光的偏振现的研究
光偏振现象的研究实验报告

光偏振现象的研究实验报告一、引言光偏振现象是指光波在传播过程中,振动方向只在一个平面内的现象。
光偏振现象的研究对于理解光学原理及其应用具有重要意义。
本实验旨在通过测量不同偏振方向下透射光强度的变化,探究光偏振现象的基本原理及其应用。
二、实验原理1. 光偏振概念当一束光波在传播过程中,振动方向只在一个平面内时,称为偏振光。
如果此时所选平面与传播方向垂直,则称为线性偏振光。
2. 偏振片偏振片是一种能够选择或制造出特定偏振方向的器件。
常见的有各种材料制成的线性偏振片、四分之一波片和半波片等。
3. 马吕斯定律马吕斯定律指出:当线性偏振光通过另一个线性偏振片时,透射光强度与两者间夹角θ满足cos2θ关系。
4. 假设条件本实验中所涉及到的所有器件均为理想器件,忽略了实际器件的各种不完美因素。
三、实验装置1. He-Ne激光器2. 偏振片(线性偏振片、四分之一波片、半波片)3. 透镜4. 探测器四、实验步骤1. 将He-Ne激光器放置于台架上,开启电源,调节激光束方向,使其垂直于偏振片的传播方向。
2. 将线性偏振片插入激光束路径中,并旋转偏振片,观察透射光强度的变化。
3. 将四分之一波片插入激光束路径中,并旋转四分之一波片和线性偏振片,观察透射光强度的变化。
4. 将半波片插入激光束路径中,并旋转半波片和线性偏振片,观察透射光强度的变化。
5. 通过探测器测量不同角度下透射光强度,并记录数据。
五、实验结果与分析1. 线性偏振片当线性偏振片与激光束的偏振方向垂直时,透射光强度为0。
随着偏振片旋转,透射光强度呈现出cos2θ的变化规律,符合马吕斯定律。
2. 四分之一波片四分之一波片能够将线性偏振光转化为圆偏振光。
当线性偏振片与四分之一波片的快轴和慢轴夹角为45°时,透射光强度最大;当夹角为0°或90°时,透射光强度为0。
3. 半波片半波片能够将线性偏振光转化为相反方向的线性偏振光。
当线性偏振片与半波片的快轴和慢轴夹角为45°时,透射光强度最大;当夹角为0°或90°时,透射光强度为0。
光的偏振研究实验报告

光的偏振研究实验报告光的偏振研究实验报告引言:光是一种电磁波,它的波动方向可以在空间中任意方向上振动。
然而,当光经过特定的材料或通过特定的装置时,它的振动方向会受到限制,这就是光的偏振现象。
光的偏振研究对于理解光的性质和应用具有重要意义。
本实验旨在通过实验方法研究光的偏振现象。
实验一:偏振片的特性实验一旨在研究偏振片的特性。
我们使用了一块线性偏振片和一个光源。
首先,我们将光源放置在一个固定位置,并将线性偏振片放在光源前方。
然后,我们旋转线性偏振片,观察光的强度变化。
实验结果显示,当线性偏振片的振动方向与光的振动方向垂直时,光的强度最小;而当线性偏振片的振动方向与光的振动方向平行时,光的强度最大。
这表明线性偏振片可以限制光的振动方向。
实验二:双折射现象实验二旨在研究双折射现象。
我们使用了一块双折射晶体和一个光源。
首先,我们将光源放置在一个固定位置,并将双折射晶体放在光源前方。
然后,我们观察光通过双折射晶体后的变化。
实验结果显示,当光通过双折射晶体时,光线会分为两束,分别沿着不同的方向传播。
这表明双折射晶体可以将光分解为两个不同的振动方向。
实验三:偏振光的旋转实验三旨在研究偏振光的旋转现象。
我们使用了一个旋转的偏振片、一个光源和一个偏振光旋转仪。
首先,我们将光源放置在一个固定位置,并将旋转的偏振片放在光源前方。
然后,我们通过偏振光旋转仪观察光的旋转现象。
实验结果显示,当旋转的偏振片的旋转角度改变时,光的振动方向也会相应改变。
这表明偏振光的旋转角度与偏振片的旋转角度有关。
实验四:马吕斯定律实验四旨在验证马吕斯定律。
