线偏振光(只有垂直分量)。 称i0为布儒斯特角(Brewster angle)或起偏角(polarizing angle)。 2 布儒斯特定律 若i0+r0=900 折射线? 反射线 则 由折射定律可知 是2介质对于1介质的相对折射率。 例n1=1.00(空气),n2=1.50(玻璃)。 空气?玻璃 i0 = tg-1(1.50/1.00) = 56?18? 玻璃?空气 i ?0 = tg-1(1.00/1.50) = 33?42? 两角互余 满足布儒斯特定律时,折射光仍为部分偏振光( 平行分量多,垂直分量少)。此时,平行分量( | )全部折射,垂直分量(·)有反射有折射。 思考:(1)如何测量不透明介质的折射率? (2)在拍摄玻璃窗内的物体时,如何去掉反射光的干扰? 三、用玻璃片堆起偏 玻璃片上表面反射,入射角是布儒斯特角(由空气?玻璃); 玻璃片下表面反射,入射角也是布儒斯特角(由玻璃?空气)。 每反射一次,垂直振动(S)将反射掉一批,折射光中的垂直(S)振动将逐渐减少, 经多片玻璃片反射,折射光接近为只含平行分量的线偏振光(只含| 振动)。 实例:外腔式激光管加装布儒斯特窗,可使出射光为线偏振光,并减少反射损失。 实例:立体电影原理 四、其它的起偏方式 1 双折射法: 晶体是各向异性媒质,双折射晶体内原子按一定规律排列,使晶体在不同方向上,结构不同,性质不同,对光学而言,即光的传播速度各向异性。如由方解石制作的尼科尔棱镜。 2 晶体的二向色性

1光的偏振现象的研究134

光的偏振现象的研究 光的偏振现象是波动光学中的一种重要现象,在诸如光调制器、光开关、应力分析等方面有着广泛的应用。 实验目的 1.观察光的偏振现象,掌握起偏和检偏的方法,验证马吕斯定律。 2.了解产生椭圆偏振光和圆偏振光的方法及波片的作用,检测偏振光干涉的光强。 实验原理及方法 1. 自然光和偏振光 光波是一种电磁波,其电矢量E和磁矢量H相互垂直,且均与光的传播方向垂直。由于光对物质的作用主要是电矢量的作用,所以电矢量又称为光矢量。通常以电矢量的方向代表光的振动方向,并将电矢量和光传播方向所构成的平面称为振动面。 普通光源含有大量发光原子或分子。单个原子和分子发出的光,其光矢量有一定的方向,但大量的原子和分子发出的光其光矢量具有一切可能的方向,没有一个方向的振动比其它方向更占优势。在与光传播方向垂直的平面内,光矢量有均匀对称分布的特点。这种光称为自然光(非偏振光)。如果光振动在某一方向占优势,这种光称为部分偏振光;如果光矢量只沿某一固定方向振动,这种光称为线偏振光或平面偏振光,见图1。如果在垂直于光传播方向的平面内,光矢量以一定频率绕传播方向转动,其矢端轨迹为一个圆或椭圆,这种光称为圆偏振光或椭圆偏振光。 图1 能使自然光变为偏振光的器件称为起偏器,能够检验偏振态的器件称为检偏器(起偏器和检偏器一般可以通用)。产生和检验偏振光的过程分别称为起偏和检偏。下面介绍起偏和检偏的常用方法。 2. 产生平面偏振光的方法 2.1 二向色性起偏 某些晶体内部有一个特殊的方向(称为透光方向),沿透光方向的光振动几乎可以全部

