灰色预测法GM总结
灰色预测法GM总结

灰色预测模型一、灰色预测的概念1. 灰色预测法是一种对含有不确定因素的系统进行预测的方法。
灰色系统是介于白色系统和黑色系统之间的一种系统。
灰色系统内的一部分信息是已知的,另一部分信息时未知的,系统内各因素间具有不确定的关系。
2. 灰色预测,是指对系统行为特征值的发展变化进行的预测,对既含有已知信息又含有不确定信息的系统进行的预测,也就是对在一定范围内变化的、与时间序列有关的灰过程进行预测。
尽管灰过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此可以通过对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。
灰色预测是利用这种规律建立灰色模型对灰色系统进行预测。
二、灰色预测的类型1. 灰色时间序列预测;即用观察到的反映预测对象特征的时间序列来构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。
2. 畸变预测;即通过灰色模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。
3. 系统预测;通过对系统行为特征指标建立一组相互关联的灰色预测模型,预测系统中众多变量间的相互协调关系的变化。
4. 拓扑预测;将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测该定值所发生的时点 三、GM (1,1)模型的建立 1. 数据处理为了弱化原始时间序列的随机性,在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据处理后的时间序列即称为生成列。
i. 设()()()()()()()()(){},,, (00000)123X X X X X n = 是所要预测的某项指标的原始数据,计算数列的级比()()()(),,,,()00123X t t t n X t λ-==L 。
如果绝大部分的级比都落在可容覆盖区间(,)2211n n ee-++内,则可以建立GM(1,1)模型且可以进行灰色预测。
灰色模型GM

问题的分析本文关键在于预测长江江豚个体数量的变化,由于近20年来,江豚的数量急剧下降,如不进行保护,则在未来的10-15年将会发生功能性灭绝,因此江豚种群数量的预测关系到江豚的生存和保护的大问题。
由于江豚个体数量受出生率,死亡率,繁殖能力,长江水质的污染,自然灾害,人为的捕获,人类肆意采挖江砂与非法使用渔具等众多因素的影响,而前这些因数也可能时刻发生变化,难以确定,更难确定这些因素与江豚数量变化的定量关系。
且题中所给的数据数量较少,我们只能在一定的假设条件(往往是一些经验及常识)下按照某种逻辑推理演绎而得到模型,它是一个抽象的灰色系统。
因此,针对问题一,可以采用灰色预测法建立GM(1,1)模型。
因为,灰色预测法至少需要4个数据,我们通过查找资料,得到了1996年江豚在长江中下游的数量.由于数据限制,灰色预测模型在分析江豚出现功能性灭绝和彻底灭绝时是以五年为一个时间间隔的,要得到具体每一年的江豚个体数量,可以通过拟合所得预测数据,得出具体每一年的江豚数量,与出现功能性灭绝的数量进行对比,就可以确定功能性灭绝的时间。
五模型的建立与求解5.1 江豚数量变化的灰色预测模型我们首先以五年为一个时间先给出一个时间间隔,建立灰色预测模型,对江豚数量以五年为一个周期进行一个大致的预测。
5.1.1模型的分析本题已给的江豚种群在1991年,2006年,2011年的种群数量数据,如下表:法时,至少需要四组数据,因此,我们查阅资料得到的两组数据,我们最终得到五组江豚种群和时间的数据,如下表:灰色模型GM(1,1)建立X,它有5个观测值:设定时间序列(0){}{}(0)(0)(0)(0)(0)(0)==X X X X X X(1),(2),(3),(4),(5)2700,2400,2000,1750,1250其中的数值为1991年到2011每隔5年长江江豚的数量。