我们使用了一个光源、一个偏振片和一个检偏器。
首先,我们将光源放置在一个固定位置,并将偏振片放在光源前方。
然后,我们在光源后方放置一个检偏器,并旋转检偏器的角度。
实验结果显示,当检偏器的角度与偏振片的角度相同时,光的强度最大;而当检偏器的角度与偏振片的角度垂直时,光的强度最小。
这验证了马吕斯定律,即光通过偏振片后,只有与偏振片相同方向的光能通过检偏器。
光的偏振偏振光的实验研究

光的偏振偏振光的实验研究光的偏振是指光波的振动方向只在特定平面内进行的现象。
而偏振光则是指只在一个特定方向上振动的光波。
在光学领域中,对光的偏振进行研究对于理解光的性质和应用有着重要的意义。
本文将探讨光的偏振以及偏振光的实验研究。
一、光的偏振的原理光是由电磁波组成的,而电磁波包括电场和磁场的振动。
在垂直方向上,光波的电场和磁场都是垂直于传播方向的。
然而,在光的传播过程中,如果对光波的电场进行了特定方向的约束,那么光波的电场就会以特定的方向进行振动,这就是光的偏振现象。
光的偏振可以通过多种方式实现,其中最常见的方式是通过偏振片。
偏振片是由具有一定特性的材料制成的光学元件,能够选择性地阻止某些方向的光波通过,只允许特定方向的光波通过。
常见的偏振片有线性偏振片和圆偏振片。
二、实验研究光的偏振的方法1. 偏振片实验进行偏振实验的基本方法是使用两块偏振片。
首先,将两块偏振片的方向调整为平行,这样光线就可以通过。
然后,逐渐旋转一块偏振片,观察光的强度变化。
当两块偏振片的方向垂直时,光线将完全被阻挡,无法通过。
通过这个实验,我们可以观察到光的偏振现象,并且可以确定光的偏振方向和光的强度随偏振片方向变化的关系。
2. 波片实验波片是另一种常用的用于研究光的偏振的实验工具。
波片可以将线偏振光转化为圆偏振光或者将圆偏振光转化为线偏振光。
在波片实验中,首先,将线偏振光通过一块线偏振片,将其转化为线偏振光。
然后,将转化后的线偏振光通过一块波片,观察光的偏振状态的变化。
根据波片的不同性质,光的偏振状态可能会改变。
通过这个实验,我们可以研究光的偏振状态的变化规律以及波片对光的偏振的影响。
三、光的偏振在实际应用中的意义光的偏振在许多领域中都有着重要的应用,如光学通信、液晶显示、偏振镜等。
举个例子,在液晶显示技术中,通过控制偏振态使得液晶分子的取向发生变化,进而可以对光的透射进行调节,实现图像的显示。
此外,光的偏振还可以用于解析光束中的信息。
光的偏振实验了解光的偏振现象

光的偏振实验了解光的偏振现象光的偏振现象是光波在传播过程中振动方向的定义。
通常,光的波动是沿着垂直于传播方向的所有方向均匀地振动。
然而,在某些情况下,光的振动方向可以被约束在一个特定的方向上,这就是光的偏振现象。
为了进一步了解光的偏振现象,我们可以进行实验来观察和研究光的偏振行为。
以下将介绍几种常见的光的偏振实验方法。
一、马吕斯法马吕斯法是最早用来研究光的偏振的实验方法之一。
该方法利用偏光镜和分析片的组合,可以将线偏振光转换成圆偏振光或者反之。
通过调节偏光镜和分析片的相对角度,我们可以观察到转换前后光的强度的变化,从而研究光的偏振现象。
二、振动起偏器法振动起偏器法是通过使用起偏器和分析器来观察光的偏振现象。
起偏器是一个偏振镜,可以限制光只能在一个特定方向上振动。
当通过起偏器的偏振光再经过分析器时,根据分析器的角度调节,我们可以观察到光的强度的变化,从而探究光的偏振特性。
三、双折射现象双折射是光线通过一些特殊的材料时产生的光的偏振现象。
常见的双折射材料包括石英晶体和冰晶石等。
通过将光线通过这些材料,我们可以观察到光线被分成两束具有不同振动方向的光线,这种现象被称为光的双折射。
通过测量这两束光线的振动方向,可以研究光的偏振现象。
