数列求和的8种方法

合集下载

高中数学数列求和的七种方法

高中数学数列求和的七种方法

高中数学数列求和的七种方法
数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。

下面是小编给大家带来的数列求和的七种方法,希望能够帮助到大家!
高中数学数列求和的七种方法
1、倒序相加法
倒序相加法如果一个数列{an}满足与首末两项等“距离”的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。

2、分组求和法
分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。

3、错位相减法
错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。

4、裂项相消法
裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。

5、乘公比错项相减(等差×等比)
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。

6、公式法
对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。

运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。

7、迭加法
主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或
等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。

数列求和七种方法技巧

数列求和七种方法技巧

数列求和的七种方法技巧包括:
1. 公式法:适用于等差数列、等比数列等基本数列的求和,可以直接使用求和公式进行计算。

2. 倒序相加法:将数列倒序排列,然后与原数列相加,得到一个常数列,再除以2得到原数列的和。

3. 错位相减法:适用于一个等差数列和一个等比数列相乘的形式,通过错位相减的方式将原数列转化为等比数列,再利用等比数列的求和公式进行计算。

4. 裂项相消法:将数列中的每一项都拆分成两个部分,使得中间项相互抵消,从而求得数列的和。

5. 分组法:将数列中的项进行分组,然后分别求和,最后得到整个数列的和。

6. 乘公因式法:适用于具有公因式的数列,将公因式提取出来,然后进行求和。

7. 构造法:通过构造新的数列或方程,将原数列的求和问题转化为其他形式的问题进行求解。

以上是数列求和的七种方法技巧,可以根据具体情况选择适合的方法进行计算。

数列与级数的8种求和方法专题讲解

数列与级数的8种求和方法专题讲解

数列与级数的8种求和方法专题讲解简介本文将介绍数列和级数的8种常见求和方法,包括递推公式、几何级数、等差数列求和、等比数列求和、伪等差数列求和、伪等比数列求和、特殊级数求和和无穷级数求和。

1. 递推公式递推公式是通过前一项和该项之间的关系来逐项求和的方法,通常用于求解迭代式数列的和。

递推公式可以通过给定的初始项以及递推关系进行求和。

2. 几何级数几何级数指的是一个数列中的各项与其前一项之比保持恒定的数列。

求解几何级数的和可以通过使用几何级数公式来进行计算。

3. 等差数列求和等差数列是一个数列中的各项与其前一项之差保持恒定的数列。

求解等差数列的和可以通过等差数列求和公式进行计算。

4. 等比数列求和等比数列是一个数列中的各项与其前一项之比保持恒定的数列。

求解等比数列的和可以通过等比数列求和公式进行计算。

5. 伪等差数列求和伪等差数列是一个数列中的各项与其下标之差保持恒定的数列。

求解伪等差数列的和可以通过伪等差数列求和公式进行计算。

6. 伪等比数列求和伪等比数列是一个数列中的各项与其下标之比保持恒定的数列。

求解伪等比数列的和可以通过伪等比数列求和公式进行计算。

7. 特殊级数求和特殊级数指的是具有特殊性质的级数,如调和级数、斐波那契级数等。

求解特殊级数的和需要根据其特定的性质和规律进行计算。

8. 无穷级数求和无穷级数是指一个无穷多项的级数。

求解无穷级数的和需要使用极限的概念,并根据级数的收敛性和发散性进行判断和计算。

以上是数列与级数的8种常见求和方法的专题讲解。

每种求和方法都有其适用的情况和特点,在实际问题中需要选择合适的方法进行求解。

希望本文能为读者提供一些有用的参考和指导。

高中数学数列求和的七种方法

高中数学数列求和的七种方法

高中数学数列求和的七种方法
1、倒序相加法
倒序相加法如果一个数列{an}满足与首末两项等距离的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。

2、分组求和法
分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。

3、错位相减法
错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。

4、裂项相消法
裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。

5、乘公比错项相减(等差等比)
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{anbn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。

6、公式法
对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的
前n项和公式进行求解。

运用公式求解的注意事项:首先要注意公式的应
用范围,确定公式适用于这个数列之后,再计算。

7、迭加法
主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等
比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一
系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。