X:第一步,通过累加生成新数列(1){}{}(1)(1)(1)(1)(1)(1)==X X X X X X(1),(2),(3),(4),(5)2700,5100,7100,8850,10100其中(1)(1)(1)(0)==-+=()(1)(),2,35X X i X i X i i第二步,构造矩阵B 和数据向量Y 。
灰色GM

灰色GM(1,1)预测模型1.模型的建立在灰色系统理论中,称抽象的逆过程为灰色预测,也称GM 。
它是根据关联度、生成数灰导数、灰微分等观点和一系列数学方法建立起来的连续型的微分方程。
下面利用单变量一阶灰色预测GM(1,1)模型对(0)x 序列的确定增长趋势进行预测。
GM(1,1)模型设原始时间序列为(0)(0)(0)(0)((1),(2),...())n xx x x =,这是一组信息不完全的灰色量,且具有很大的随机性将其进行生成处理,提供更多的有用信息。
其形式为:(1)(1)dtdxx μα+=设原始时间序:(0)(0)(0)(0)((1),(2),...())n xx x x =预测第n+1期,第n+2期,…的值:(0)(0)(1),(2),...n n x x ++ 其相应的预测模型模拟序列为: (0)(0)(0)(0)((1),(2),...())n x x x x =设(1)x为(0)x的一次累加序列:(1)(0)(0)(0)((1),(2),...())n xx x x =,n k ,,2,1 = , 其中(1)(0)1()(())ki k i xx ==∑。
利用(1)x计算GM(1,1)模型参数αμ,。
通过最小二乘法可得:1=()T n T B B Y B αμ-⎛⎫ ⎪⎝⎭,其中1111111((1)(2))121((2)(3))1211((1)())12B n n x x x x xx ⎛⎫-+ ⎪⎪ ⎪-+ ⎪=⎪⎪ ⎪--+ ⎪⎝⎭,(0)(0)(0)((2),(3),,())n n x x x Y =。
微分方程的解为:(0)(0)(1)((1))ak k e x x μμαα∧-+=-+2.残差检验评价精度高低最简单的方法是看模型值和原值之间的残差百分比。
我们认为一般百分比±5%即为满意,对±20%以内的,根据实际情况也可以使用。
如果再大即要考虑修正模型或改为其他模型。
GM(1_1)模型,灰色预测

小额贷款远程智能预警系统 人数预测算法的设计一、灰色系统的引入:灰色系统是指“部分信息已知,部分信息未知”的“小样本”,“贫信息”的不确定性系统,它通过对“部分”已知信息的生成、开发去了解、认识现实世界,实现对系统运行行为和演化规律的正确把握和描述. 灰色系统模型的特点:对试验观测数据及其分布没有特殊的要求和限制,是一种十分简便的新理论,具有十分宽广的应用领域。
目前,灰色系统已经成为社会、经济、科教、技术等很多领域进行预测、决策、评估、规划、控制、系统分析和建模的重要方法之一。
特别是它对时间序列短、统计数据少、信息不完全系统的建模与分析,具有独特的功效。
灰色模型的优点(一) 不需要大量的样本。
(二) 样本不需要有规律性分布。
(三) 计算工作量小。
(四) 定量分析结果与定性分析结果不会不一致。
(五) 可用于近期、短期,和中长期预测。
(六) 灰色预测精准度高。
二、GM (1,1)模型(grey model 一阶一个变量的灰微分方程模型)灰色理论认为系统的行为现象尽管是朦胧的,数据是复杂的,但它毕竟是有序的,是有整体功能的。
灰数的生成,就是从杂乱中寻找出规律。
同时,灰色理论建立的是生成数据模型,不是原始数据模型。
因此,灰色预测的数据是通过生成数据的GM(1,1)模型所得到的预测值的逆处理结果。