四、干涉法干涉法是一种通过干涉现象来研究光的偏振特性的方法。
通过使用光路调节器和干涉仪,我们可以观察到在特定条件下,不同偏振方向的光线在干涉仪中产生干涉条纹。
通过分析和测量这些干涉条纹,可以获得有关光的偏振性质的有用信息。
通过以上的实验方法,我们可以更加深入地了解光的偏振现象。
这些实验方法不仅帮助我们理解光的振动方式,还在许多领域中有着重要的应用,如光学通信、显微镜下的观察等。
总结光的偏振现象是光学中非常重要的一个概念。
通过实验方法,我们可以对光的偏振行为有更深入的认识。
马吕斯法、振动起偏器法、双折射现象和干涉法是常用的实验方法,它们各自从不同的角度帮助我们理解光的偏振现象。
光的偏振现的研究

光的偏振现的研究光的偏振现象是光波振动方向在特定方向上发生的现象。
光波是由电磁场和磁场通过空间传播而形成的,其振动方向决定了光的偏振特性。
光的偏振现象在物理学和光学领域中具有重要的应用和研究价值。
本文将对光的偏振现象进行研究,包括偏振介绍、发现历史、产生原因、检测方法以及应用领域等方面。
首先,我们来介绍一下光的偏振。
光波的振动方向决定了其偏振特性。
一般情况下,光波振动在平面上是各向同性的,这种光称为非偏振光或自然光。
而当光波振动在其中一平面上,形成特定的光波偏振状态时,则称为偏振光。
光的偏振现象最早于19世纪初被观察到。
法国科学家马来斯·马尔斯特在1808年通过实验证明了光的偏振性。
他利用一对介质极薄的偏振片将非偏振光转换成偏振光,然后再经过另一对偏振片,观察到了光的强度变化。
这项实验成果被认为是首次观察到了光的偏振现象。
光的偏振现象是由光波的自然特性所决定的。
光波是由电场和磁场组成的,其振动方向决定了光的偏振特性。
当光波的电场和磁场振动方向垂直于光的传播方向时,称为横向电磁波或s波。
而当电场和磁场振动方向与光的传播方向相同或相反时,称为纵向电磁波或p波。
根据电磁场的相位差和振幅差,还可以将光分为线偏振光、圆偏振光和椭圆偏振光等不同类型。
光的偏振性可以通过多种方法来检测和测量。
最常用的方法是通过偏振片或偏振镜来检测光的偏振状态。
偏振片是一种特殊的材料,它可以选择性地透过或者阻挡特定方向的光波振动。
通过旋转偏振片的方向,我们可以改变透过的光的偏振状态。
光的偏振现象在许多科学和工程领域中具有重要的应用价值。
在光学领域,偏振现象被广泛应用于光学仪器、摄影、照明和显示技术等方面。
例如,在液晶显示器中,利用液晶分子对光的偏振状态的响应来实现对光的控制和调节,从而实现显示效果。
此外,在生物医学领域中,偏振现象也被用于显微镜成像以及检测细胞和组织中的结构和功能。
总之,光的偏振现象作为一种重要的光学现象,对于我们理解光的性质和应用具有重要的意义。
偏振光的研究

132 实验5-15 偏振光的研究光的偏振现象揭示了光波是横波,它使人们对光的传播(反射、折射、吸收和散射)的规律有了新的认识,并在光学计量、晶体性质研究和应力分析等方面有着广泛的应用。
【实验目的】1.观察光的偏振现象,加深对光偏振的认识。
2.测定玻璃的起偏角,验证布儒斯特定律。
【实验器材】分光仪、偏振片、玻璃片、钠光灯、支架和小型旋光仪。
【实验原理】 光波是电磁波,其电矢量E 的振动方向垂直于光的传播方向。
电矢量的振动方向和光的传播方向所组成的平面称为光的振动面。
电矢量的振动只限于某一确定平面内的光称为平面偏振光(或线偏振光);如果电矢量在垂直于光波的传播方向上作无规则的取向,且振幅相等,则称为自然光;如果振动在某一确定方向上占相对优势,则称为部分偏振光;如果电矢量的大小和方向随时间做有规律的变化,且电矢量的末端在垂直于光传播方向平面内的轨迹是圆或椭圆,则称为圆偏振光或椭圆偏振光。