透过,与透光方向垂直的光振动几乎全被吸收。这种选择吸收的特性称为二向色性。偏振片就是利用二向色性制成的器件,自然光透过偏振片后,只剩下沿透光方向的光振动,透射光成为平面偏振光,如图2所示。 图2 二向色性起偏 图3 晶体双折射起偏 2.2 双折射现象 自然光射到某些各向异性晶体(如方解石、石英等)上时,在晶体内分为两束平面偏振光,如图3所示。一束称为寻常光(o 光),另一束称为非常光(e 光),两束光的振动面相互垂直。这种现象称为双折射。利用双折射制成的起偏器有尼科尔棱镜、格兰棱镜等。 研究发现,光沿某特殊方向在晶体传播时不发生双折射,也不能起偏,这个方向称为双折射晶体的光轴。 如图4所示,当自然光投射到两种透明媒质的界面上时,反射光和折射光一般成为部分偏振光。如果入射角B ?满足布儒斯特定律 21/B tg n n ?= (n 1,n 2为二种媒质的折射率) 则反射光成为平面偏振光,其振动面垂直入射面,而透射光仍为部分偏振光。利用多块玻璃叠成的玻璃片,可以提高透射光的偏振程度,如图5所示。 图4 反射光和折射光的偏振态的变化 图5 用玻璃堆产生平面偏振光 3.1/4波片和圆偏振光、椭圆偏振光的产生 如图6所示,当振幅为A 的单色平面偏振光垂直射入双折射晶片后,产生双折射,入

光的偏振特性研究

光的偏振特性研究 光是一种电磁波。干涉和衍射现象揭示了光的波动性,而光的偏振现象证实了光的横波性。本实验主要研究光的一些基本的偏振特性,深入学习光的偏振理论。 一、实验目的 (1)观察光的偏振现象,加深对偏振光的基本概念的理解。 (2)了解偏振光的产生和检验方法。 (3)观测布儒斯特角及测定玻璃折射率。 (4)观测椭圆偏振光和圆偏振光。 二、实验仪器 光具座,激光器,偏振片,1/4波片,光屏,光电转换装置,观测布儒斯特角装置。 三、实验原理 光波的振动方向与光波的传播方向垂直。自然光的振动在垂直于其传播方向的平面内,取所有可能的方向,某一方向振动占优势的光叫部分偏振光,只在某一个固定方向振动的光线叫线偏振光或平面偏振光。将非偏振光(如自然光)变成线偏振光的方法称为起偏,用以起偏的装置或元件叫起偏器。 1.偏振光的产生 偏振光的产生有以下几种方式: (1)由非金属镜面的反射。当自然光由空气照射在非金属镜面上时,反射光和透射光都将成为部分偏振光,当入射角增大到某一特定值是,反射光成为完全偏振光,只剩下垂直于入射面分量,此时的入射角φ称布儒斯特角,介质的折射率n=tan φ。 (2)由玻璃堆折射。当自然光以布鲁斯特角入射到迭在一起的多层玻璃上时,经过多次反射后,透射的光就近似为线偏振光; (3)用偏振片可得到一定程度的线偏振光; (4)利用双折射晶体产生的寻常光和非常光,均为线偏振光。 2.偏振片 偏振片一般用具有网状分子结构的高分子化合物—聚乙烯醇薄膜作为片基,将这种薄膜浸染具有强烈二向色性的碘,经过硼酸水溶液的还原稳定后,再将其单向拉伸4~5倍以上而制成。偏振片既可以用来使自然光变为平面偏振光——起偏,也可以用来鉴别线偏振光、自然光和部分偏振光——检偏。用作起偏的偏振片叫做起偏器,用作检偏的偏振器件叫做检偏器。实际上,起偏器和检偏器是通用的。 3.马吕斯定律 设两偏振片透射方向夹角为θ,自然光通过起偏器后变成光强为I 0的线偏振光,再经过检偏器后,透射光的强度变为 θ20cos I I = (1) 上式即为马吕斯定律。显然,以光线传播方向为轴,转动检偏器时,透射光强度I 将发生周期变化。若入射光是部分偏振光或椭圆偏振光,则极小值不为0。若光强完全不变化,则入射光是自然光或圆偏振光。这样,根据透射光强度变化的情况,可将线偏振光和自然光和部分偏振光区别开来。 nemo xatu 2011.11.21