GM (1,1)的具体模型计算式设非负原始序列()()(){}n x x x X )0()0()0()0(,...,2,1=对)0(X作一次累加()()∑==ki i x k x1)0()1( ;k=1,2,…,n得到生成数列为()()(){}n x x x X )1()1()1()1(,...,2,1=于是()k x)0(的GM (1,1)白化微分方程为u ax dtdx =+)1()1( (1—1)其中a,u 为待定参数,将上式离散化,即得()()()()u k x az k x =+++∆11)1()1()1((1—2)其中()()1)1()1(+∆k x 为)1(x在(k+1)时刻的累减生成序列,()()()[]()[])1()()1(11)0()1()1()()0()1()0()1()1(+=-+=∆-+∆=+∆k x k x k x k x k x k x r(1—3)()()1)1(+k x z 为在(k+1)时刻的背景值(即该时刻对应的x 的取值)()()()()()k x k x k x z )1()1()1(1211++=+ (1—4)将(1—3)和(1—4)带入(1—2)得()()()()u k x k x a k x +++-=+]121[1)1()1()0( (1—5)将(1—5)式展开得()()()()()()()()()()()()⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡+--+-+-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡u a n x n x x x x x n x x x 1:11121:32212121:32)1()1()1()1()1()1()0()0()0( (1—6)令()()()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=n x x x Y )0()0()0(:32,()()()()()()()()()⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡+--+-+-=1:11121:32212121)1()1()1()1()1()1(n x n x x x x x B ,[]Tu a =Φ 为待辨识参数向量,则(1—6)可以写成Φ=B Y (1—7)参数向量Φ可用最小二乘法求取,即[]()Y B B B u a T T T 1ˆ,ˆˆ-==Φ(1—8)把求取的参数带入(2—16)式,并求出其离散解为()()a u e a u x k xk a ˆˆˆˆ11ˆ)1()1(+⎥⎦⎤⎢⎣⎡-=+- (1—9)还原到原始数据得()()()()()ka a e a u x e k x k x k x ˆ)1(ˆ)1()1()0(ˆˆ11ˆ1ˆ1ˆ-⎥⎦⎤⎢⎣⎡--=-+=+ (1—10)(1—9)、(1—10)式称为GM (1,1)模型的时间相应函数模型,它是GM (1,1)模型灰色预测的具体计算公式。
文天灰色预测模型-GM

常用的灰色预测有五种:
(1)数列预测,即用观察到的反映预测对象特征的时间序列来 构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征 量的时间。
(2)灾变与异常值预测,即通过灰色模型预测异常值出现的时 刻,预测异常值什么时候出现在特定时区内。
(3)季节灾变与异常值预测,即通过灰色模型预测灾变值发生 在一年内某个特定的时区或季节的灾变预测。
x (0)(N ) ax (1)(N ) u.
把ax(1) (i) 项移到右边,并写成向量的数量积形式
x(0) (2)
[
x(1)
(2),
1]
a u
x
(
0)
(3)
[
x(1)
(3),
1]
a u
(5)
x(0)
(
N
)
[
x(1)
(
N
),
1]
a u
由于x (1)
t
涉及到累加列 x(1)
当k 1, 2, , N 1时,由(8)式算得的
(8) xˆ(1) (k 1) 是拟合值;
当k N时,xˆ(1) (k 1) 为预报值.这是相对于一次累加序列
x(1) 的拟合值,用后减运算还原,当k 1, 2, , N 1时,
就可得原始序列 x (0) 的拟合值 xˆ(0) (k 1);当k N时,
【例2】 表2列出了某公司1999—2003年逐年的销 售额.试用建立预测模型,预测2004年的销售额,要求 作精度检验。
【例2】 表2列出了某公司1999—2003年逐年的销 售额.试用建立预测模型,预测2004年的销售额,要求 作精度检验。
表2 逐年销售额(百万元)
年份 序号
民航机场旅客吞吐量灰色GM(1,2)预测