用于产生偏振光的元件叫起偏器(或起偏片),用于鉴别偏振光的元件叫检偏器(检偏片),两者可通用。
一、产生平面偏振光的常见方法1.利用晶体双折射现象产生偏振光当自然光入射某些各向异性晶体(如方解石)时,折射后分解为两束平面偏振光,并以不同速度在晶体内传播,如图5-15-1所示,这种现象称为双折射。
在晶体内存在一个特殊方向,光线沿该方向入射时不发生双折射现象,该方向称为晶体的光轴。
光轴与入射光所组成的平面称为该光的主平面。
光轴与晶体表面法线方向组成的平面称为晶体的主截面,假设主平面与主截面重合。
双折射产生的两束平面偏振光,其中一束电矢量E 的振动方向垂直于它的主平面,亦垂直于晶体的主截面,并遵循折射定律,称为寻常光(o 光),另一束电矢量E 的振动方向平行于晶体的主截面,不遵循折射定律,称为非常光线(e 光)。
图5-15-1中“ ”表示垂直于主截面,“”表示平行于主截面。
2.利用光反射产生偏振光 当一束自然光从折射率为1n 的媒质射向折射率为2n 的媒质,并在媒质的界面上反射和折射时,反射和折射光都为部分偏振光。
光的偏振现象的研究

图2 二向色性起偏图1 平面偏振光、自然光和部分偏振光实验名称光的偏振现象的研究姓 名学 号 班 级桌 号 教 室 基础教学楼1406实验日期 20 年 月 日 时段 指导教师一. 实验目的1. 观察光的偏振现象,加深对光偏振基本规律的认识。
2. 了解产生和检验偏振光的基本方法。
3. 验证马吕斯定律。
4.1/4波片,1/2波片的研究; 5.利用旋光现象测定蔗糖溶液浓度 二. 实验仪器导轨和机座, 氦氖激光器(功率约5mW ), 激光器架, 偏振片波片架, 滑动座(5个), 光传感器(光电探头),光功率测试仪,偏振片(两个),1/4波片(波长632.8nm ),1/2波片(波长632.8nm ),透明蔗糖溶液,螺丝刀三. 实验原理(请携带并参阅大学物理课本)1. 偏振光的基本概念光波是一种电磁波,它的电矢量 和磁矢量 相互垂直,并垂直于光的传播方向C 。
通常人们用电矢量 代表光的振动方向,并将电矢量和光的传播方向C 所构成的平面称为光的振动面。
在传播过程中,电矢量的振动方向始终在某一确定方向的光称为平面偏振光或线偏振光,如图1(a)所示。
振动面的取向和光波电矢量的大小随时间作有规律的变化,光波电矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆时,称为椭圆偏振光或圆偏振光,人眼逆光来看,若电矢量末端按照顺时针方向旋转,则称评 分教师签字图3 双折射起偏原理图为右旋椭圆或右旋圆偏振光,反之为左旋。
通常光源发出的光波有与光波传播方向相垂直的一切可能的振动方向,没有一个方向的振动比其它方向更占优势。
这种光源发射的光对外不显现偏振的性质,称为自然光,如图1(b)所示;如果光波电矢量的振动在传播过程中只是在某一确定方向上占优势,则此偏振光称为部分偏振光,如图1(c)所示。
将自然光变成偏振光的器件称为起偏器,用来检验偏振光的器件称为检偏器。
实际上,起偏器和检偏器是互为通用的。
下面介绍几种常用的起偏和检偏方法。
2. 二向色性起偏、马呂斯定律、双折射起偏及波片物质对不同方向的光振动具有选择吸收的性质,称为二向色性。
偏振光的研究_实验报告

一、实验目的1. 观察光的偏振现象,加深对光的偏振性质的认识。
2. 学习并掌握偏振光的产生、传播、检测和调控方法。
3. 理解马吕斯定律及其在实际应用中的意义。
4. 掌握使用偏振片、波片等光学元件进行偏振光实验的基本技能。
二、实验原理1. 光的偏振性质:光是一种电磁波,具有横波性质。