名称光的偏振现象的研究

图2 二向色性起偏 实验名称 光的偏振现象的研究 (请携带并参阅大学物理课本) 姓 名 学 号 班 级 桌 号 教 室 基教1406 实验日期 20 年 月 日 时段 指导教师 一. 实验目的 1. 观察光的偏振现象,加深对光偏振基本规律的认识; 2. 了解产生和检验偏振光的基本方法; 3. 验证马吕斯定律; 4.1/2波片,1/4波片的研究; 5.利用旋光现象测定蔗糖溶液浓度. 二. 实验仪器 导轨和机座, 带布儒斯特窗的氦氖激光器, 激光器架, 偏振片、波片架, 滑动座(4个), 光传感器(光电探头),光功率测试仪,偏振片(2个),1/2波片(波长632.8nm ),1/4波片(波 长632.8nm ),透明蔗糖溶液,螺丝刀。 三. 实验原理 1. 偏振光的基本概念 光波是一种电磁波,它的电矢量 和磁矢量 相互垂直,并垂直于光的传播方向C 。通常人们用电矢量 代表光的振动方向,并将电矢量和光的传播方向C 所构成的平面称为光的振动面。在传播过程中,电矢量的振动方向始终在某一确定方向的光称为平面偏振光或线偏振光,如图1(a)所示。振动面的取向和光波电矢 评 分 教师签字 图1 平面偏振光、自然光和部分偏振光

图3 双折射起偏原理图 量的大小随时间作有规律的变化,光波电矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆时,称为椭圆偏振光或圆偏振光,人眼逆光来看,若电矢量末端按照顺时针方向旋转,则称为右旋椭圆或右旋圆偏振光,反之为左旋。通常光源发出的光波有与光波传播方向相垂直的一切可能的振动方向,没有一个方向的振动比其它方向更占优势。这种光源发射的光对外不显现偏振的性质,称为自然光,如图1(b)所示;如果光波电矢量的振动在传播过程中只是在某一确定方向上占优势,则此偏振光称为部分偏振光,如图1(c)所示。将自然光变成偏振光的器件称为起偏器,用来检验偏振光的器件称为检偏器。实际上,起偏器和检偏器是互为通用的。下面介绍几种常用的起偏和检偏方法。 2. 二向色性起偏、马呂斯定律、双折射起偏及波片 物质对不同方向的光振动具有选择吸收的性质,称为二向色性。当自然光射到偏振片上时,振动方向与透振方向垂直的光被吸收,振动方向与透振方向平行的光透过偏振片,从而获得偏振光。自然光透过偏振片后,只剩下沿透光方向的光振动,透射光成为平面偏振光(见图2所示)。 若在偏振片P 1后面再放一偏振片P 2,P 2就可以用作检验经P 1后的光是否为偏振光,即P 2起了检偏器的作用。当起偏器P 1和检偏器P 2的偏振化方向间有一夹角,则通过检偏器P 2的偏振光强度满足马呂斯定律: (1) 当θ= 时,I=I 0, 光强最大;当θ= 时, I =0,出现消光现象;当θ为其它值时,透射光强介于0~I 0之间。 (1)双折射起偏 某些单轴晶体(如方解石和石英等)具有双折射现象。当一束自然光射到这些晶体上时,在界面射入晶体内部的折射光常为传播方向不同的两束折射光线,这两束折射光是光矢量振动方向不同的线偏振光。其中一束折射光 ,称为寻常光(或O 光);另一束折射光 ,其振动在 内,称为非常光(或e 光),如图3所示。 研究发现,这类晶体存在这样一个方向,沿该方向传播的光 ,该方向称为光轴。 主平面: 主截面: (2)反射和折射时光的偏振 自然光在两种透明媒质的界面上反射和折射时,反射光和折射光就能成为部分偏振光或平面偏振光,而且反射光中垂直入射面的振动较强,折射光中平行入射面的振动较强。实验发现,