民航机场旅客吞吐量灰色预测的PGM(1,2)模型研究杜云郑顺文指导老师:杨丽安然(中国民用航空学院天津 300300)摘要:本文应用灰色GM(1,1)模型对民航机场旅客吞吐量进行了预测研究,得到了有价值的规律和结论。
同时,本文以灰色GM(1,2)模型为基础,提出了适用于灰色系统数列预测的PGM(1,2)模型,并将其应用于对民航机场旅客吞吐量进行预测研究,结果表明:PGM(1,2)预测模型曲线能反映民航机场旅客吞吐量的变化规律,预测精度很高。
为实现民航机场旅客吞吐量的短、中、长期的准确预测提供了科学的依据和方法。
关键词:灰色预测;PGM(1,2)模型;民航机场旅客吞吐量;1 引言随着我国经济的飞速发展,人民生活水平的显著提高,各行各业都显示出良好的发展势头,中国民航业也同样拥有着很大的发展机遇。
旅客运输是民航运输主要业务之一,对民航机场旅客吞吐量进行短、中、长期的准确预测的研究对民航建设有着重要的意义。
短期预测(指对未来1-2年的预测)可以指导民航机场近期运输业务的计划和运力安排,做好运输服务。
而中、长期预测(指对未来3-5年、5-15年的预测)则是机场规划、建设的依据,以决定机场分期建设的规模,控制机场的最终用地范围。
民航机场旅客吞吐量预测是一件复杂的工作,城市对航线格局下某机场业务量与该地区的社会、经济情况密切相关,地区经济发展的快慢、地区政策的变化都会直接影响航空业务量的变化。
目前航空运输预测的基本方法主要是定性预测法、平均预测法和回归分析法。
资料[1]显示这些方法对短期预测的结果能满足管理要求(即预测相对误差≤12%)。
而对中、长期的预测则是非常困难的,只能通过对历史资料的分析、研究,参考、借鉴国外机场发展的过程做出预测,因此,准确度较差,有时甚至是失败的。
这将导致机场规划建设的决策失误。
例如:珠海机场、绵阳机场就是由于预测不准确造成所建航站楼规模过大,长期不能有效利用,从而造成资金的浪费。
灰色预测模型

灰色系统模型(Grey Model,GM)一:解决的关键问题 (所谓灰色系统是指部分信息已知而部分信息未知的系统,灰色系统所要考察和研究的是对信息不完备的系统,通过已知信息来研究和预测未知领域从而达到了解整个系统的目的)灰色系统模型作为一种预测方法广泛应用于工程控制,经济管理,社会系统等众多领域。
二:GM(1,1)模型(一):对原始序列累加处理一次累加生产序列②(即1-AGO序列),表示为其中,一次累加序列(1)X 的第k 项由原序列的前k 项和产生,即: 由(1)X 的相邻项平均得到(1)X 的紧邻均值生成序列(1)z ,表示为:根据上述序列,有灰色系统模型GM(1,1)的基本形式:(二)构造GM(1,1)模型方程组的矩阵形式,并求解参数 GM(1,1)模型的微分方程基本形式:(三)求的时间响应序列,累减得到原序列的预测值(四)模型检验残差的均值、方差分别为:21S C S 称为均方差比值,对于给定的00C ,当0C C 时,称模型为均方差比合格模型;1(()0.6745)p p k S 称为小误差概率,对于给定的00P ,当0P P 时,称模型为小误差概率合格模型。
一般均方差比值C 越小越好(因为C 小说明S 小,1S 大,即残差方差小,原始数据方差大,说明残差比较集中,摆动幅度小,原始数据比较分散,摆动幅度大,所以模拟效果好,要求2S 与1S 相比尽可能小),以及小误差概率p 越大越好,给定000,,,C p 的一组取值,就确定了检验模型模拟精度的一个等级,常用的精度等级见表1。
软件DPS 的分析结果也提供了C 、p 的检验结果。
(五)残差修正模型(六)建立新陈代谢GM(1,1)进行动态预测在实际建模过程中,原始数据序列的数据不一定全部用来建模。
我们在原始数据序列中取出一部分数据,就可以建立一个模型。
一般说来,取不同的数据,建立的模型也不一样,即使都建立同类的GM(1,1)模型,选择不同的数据,参数a,b的值也不一样。
灰色预测模型GM(1_1)及其应用

灰色预测模型GM(1,1)的应用一、问题背景:蠕变是材料在高温下的一个重要性能。
处于高温状态下的材料长期受到载荷作用时,即使其载荷较低,并且在短时间的高温拉伸试验中材料不发生变形,但在此情况下仍会有微小的蠕变,极端的情况下,甚至会使材料发生破坏。