在光的传播过程中,光矢量的振动方向相对于传播方向可以保持不变(线偏振光)、绕传播方向旋转(圆偏振光)或呈现椭圆轨迹(椭圆偏振光)。
2. 偏振光的产生:自然光通过偏振片后,可以产生线偏振光。
当自然光入射到某些光学各向异性介质(如偏振片、波片等)时,由于不同方向的光矢量分量在介质中的折射率不同,从而导致光矢量振动方向发生偏转,形成偏振光。
3. 马吕斯定律:当一束完全线偏振光通过一个偏振片时,透射光的光强与入射光的光强和偏振片透振方向与入射光光矢量振动方向的夹角θ之间的关系为:\( I = I_0 \cdot \cos^2\theta \),其中\( I \)为透射光的光强,\( I_0 \)为入射光的光强。
三、实验仪器与设备1. 自然光源(如激光器)2. 偏振片(两块)3. 波片(1/4波片、1/2波片)4. 光具座5. 光屏6. 光电探测器7. 数据采集与分析软件四、实验步骤1. 观察线偏振光:将自然光源发出的光通过偏振片,观察光屏上的光斑。
然后逐渐旋转偏振片,观察光斑的变化,验证马吕斯定律。
2. 观察圆偏振光:将1/4波片放置在偏振片和光屏之间,使1/4波片的光轴与偏振片的透振方向夹角为45°。
观察光屏上的光斑,验证圆偏振光的产生。
3. 观察椭圆偏振光:将1/4波片的光轴与偏振片的透振方向夹角调整为22.5°,观察光屏上的光斑,验证椭圆偏振光的产生。
4. 测量偏振片透振方向:利用光电探测器测量偏振片的透振方向,并与理论计算值进行比较。
5. 分析实验数据:使用数据采集与分析软件对实验数据进行处理,分析偏振光的特性,验证实验原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图
2 二向色性起偏
图1 平面偏振光、自然光和部分偏振光
实验名称
光的偏振现象的研究
姓 名
学 号 班 级
桌 号 教 室 基础教学楼1406
实验日期 20 年 月 日 时段 指导教师
一. 实验目的
1. 观察光的偏振现象,加深对光偏振基本规律的认识。
2. 了解产生和检验偏振光的基本方法。
3. 验证马吕斯定律。
4.1/4波片,1/2波片的研究; 5.利用旋光现象测定蔗糖溶液浓度 二. 实验仪器
导轨和机座, 氦氖激光器(功率约5mW ), 激光器架, 偏振片波片架, 滑动座(5个), 光传感器(光电探头),光功率测试仪,偏振片(两个),1/4波片(波长632.8nm ),1/2波片(波1. 偏振光的基本概念
光波是一种电磁波,它的电矢量 和磁矢量 相互垂直,并垂直于光的传播方向C 。
通常人们用电矢量 代表光的振动方在传播过程中,电矢量的振动方向始终在某一确定方向的光称为平面偏振光或线偏振光,如图1(a)所示。
振动面的取向和光波电矢
量的大小随时间作有规律的变化,光波电矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆时,称为椭圆偏振光或圆偏振光,人眼逆光来看,若电矢量末端按照顺时针方向旋转,则称
评 分
教师签字
图3 双折射起偏原理图
为右旋椭圆或右旋圆偏振光,反之为左旋。
通常光源发出的光波有与光波传播方向相垂直的一切可能的振动方向,没有一个方向的振动比其它方向更占优势。
这种光源发射的光对外不显现偏振的性质,称为自然光,如图1(b)所示;如果光波电矢量的振动在传播过程中只是在某一确定方向上占优势,则此偏振光称为部分偏振光,如图1(c)所示。
将自然光变成偏振光的器件称为起偏器,用来检验偏振光的器件称为检偏器。
实际上,起偏器和检偏器是互为通用的。
下面介绍几种常用的起偏和检偏方法。
2. 二向色性起偏、马呂斯定律、双折射起偏及波片
物质对不同方向的光振动具有选择吸收的性质,称为二向色性。
