烷烃、环烷烃

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

烷烃

烷烃即饱和烃(saturated group),是只有碳碳单键的链烃,是最简单的一类有机化合物。烷烃分子里的碳原子之间以单键结合成链状(直链或含支链)外,其余化合价全部为氢原子所饱和。烷烃分子中,氢原子的数目达到最大值,它的通式为CnH2 n+2。分子中每个碳原子都是sp3杂化。最简单的烷烃是甲烷。

烷烃中,每个碳原子都是四价的,采用sp3杂化轨道,与周围的4个碳或氢原子形成牢固的σ键。连接了1、2、3、4个碳的碳原子分别叫做伯、仲、叔、季碳;伯、仲、叔碳上的氢原子分别叫做伯、仲、叔氢。

为了使键的排斥力最小,连接在同一个碳上的四个原子形成四面体(tetrahedro n)。甲烷是标准的正四面体形态,其键角为109°28′(准确值:arccos(-1/3))。

理论上说,由于烷烃的稳定结构,所有的烷烃都能稳定存在。但自然界中存在的烷烃最多不超过50个碳,最丰富的烷烃还是甲烷。

由于烷烃中的碳原子可以按规律随意排列,所以烷烃的结构可以写出无数种。直链烷烃是最基本的结构,理论上这个链可以无限延长。在直链上有可能生出支链,这无疑增加了烷烃的种类。所以,从4个碳的烷烃开始,同一种烷烃的分子式能代表多种结构,这种现象叫同分异构现象。随着碳数的增多,异构体的数目会迅速增长烷烃还可能发生光学异构现象。当一个碳原子连接的四个原子团各不相同时,这个碳就叫做手性碳,这种物质就具有光学活性。

烷烃失去一个氢原子剩下的部分叫烷基[1],一般用R-表示。因此烷烃也可以用通式RH来表示。

烷烃最早是使用习惯命名法来命名的。但是这种命名法对于碳数多,异构体多的烷烃很难使用。于是有人提出衍生命名法,将所有的烷烃看作是甲烷的衍生物,例如异丁烷叫做2-一甲基丙烷。

现在的命名法使用IUPAC命名法,烷烃的系统命名规则如下:

找出最长的碳链当主链,依碳数命名主链,前十个以天干(甲、乙、丙、丁、戊、己、庚、辛、壬、癸)代表碳数,碳数多于十个时,以中文数字命名,如:十一烷。

从最近的取代基位置编号:1、2、3...(使取代基的位置数字越小越好)。以数字代表取代基的位置。数字与中文数字之间以- 隔开。

有多个取代基时,以取代基数字最小且最长的碳链当主链,并依甲基、乙基、丙基的顺序列出所有取代基。

有两个以上的取代基相同时,在取代基前面加入中文数字:一、二、三...,如:二甲基,其位置以, 隔开,一起列于取代基前面。

异辛烷(2,2,4-三甲基戊烷)的结构式。异辛烷是汽油抗爆震度的一个标准,其辛烷值定为100。对于一些结构简单或者常用的烷烃,还经常用俗名。如,习惯上直链烷烃的名称前面加“正”字,但系统名称中并没有这个字。在主链的2位有一个甲基的称为“异”,在2位有两个甲基的称为“新”。这虽然只适合于异构体少的丁烷和戊烷,出于习惯还是保留了下来,甚至给不应该叫“异”的2,2,4-三甲基戊烷也冠上了“异辛烷”的名字。

同分异构体

同分异构体简称异构体,是具有相同分子式而分子中原子排列顺序不同的化合物。

有机物中的同分异构体分为构造异构和立体异构两大类。具有相同分子式,而分子中原子或基团连接的顺序不同的,称为构造异构。在分子中原子的结合顺序相同,而原子或原子团在空间的相对位置不同的,称为立体异构。

构造异构又分为链异构、位置异构和官能团异构。立体异构又分为构型异构和构象异构,而构型异构还分为顺反异构和旋光异构。在高中,我们研究的主要是构造异构。

对于烷烃来说,异构体的数目随着碳原子数目的增加而迅速增加。下表中列出了几种烷烃从理论上讲存在的异构体数目。

这些异构体的数目是在20世纪30年代初用数学方法推算出来的。含有1~9个碳原子的烷烃,其实际所得到的异构体的数目与理论推测完全相符,含10个碳原子的烷烃,从理论上推测出来的异构体有一半已经得到,更高级的烷烃只有少数的异构体是已知的。

物理性质

烷烃随着分子中碳原子数的增多,其物理性质发生着规律性的变化:

1.常温下,它们的状态由气态、液态到固态,且无论是气体还是液体,均为无色。一般地,C1~C4气态,C5~C16液态,C17以上固态。

2.它们的熔沸点由低到高。

3.烷烃的密度由小到大,但都小于1g/cm^3,即都小于水的密度。

4.烷烃都不溶于水,易溶于有机溶剂。

|注意:新戊烷(C(CH3)4)由于支链较多,常温常压下也是气体。

化学性质

烷烃性质很稳定,在烷烃的分子里,碳原子之间都以碳碳单键相结合成链关,同甲烷一样,碳原子剩余的价键全部跟氢原子相结合.因为C-H键和C-C单键相对稳定,难以断裂。除了下面三种反应,烷烃几乎不能进行其他反应。

氧化反应

R + O2 → CO2 + H2O 或CnH2n+2 + (3n+1)/2 O2-----------(点燃)---- nC O2 + (n+1) H2O

所有的烷烃都能燃烧,而且反应放热极多。烷烃完全燃烧生成CO2和H2O。如果O2的量不足,就会产生有毒气体一氧化碳(CO),甚至炭黑(C)。

以甲烷为例:

CH4 + 2 O2 → CO2 + 2 H2O

O2供应不足时,反应如下:

CH4 + 3/2 O2 → CO + 2 H2O

CH4 + O2 → C + 2 H2O

分子量大的烷烃经常不能够完全燃烧,它们在燃烧时会有黑烟产生,就是炭黑。汽车尾气中的黑烟也是这么一回事。

取代反应

R + X2 → RX + HX

由于烷烃的结构太牢固,一般的有机反应不能进行。烷烃的卤代反应是一种自由基取代反应,反应的起始需要光能来产生自由基。

以下是甲烷被卤代的步骤。这个高度放热的反应可以引起爆炸。

链引发阶段:在紫外线的催化下形成两个Cl的自由基

Cl2 → Cl* / *Cl

链增长阶段:一个H原子从甲烷中脱离;CH3Cl开始形成。

CH4 + Cl* → CH3Cl + HCl (慢)

CH3Cl + Cl2 → CH2Cl2 + HCl

链终止阶段:两个自由基重新组合

Cl* 和Cl*, 或

R* 和Cl*, 或

CH3* 和CH3*.

裂化反应

裂化反应是大分子烃在高温、高压或有催化剂的条件下,分裂成小分子烃的过程。裂化反应属于消除反应,因此烷烃的裂化总是生成烯烃。如十六烷(C16H34)经裂化可得到辛烷(C8H18)和辛烯(C8H16)。

由于每个键的环境不同,断裂的机率也就不同,下面以丁烷的裂化为例讨论这一点:

CH3-CH2-CH2-CH3 → CH4 + CH2=CH-CH3

过程中CH3-CH2键断裂,可能性为48%;

CH3-CH2-CH2-CH3 → CH3-CH3 + CH2=CH2

相关文档
最新文档