高温材料多应用于各种车辆的发动机及冶金厂中各种设备上,如果因蠕变引起破坏,可能造成很大的事故。
为了保证设备的安全可靠,在某一使用温度下,预先知道该材料对不同载荷应力下断裂的时间是很重要的。
过去,人们都是通过蠕变试验测量断裂时间。
而做蠕变试验时,需要很长时间才能得到结果,即使通过试验得出的数据,也只是对某几个具体试样而言,存在很大的偶然性,不能代表普遍的规律。
如果将实测的数据用灰色系统理论来处理,可以预测在某一温度下的任何载荷应力的断裂时间。
二、低合金钢铸件蠕变性能的灰色预测下面是对Cr-mo-0.25V 低合金钢铸件高温蠕变情况利用灰色系统理论进行研究。
在500℃的高温下,已测得此铸件在载荷分别为37,36,35,34,33(kg/mm 2)情况下的蠕变断裂时间见下表。
数 列 序 数 K1 2 3 4 5载荷应力(kg/mm 2) 37 36 35 34 33 断裂时间()(100)0(K X ⨯小时)2.38 2.80 4.25 6.85 11.30 一次累加数列)()1(K X 2.38 5.18 9.43 16.28 27.581、建立GM (1,1)模型(1)数据处理:将同一数据列的前k 项元素累加后生成新数据列的第k 项元素。
即根据断裂时间数列)()0(k X 由∑==kn n X k X 1)0()1()()(得到 )()1(k X 。
(2)建立矩阵B,y:根据⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+--+-+-=1)]()1([5.01)]3()2([5.01)]2()1([5.0)1()1()1()1()1()1(N X N X X X X X B 得到 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=19.2118.12130.7178.3B根据 T N N X X X Y )](,),3(),2([)0()0()0( =,得到 T N Y ]3.11,85.6,25.4,80.2[=(3)求出逆矩阵1()T BB - (4)作最小二乘估计,求参数u a ,N T T Y B B B u a 1)(ˆ-=⎪⎪⎭⎫⎝⎛=α 可得,⎪⎪⎭⎫ ⎝⎛-=97.05.0ˆα a = -0.5, u=0.97(5)建立时间响应函数,计算拟合值把a 和u 分别代入au e a u X t X at +-=+-))1(()1(ˆ)0()1(可得到解为2.24.4)1(ˆ5.0)1(-=+t e t X, 取t 为应力序数k 时,即得到时间响应方程为:2.24.4)1(ˆ5.0)1(-=+k e k X即可得到生成累加数列),2,1()1(ˆ)1( =+k k X 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
灰色预测模型一、灰色预测的概念1. 灰色预测法是一种对含有不确定因素的系统进行预测的方法。
灰色系统是介于白色系统和黑色系统之间的一种系统。
灰色系统内的一部分信息是已知的,另一部分信息时未知的,系统内各因素间具有不确定的关系。
2. 灰色预测,是指对系统行为特征值的发展变化进行的预测,对既含有已知信息又含有不确定信息的系统进行的预测,也就是对在一定范围内变化的、与时间序列有关的灰过程进行预测。
尽管灰过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此可以通过对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。
灰色预测是利用这种规律建立灰色模型对灰色系统进行预测。
二、灰色预测的类型1. 灰色时间序列预测;即用观察到的反映预测对象特征的时间序列来构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。
2. 畸变预测;即通过灰色模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。