当自然光射到偏振片上时,振动方向与透振方向垂直的光被吸收,振动方向与透振方向平行的光透过偏振片,从而获得偏振光。
自然光透过偏振片后,只剩下沿透光方向的光振动,透射光成为平面偏振光(见图2所示)。
若在偏振片P 1后面再放一偏振片P 2,P 2就可以用作检验经P 1后的光是否为偏振光,即P 2
起了检偏器的作用。
当起偏器P 1和检偏器P 2的偏振化方向间有一夹角,则通过检偏器P 2的偏振光强度满足马呂斯定律:
(1)
当θ= 时,I=I 0, 光强最大;当θ= 时,I =0,出现消光现象;当θ为其它值时,透射光强介
于0~I 0之间。
(1)双折射起偏
某些单轴晶体(如方解石和石英等)具有双折射现象。
当一束自然光射到这些晶体上时,在界面射入晶体内部的折射光常为传播方向不同的两束折射光线,这两束折射光是光矢量振动方向不同的线偏振光。
其中一束折射光
,称为寻常光(或O 光);另一束折射光 ,其振动在 内,称为非常光(或e 光),如图3所示。
研究发现,这类晶体存在这样一个方向,沿该方向传播的光 ,该方向称为光轴。
主平面:
主截面:
(2)反射和折射时光的偏振
自然光在两种透明媒质的界面上反射和折射时,反射光和折射光就能成为部分偏振光或平面偏振光,而且反射光中垂直入射面的振动较强,折射光中平行入射面的振动较强。
实验发现,当改变入射角i 时,反射光的偏振程度也随之改变,当i 等于特定角0i 时,反射光只有垂直于入
图4用反射和折射起偏
图5 用玻璃堆产生平面偏振光
射面的振动,变成了完全偏振光,如图4所示。
此时入射角0i 满足 (1n 和2n 为两种媒质的折射率),这个规律称为布儒斯特定律,0i 称为起偏角或布儒斯特角。
可以证明:当入射角为起偏角时,反射光和折射光传播方向是互相垂直的。
图5是利用玻璃堆产生平面偏振光。
3. 1/2波片、1/4波片,圆偏振光和椭圆偏振光
当平面偏振光垂直入射到厚度为d ,表面平行于自身光轴的单轴晶片时,o 光和e 光沿同一方向前进,但传播速度不同,因而会产生位相差,在方解石(负晶体)中,e 光速度比o 光快,而在石英(正晶体)中,o 光速度比e 光快。
因此通过晶片后两束光的光程差和位相差分别为:
d n n
e o )(-=δ d n n e o )(2-⋅=∆λπ (2)
式中,λ为光在真空中的波长,o n 和e n 分别为晶片对o 光和e 光的折射率。
由d
n n e o )(2-⋅=∆λπ
可知经晶片射出后,o 光和e 光合成的振动随位相差的不同,就有不同的偏振方式。
(在偏振技术中,常将这种能使互相垂直的光振动产生一定位相差的晶体片叫做波片)。
因此晶片厚度不同,对应不同的相位差和光程差,
当光程差满足:()o e n n d δ=-= (k =0,1,2…)时, 为1/2波片; (3) 当光程差满足:()o e n n d δ=-= (k =0,1,2…)时, 为1/4波片。
(4) 平面偏振光通过λ/4片后 ,一般变为椭圆偏振光;但当θ= 或 时,出射的仍为平面偏振光,而当θ= 时,出射的为圆偏振光。
所以可以用λ/4波片获得椭圆偏振光和圆偏振光。
4. 旋光现象
偏振光通过某些晶体或物质的溶液时, , 称为旋光现象。
具有旋光性的晶体或溶液称为旋光物质。
最早是发现石英晶体有这种现象,后来继续发现在糖溶液、松节油、硫化汞、氯化钠等液体中和其他一些晶体中都有此现象。
有的旋光物质使偏振光的振动面顺时针方向旋转(逆光观察),称为右旋物质,反之称为左
旋物质。
振动面的旋转角度不仅与入射光的波长有关,还与光在该物质中通过的 有关。
对于有旋光性的溶液,旋转角还与溶液中旋光物质的浓度成 。
四. 实验内容
注意:实验前请用手或书本遮住光电流传感器,光功率测试仪选用20mW 档位,然后用调零旋钮进行调零!