数列求和的八种重要方法与例题

数列求和的八种重要方法与例题
n n
n
n-1
n
n
n-1
n
2S =lg(xy) +lg(xy) + ...+lg(xy)
n
= 2n(n +1) S = n(n +1)
2.错位相减 当{an}是等差数列,{bn}是等比数列,求 数列{anbn}的前n项和适用错位相减
典例3:
通项
1+2×3+3×32+4×33+…+n×3n-1=?
5.拆项分组求和法
6.并项求和法
深化数列中的数学思想方法:
热点题型1:递归数列与极限. 1
an 2 1 设数列{an}的首项a1=a≠ ,且 an 1 4 a 1 n 4 1 记 bn a2 n 1 ,n=l,2,3,…· . 4
n为偶数
,
n为奇数
1
a1 1, 故b1
1 1 1 2
2;
3 1 13 20 a3 , 故b3 4; a4 , 故b4 . 3 1 4 20 3 4 2
7 1 8 a2 , 故b2 7 1 3 8 8 2
热点题型2:递归数列与转化的思想方法.
数列{an}满足a11且8an116an12an50 (n1)。记 bn 1 (n1)。 an 2 (1)求b1、b2、b3、b4的值; (2)求数列{bn}的通项公式及数列{anbn}的前n项和Sn。 1 1 1 bn 得an , 代入递推关系8an1an 16an1 2an 5 0, 1 bn 2 an 1 a b bn 1 2 n n
{an+bn+cn}
等差
等比

数列的常见求和方法

数列的常见求和方法

数列的常见求和方法
数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。

1、倒序相加法
倒序相乘法如果一个数列{an}满足用户与首末两项等“距离”的两项的和成正比(或等同于同一常数),那么谋这个数列的前n项和,需用倒序相乘法。

2、分组求和法
分组议和法一个数列的通项公式就是由几个等差或等比或可以议和的数列的通项公式共同组成,议和时需用分组议和法,分别议和而后相乘。

3、错位相减法
错位二者加法如果一个数列的各项就是由一个等差数列和一个等比数列的对应项之积形成的,那么这个数列的前n项和需用此法xi,例如等比数列的前n项和公式就是用此法推论的。

4、裂项相消法
裂项二者消法把数列的通项切割成两项之差,在议和时中间的一些项可以相互抵销,从而求出其和。

5、乘公比错项相减(等差×等比)
这种方法就是在推论等比数列的'前n项和公式时所用的方法,这种方法主要用作谋数列{an×bn}的前n项和,其中{an},{bn}分别就是等差数列和等比数列。

6、公式法
对等差数列、等比数列,求前n项和sn可以轻易用等差、等比数列的前n项和公式展开解。

运用公式解的注意事项:首先必须特别注意公式的应用领域范围,确认公式适用于于这个数列之后,再排序。

7、迭加法
主要应用于数列{an}满足用户an+1=an+f(n),其中f(n)就是等差数列或等比数列的条件下,可以把这个式子变为an+1-an=f(n),代入各项,获得一系列式子,把所有的式子提至一起,经过整理,纡出来an,从而算出sn。