3. 系统预测;通过对系统行为特征指标建立一组相互关联的灰色预测模型,预测系统中众多变量间的相互协调关系的变化。
4. 拓扑预测;将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测该定值所发生的时点 三、GM (1,1)模型的建立 1. 数据处理为了弱化原始时间序列的随机性,在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据处理后的时间序列即称为生成列。
i. 设()()()()()()()()(){},,, (00000)123X X X X X n = 是所要预测的某项指标的原始数据,计算数列的级比()()()(),,,,()00123X t t t n X t λ-==L 。
如果绝大部分的级比都落在可容覆盖区间(,)2211n n ee-++内,则可以建立GM(1,1)模型且可以进行灰色预测。
否则,对数据做适当的预处理。
方法目前主要有数据开n 方、数据取对数、数据平滑。
预处理的数据平滑设计为三点平滑,具体可以按照下式处理()()()()()()()()/00001214X t X t X t X t ⎡⎤=-+++⎣⎦()()()()()()/00013124X X X ⎡⎤=+⎣⎦ ()()()()()()/000134X n X n X n ⎡⎤=-+⎣⎦ii. 预处理后对数据作一次累加生成处理,即:将原始序列的第一个数据作为生成列的第一个数据,将原始序列的第二个数据加到原始序列的第一个数据上,其和作为生成列的第二个数据。
按此规则进行下去,便可得到生成列。
根据()()()()101kn Xk X n ==∑,得到一个新的数列()()()()()()()()(){},,,...11111123X X X X X n =这个新的数列与原始数列相比,其随机性程度大大弱化,平稳性大大增加。
2. 新数列的变化趋势近似地用下面的微分方程描述。
()()11dX aX u dt+= 其中:a 称为发展灰数;u 称为内生控制灰数。
3. 模型求解。
令()()()[(),(),,()]00023T n Y X X X n =⋯,ˆα为待估参数向量,ˆa u α⎛⎫= ⎪⎝⎭, ()()()()()()(()())(()())(()())111111112 12123 1211 12X X X X B X n X n ⎡⎤-+⎢⎥⎢⎥⎢⎥-+⎢⎥=⎢⎥⋯⋯⎢⎥⎢⎥--+⎢⎥⎣⎦, 于是模型可表示为ˆn Y B α= 通过最小二乘法得到:()ˆ1T T n B B B Y α-= 求解微分方程,即可得灰色预测的离散时间响应函数:()()()()ˆ1011at u u X t X e a a -⎡⎤+=-+⎢⎥⎣⎦,,,...,0121t n =- ()()ˆ11Xt +为所得的累加的预测值,将预测值还原即为: ()()()ˆˆˆ()()-()01111Xt X t X t +=+ 注:若数据经过预处理,则还需经过相应变换才能得到实际预测值。
4、模型检验灰色预测检验一般有残差检验、关联度检验和后验差检验。
1) 残差检验()()()ˆˆˆ()()-(-)0111Xt X t X t = ()()()()()()ˆ000t Xt X t ∆=- ()()()(),,,,()0012t t t n X t ε∆==L分别求出预测值、绝对误差值和相对误差值,计算出平均相对误差判断精度是否理想。
2) 关联度检验i. 定义关联系数()t η()()()()()()()()min max ()max 0000t t t t t ρη∆+∆=∆+∆其中:①()()0t ∆为第t 个点()0X 与()ˆ0X的绝对误差; ②ρ称为分辨率,0<ρ<1,一般取ρ=;③对单位不一,初值不同的序列,在计算相关系数前应首先进行初始化,即将该序列所有数据分别除以第一个数据。
ii. 定义关联度()11nt r t n η==∑,称为()()0X t 与()()ˆ0Xt 的关联度 根据上述方法算出()()ˆ0Xk 与原始序列()()0X k 的关联系数,然后计算出关联度,根据经验,当ρ=时,关联度大于便满足检验标准。