偏振光特性的研究

光学设计性实验论文

偏振光特性的研究 摘要: 实验目的: (一)学习用光电转换的方法测定相对光强, 验证马吕斯定律。 (二)研究1/4波片的光学特性 (三)研究半导体激光器的偏振特性(测出其偏振度) (四)研究物质的旋光特性 (五)观察石英晶体的旋光特性和测量旋光度 (六)观察旋光色散,并解释现象 实验要求: (一)掌握各种偏振光的特性。 (二)学会辨别各种偏振光。 (三)了解偏振光干涉和双折射现象 关键词: 偏振、马吕斯定律、1/4波片、偏振特性、偏振度、旋光特性、旋光色散。 引言: 光的干涉和衍射现象揭示了光的波动性质,而光的偏振现象进一步验证了光波是横波。我们研究偏振现象不仅可以认识光的电磁波性质,而且可以对光的传播规律有许多新的认识。 实验原理: 1.偏振光的种类 光是电磁波,它的电矢量E和磁矢量H相互垂直,且又垂直于光的传播方向.通常用电矢量代表光矢量,并将光矢量和光的传播方向所构成的平面称为光的振动面.按光矢量的不同振动状态,可以把光分为五种偏振态:如光矢量沿着一个固定方向振动,称为线偏振光或平面偏振光;如在垂直于传播方向的平面内,光矢量的方向是任意的,且各个方向的振幅相等,则称为自然光;如果有的方向光矢量的振幅较大,有的方向振幅较小,则称为部分偏振光;如果光

矢量的大小和方向随时间作周期性的变化,且光矢量的末端在垂直于光传播方向的平面内的轨迹是圆或椭圆,则分别称为圆偏振光或椭圆偏振光. 能使自然光变成偏振光的装置或器件,称为起偏器;用来检验偏振光的装置或器件,称为检偏器. 2.线偏振光的产生 (1)反射和折射产生偏振 根据布儒斯特定律,当自然光以 n i b arctan =的入射角从空气或真空入射至折射率为n 的介质 表面上时,其反射光为完全的线偏振光,振动面垂直于入射面,而透射光为部分偏振光,b i 称 为布儒斯特角. 如果自然光以b i 入射到一叠平行玻璃片堆上,则经过多次反射和折射最后从玻璃片堆透射 出来的光也接近于线偏振光.玻璃片的数目越多,透射光的偏振度越高. (2)偏振片 它是利用某些有机化合物晶体的“二向色性”制成的.当自然光通过这种偏振片后,光矢量垂直于偏振片透振方向的分量几乎完全被吸收,光矢量平行于透振方向的分量几乎完全通过,因此透射光基本上为线偏振光. (3)双折射产生偏振 当自然光入射到某些双折射晶体(如方解石、石英等)时,经晶体的双折射所产生的寻常光(o 光)和非常光(e 光)都是线偏振光. 3.波晶片 波晶片简称波片,它通常是一块光轴平行于表面的单轴晶片,一束平面偏振光垂直入射到波晶片后,便分解为振动方向与光轴方向平行的e 光和与光轴方向垂直的o 光两部分(如图1所示).这两种光在晶体内的传播方向虽然一致,但它们在晶体内传播的速度却不相同(为么?).于 是,e 光和o 光通过波晶片后就产生固定的相位差δ, 即 l n n o e )(2-= λ π δ

大学物理实验光的偏振

实验27 光的偏振 一、实验目的 1、观察光的偏振现象,加深对光的偏振的理解。 2、了解偏振光的产生及其检验方法。 3、观测布儒斯特角,测定玻璃折射率。 4、观测椭圆偏振光与圆偏振光。 5、了解1/2波片和1/4波片的用途。 二、实验原理 1、光的偏振状态 光是电磁波,它是横波。通常用电矢量E表示光波的振动矢量。 (1)自然光其电矢量在垂直于传播方向的平面内任意取向,各个方向的取向概率相等,所以在相当长的时间里(10-5秒已足够了),各取向上电矢量的时间平均值是相等的,这样的光称为自然光,如图27-l所示。 (2)平面偏振光电矢量只限于某一确定方向的光,因其电矢量和光线构成一个平面而称其为平面偏振光。如果迎着光线看,电矢量末端的轨迹为一直线,所以平面偏振光也称为线偏振光,如图27-2所示。 (3)部分偏振光电矢量在某一确定方向上较强,而在和它正交的方向上较弱,这种光称为部分偏振光,如图27-3所示。部分偏振光可以看成是线偏振光和自然光的混合。 (4)椭圆偏振光迎着光线看,如果电矢量末端的轨迹为一椭圆,这样的光称为椭圆偏振光。椭圆偏振光可以由两个电矢量互相垂直的、有恒定相位差的线偏振光合成得到。 (5)圆偏振光迎着光线看,如果电矢量末端的轨迹为一个圆,则这样的光称为圆偏振光。圆偏振光可视为长、短轴相等的椭圆偏振光。 图27-4 椭圆偏振光