数列求和的各种方法

数列求和的各种方法

数列求和的各种方法一、等差数列求和1.1 基本公式等差数列求和有个很实用的公式,那就是和等于首项加末项的和乘以项数再除以2。

这就像我们分东西,把一头一尾的数看成是两个特殊的家伙,把它们加起来然后乘以一共有多少个数,再平均一下就得到总和了。

比如说数列1,3,5,7,9,首项是1,末项是9,项数是5,按照公式来算就是(1 + 9)×5÷2 = 25。

这公式就像一把万能钥匙,很多等差数列求和的问题都能轻松搞定。

1.2 实际应用在生活里也有等差数列求和的影子。

就像我们堆木头,最底下一层有10根,往上每层少1根,一共堆了10层。

这就是个等差数列,首项10,末项1,项数10。

用求和公式一算,(10 + 1)×10÷2 = 55根,一下子就知道木头总数了。

这就叫学以致用嘛。

二、等比数列求和2.1 公式及推导等比数列求和公式稍微复杂一点。

当公比不等于1的时候,和等于首项乘以1减去公比的n次方的差,再除以1减去公比。

这公式怎么来的呢?咱可以想象把等比数列的和乘以公比,然后和原来的和相减,就像玩消消乐一样,很多项就消掉了,最后就得到这个公式。

比如说等比数列2,4,8,16,首项2,公比2,项数4,按照公式算就是2×(1 2⁴)÷(1 2)=30。

2.2 特殊情况当公比等于1的时候就简单多啦,那就是首项乘以项数。

这就像大家都长得一样,直接数个数乘以每个的大小就成。

2.3 经济中的应用等比数列求和在经济领域也有用处。

比如银行利息按复利计算,本金1000元,年利率5%,存3年。

每年的本利和就是个等比数列,首项1000,公比1.05。

用等比数列求和公式就能算出3年后的本利和,这可关系到咱的钱袋子呢。

三、分组求和法3.1 适用情况有些数列看起来乱七八糟的,既不是等差数列也不是等比数列,但是可以把它的项分成几组,每组分别是我们熟悉的数列。

这就好比把一群混杂的小动物按照种类分开,然后分别计算。

数列求和的八种方法及题型

数列求和的八种方法及题型

数列求和的八种方法及题型1、抽象加法法:把等差数列的元素抽象为某一个相同的数值(称为项数,式子为S),通过加法求出所求等差数列的和。

例题:这样一个等差数列:2、4、6、8……100,求这一数列的和是多少?答案:抽象加法法:元素个数n = 99,公差d = 2,首项a = 2。

由公式S=n*(a+l)/2可得:S = 99*(2+100)/2 = 99*102/2 = 4950。

2、数值加法法:直接对元素逐一加法求和。

例题:计算这一等差数列的和:1、3、5、7……99?答案:数值加法法:元素个数n = 49,即:1+3+5+7+...+99=49*100/2=4900。

3、改编组合法:将数列改编为组合形式,将大式化简,从这个组合计算其和。

例题:求这一等差数列的和:2、5、8、11……99?答案:改编组合法:元素个数n = 48,公差d = 3,首项a = 2。

将其转换为组合:2+48d ,即2+(48*3)=150,由公式S=n*(a+l)/2可得:S = 48*(2+150)/2 = 48*152/2 = 7344。

4、数表法:把数列列成表,统计其和。

例题:求这一等差数列的和:3、5、7、9……99?答案:数表法:数列:3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99和:3+5+7+9+11+13+15+17+19+21+23+25+27+29+31+33+35+37+39+41+43+ 45+47+49+51+53+55+57+59+61+63+65+67+69+71+73+75+77+79+81+83 +85+87+89+91+93+95+97+99=24505、立方法:一种特殊情形——这一数列两个元素的值等于这两个元素之间的位数的立方和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。

数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和Sn=2n-1,则=题2.若12+22+…+(n-1)2=an3+bn2+cn,则a= ,b= ,c=.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得οοοοο1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x ο①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++⋅⋅⋅++++=S =89∴ S =题1 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:练习。

已知()x f 满足21,x x ∈R ,当121=+x x 时,()()2121=+x f x f ,若=n S ()()11210f n n f n f n f f +⎪⎭⎫⎝⎛-++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+ΛN n ∈,,求.n S解答:=n S )1(41+n .由()()2121=+x f x f 知只要自变量121=+x x 即成立,又知=+101111=-+⋅nn n ,…,则易求.n S四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n-+---[例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n [例11] 求证:οοοοοοοο1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1οοοοοοοοο-+-+-+- =)0tan 89(tan 1sin 1οοο-=οο1cot 1sin 1⋅=οο1sin 1cos 2∴ 原等式成立例 求证!131⋅+!1001021!351!241⋅++⋅+⋅Λ<21此为分数数列求和问题,仍然用裂项求和法,难点在于分母出现了阶乘,为此,需将数列的第k 项作一些恒等变形,以便将其分裂为两项之差.解 因为)!2(1)!1(1)!2(1!)2(1+-+=++=⋅+k k k k k k (=k 100,,2,1Λ)所以!131⋅+!1001021!351!241⋅++⋅+⋅Λ =)!1021!1011()!51!41()!41!31()!31!21(-++-+-+-Λ=!1021!21-<21.练习题1.答案:.练习题2。

相关文档
最新文档