1.部分偏振光及平面偏振光的检验
(1)将氦氖激光器发出的激光直接射到偏振片上,以光传播方向为轴转动偏振片一周,用光功率测试仪观测透射光强度的变化并记录。
(2)在第一个偏振片的后面放上第二个偏振片,分别转动第一个偏振片和第二个偏振片各一周,用光功率测试仪观测透射光强度变化情况。
将两次观测结果记入表1进行比较,并作出解释。
2. 验证马呂斯定律
让激光束(线偏振光)垂直通过偏振片,偏振片透振方向与激光光矢量振动方向夹角θ在90°~00转动一周的过程中,用光功率测试仪(20mW 档位)测量透射光强的相对值I ,每10°读取一次数据,记录数据,然后画出(I-I min ,θ)及(I-I min ,
2cos θ)关系曲线(I-I min 为纵轴,θ或2cos θ为横轴)
表2 检验马呂斯定律的实验数据表
0max I (0=夹角)
max I (90=夹角)
θ900 800
700 600 500 400 300 200 100 00 I(mW)
Cos2θ
I-I min
为什么I要减掉I min?
答:
图6.1(I-I min,θ)关系曲线图6.2(I-I min,2
cosθ)关系曲线
3. 1/2波片的作用
(1)让激光器产生的激光依次穿过偏振片P1、P2、光传感器;转动P2,使光功率最小(这时P1和P2透振方向垂直)。
(2)保持P1和P2不动,在P1和P2间插入1/2波片。
转动波片,再使光功率最小;
(3)以此时波片光轴位置为起点,转动1/2波片,使其光轴与起始位置的夹角依次为0°、15°、30°、45°、60°、75°、90°时;分别将P2转动一周,记录光功率变化情况,并对入射到P2的光偏振态分别作出判断。
1/2波片
转角
P2转一周,
入射到P2的光
偏振态透射光强是否变化? 光强变化次数完全or不完全消光
0°
(4)在(2)步骤的基础上,将波片以起始位置为零点分别转动15°、30°、45°、60°、75°、90°,相应地将P2 沿相同方向逐次转到消光位置,记录每次P2需要转动的角度。
并对实验结果予以解释。
4. 1/4波片与椭圆偏振光、圆偏振光
实验步骤与1/2波片相同,记录数据并判断现象。
5.观测线偏振光通过蔗糖溶液后的旋光现象,并测定蔗糖溶液的浓度(蔗糖溶液为右旋光溶液)
a.自己设计并画出光路简图,标明各器件位置即可(提示:旋转激光管可以改变入射激光的电矢量振动方向);
b.计算蔗糖溶液浓度。
已知:c La
Φ=
, Φ:旋光角度,0
=0.5Φ∆; L=25.00cm ,为旋光溶液长度(单次测量),L =0.1mm ∆;
a=6.640
ml/g.cm ,为蔗糖溶液旋光率
数据处理及不确定度计算:
①L u = ②u A Φ=
B u Φ=
u Φ=
③c = ④c E =
c u =
⑤c c c U =±=
c E = %
五、思考及讨论
1. 光的偏振现象说明了什么?
2. 产生线偏振光的方法有那些? 将线偏振光变成圆偏振光或椭圆偏振光要用何种器件?在什么状态下产生?实验中如何判断线偏振光、圆偏振光和椭圆偏振光?。