2、布儒斯特定律 反射光的偏振与布儒斯特定律 如图27-5所示,光在两介质(如空气和玻璃片等)界面上,反射光和折射光(透射光)都是部分偏振光。当反射光线与折射光线的夹角恰为90°时,反射光为线偏振光,其电矢量振动方向垂直于入射光线与界面法线所决定的平面(入射面)。此时的透射光中包含平行于入射面的偏振光的全部以及垂直于入射面的偏振光的其余部分,所以透射光仍为部分偏振光。由折射定律很容易导出此时的入射角 α 满足关系 1 2 tan n n = α (27-1) (27-1)式称为布儒斯特定律,入射角 α 称为布儒斯特角,或称为起偏角。若光从空气入射到玻璃(n 2约为1.5),起偏角约56°。 3、偏振片、起偏和检偏、马吕斯定律 (1)由二向色性晶体的选择吸收所产生的偏振 自然光 偏振光 1I 0 起偏器 检偏器 自然光 I ' 图a 偏振片起偏 图b 起偏和检偏 图27-6 偏振片 有些晶体(如电气石)、长链分子晶体(如高碘硫酸奎宁),对两个相互垂直振动的电矢量具有不同的吸收本领,这种选择吸收性称为二向色性。在两平板玻璃间,夹一层二向色性很强的物质就制成了偏振片。自然光通过偏振片时,一个方向的电矢量几乎完全通过(该方向称为偏振片的偏振化方向),而与偏振化方向垂直的电矢量则几乎被完全吸收,因此透射光就成为线偏振光。根据这一特性,偏振片既可用来产生偏振光(起偏),也可用于检验光的偏振状态(检偏)。 (2)马吕斯定律 用强度为I 0的线偏振光入射,透过偏振片的光强为I ,则有如下关系 θ 20cos I I = (27-2) (27-2)式称为马吕斯定律。θ 是入射光的E 矢量振动方向和检偏器偏振化方向之间的夹角。以入射光线为轴转动偏振片,如果透射光强 I 有变化,且转动到某位置时I =0,则表明入射 光为线偏振光,此时 θ =90°。 4、波片 (1)两个互相垂直的、同频率的简谐振动的合成 设有两各互相垂直且同频率的简谐振动,它们的运动方程分别为 )cos() cos(2211?ω?ω+=+=t A y t A x (27-3) 合运动是这两个分运动之和,消去参数t ,得到合运动矢量末端运动轨迹方程为 )(sin )cos(2122 12212 2 2212????-=--+A A xy A y A x (27-4) 上式表明,一般情况下,合振动矢量末端运动轨迹是椭圆,该椭圆在2122A A ?的矩形范围内。如果(27-3)式表示的是两线偏振光,则叠加后一般成为椭圆偏振光。下面讨论相位 差 12???-=?为几种特殊值的情况。 ①当π?k 2=?( k =0, ±1, ±2, …)时,(27-4)式变为

大学物理实验《偏振光的观测与研究》

实验偏振光的观测与研究 偏振光的理论意义和价值是,证明了光是横波。同时,偏振光在很多技术领域得到了广泛的应用。如偏振现象应用在摄影技术中可大大减小反射光的影响,利用电光效应制作电光开关等。 【实验目的】 1.通过观察光的偏振现象,加深对光波传播规律的认识。 2.掌握偏振光的产生和检验方法。 3.观察布儒斯特角及测定玻璃折射率。 4.观测圆偏振光和椭圆偏振光。 【实验仪器】 光具座、激光器、光点检流计、起偏器、检偏器、1/4波片、1/2波片、光电转换装置、观测布儒斯特角装置、带小孔光屏、钠光灯。 【实验原理】 按照光的电磁理论,光波就是电磁波,电磁波是横波,所以光波也是横波。在大多数情况下,电磁辐射同物质相互作用时,起主要作用的是电场,因此常以电矢量作为光波的振动矢量。其振动方向相对于传播方向的一种空间取向称为偏振,光的这种偏

振现象是横波的特征。 根据偏振的概念,如果电矢量的振动只限于某 一确定方向的光,称为平面偏振光,亦称线偏振光; 如果电矢量随时间作有规律的变化,其末端在垂直 于传播方向的平面上的轨迹呈椭圆(或圆),这样的光称为椭圆偏 振光(或圆偏振光);若电矢量的取向与大小都随时间作无规则变 化,各方向的取向率相同,称为自然光,如图3-26所示;若电矢 量在某一确定的方向上最强,且各向的电振动无固定相位关系, 则称为偏振光。 1.获得偏振光的方法 (1)非金属镜面的反射,当自然光从空气照射在折射率为n 的非金属镜面(如玻璃、水等)上,反射光与折射光都将成为部 分偏振光。当入射角增大到某一特定值φ0时,镜面反射光成为完 全偏振光,其振动面垂直于射面,这时入射角φ称为布儒斯特角, 也称起偏振角,由布儒斯特定律得: 0tan n φ= (3-51) 其中,n 为折射率。 (2)多层玻璃片的折射,当自然光以布儒斯特角入射到叠在 一起的多层平行玻璃片上时,经过多次反射后透过的光就近似于 线偏振光,其振动在入射面内。 图3-26 自然光

偏振光的观测与研究~~实验报告

学习资料收集于网络,仅供参考 偏振光的观测与研究 光的干涉和衍射实验证明了光的波动性质。本实验将进一步说明光是横波而不是纵波,即其E 和H 的振动方向是垂直于光的传播方向的。光的偏振性证明了光是横波,人们通过对光的偏振性质的研究,更深刻地认识了光的传播规律和光与物质的相互作用规律。目前偏振光的应用已遍及于工农业、医学、国防等部门。利用偏振光装置的各种精密仪器,已为科研、工程设计、生产技术的检验等,提供了极有价值的方法。 【实验目的】 1.观察光的偏振现象,加深偏振的基本概念。 2.了解偏振光的产生和检验方法。 3.观测布儒斯特角及测定玻璃折射率。 4.观测椭圆偏振光和圆偏振光。 【实验仪器】 光具座、激光器、偏振片、1/4波片、1/2波片、光电转换装置、光点检流计、观测布儒斯特角装置 图1 实验仪器实物图 【实验原理】 1.偏振光的基本概念 按照光的电磁理论,光波就是电磁波,它的电矢量E和磁矢量H相互垂直。两者均垂直于光的传播方向。从视觉和感光材料的特性上看,引起视觉和化学反应的是光的电矢量,通常用电矢量E代表光的振动方向,并将电矢量E和光的传播方向所构成的平面称为光振动面。 在传播过程中,光的振动方向始终在某一确定方位的光称为平面偏振光或线偏振光,如图2(a)。光源发射的光是由大量原子或分子辐射构成的。由于热运动和辐射的随机性,大量原6-s内各个方向10子或分子发射的光的振动面出现在各个方向的几率是相同的。一般说,在电矢量的时间平均值相等,故出现如图2(b)所示的所谓自然光。有些光的振动面在某个特定方向出现的几率大于其他方向,即在较长时间内电矢量在某一方向较强,这就是如图2(c)所示的所谓部分偏振光。还有一些光,其振动面的取向和电矢量的大小随时间作有规则的变化,其电矢量末端在垂直于传播方向的平面上的移动轨迹呈椭圆(或圆形),这样的光称为椭圆偏振光(或圆偏振光),如图2(c)所示。 图2 光波按偏振的分类 2.获得偏振光的常用方法 (1)非金属镜面的反射。 通常自然光在两种媒质的界面上反射和折射时,反射光和折射光都将成为部分偏振光。并且当入

相关文档
最新文档