3) 后验差检验计算原始序列标准差和绝对误差序列的标准差分别为:1S =2S =计算方差比21S C S =,小误差概率()()(){}.00106745P P t S =∆-∆<,令()()()00t e t =∆-∆,.0106745S S =,则{}0t P P e S =<检验指标P 和C 与灰色预测精度检验等级标准如下表所示: XXX 表 检验指标 优良 中 差 P > > > ≤ C <<<?四、残差模型修正若用原始经济时间序列()0X 建立的GM (1,1)模型检验不合格或精度不理想时,要对建立的GM (1,1)模型进行残差修正或提高模型的预测精度。
修正的方法是建立GM (1,1)的残差模型。
设))(),...,2(),1(()0()0()0()0(n εεεε=其中,()()()0k x k ε=-()ˆ()1xk 为)1(X 的残差序列。
若存在k 0,满足1.的符号一致;)(,)0(0k k k ε≥∀2.40≥-k n ,则称|))(||,...,)1(||,)((|)0(0)0(0)0(n k k εεε+为可建模残差尾段,仍记为))(),...,1(),(()0(0)0(0)0()0(n k k εεεε+=设))(),...,1(),(()0(0)0(0)0()0(n k k εεεε+=为可建模残差尾段,其一次累加序列))(),...,1(),(()1(0)1(0)1()1(n k k εεεε+=的GM(1,1)模型的时间响应式为0)]([0)0()1(,))(()1(ˆ0k k a be a b k k k k a ≥+-=+--εεεεεεε则残差尾段的模拟序列为))(ˆ),...,1(ˆ),(ˆ(ˆ)0(0)0(0)0()0(n k k εεεε+= 其中0)]([0)0()0(,))()(()1(ˆ0k k e a bk a k k k a ≥--=+--εεεεεε若用)0(ˆε修正)1(ˆX 则称修正后的时间响应式 ⎪⎪⎩⎪⎪⎨⎧≥-±+-<+-=+----0)]([0)0()0(0)0()1(,))(())1((,))1(()1(ˆ0k k ea b k a a b e a b x k k a b e a b x k x k k a ak ak εεεεε 为残差修正GM(1,1)模型,简称残差GM(1,1)。
其中残差修正值)]([0)0()0(0))()(()1(ˆk k a e a bk a k ----=+εεεεεε的符号应与残差尾段)0(ε的符号保持一致。
若)1()0()1()1()0())1()(1()1(ˆ)(ˆ)(ˆ----=--=k a a e abx e k x k x k x则相应的残差修正时间响应式⎪⎪⎩⎪⎪⎨⎧≥-±--<--=+----0)]([0)0()0(0)0()0(,))(())1()(1(,))1()(1()1(ˆ0k k ea b k a e a b x e k k e a b x e k x k k a ak a ak a εεεεε 称为累减还原式的残差修正模型。
取定k 后,按此模型,可对k>k0的模拟值进行休整,修正后的精度如下表:序号实际数据 )()0(k x 模拟数据 )(ˆ)0(k x残差()()0t ∆相对误差 ()t ε10 11 12 13 18 17 15 % % % %平均相对误差 % 就只有考虑采用其它模型或对原始数据序列进行适当取舍。
再用P 和C 检验预测效果。
五、GM(1,1)模型的适用范围灰色GM(1,1)模型评价推广 ( 1) 灰色GM(1,1)模型优点灰色GM(1,1)预测模型在计算过程中主要以矩阵为主, 它与MATLAB 的结合解决了它在计算中的问题. 由MATLAB 编制的灰色预测程序简单实用, 容易操作, 预测精度较高.( 2) 灰色GM(1,1)模型的缺点该模型是指运用曲线拟合和灰色系统理论对我国人口发展进行预测的方法, 因此它对历史数据有很强的依赖性, 而且GM?(1,1)的模型没有考虑各个因素之间的联系. 因此, 误差偏大, 尤其是对中长期预测, 例如对中国人口总数变化情况做长期预测时, 误差偏大, 脱离实际. 下面我们来讨论GM(1,1)模型的适用范围.GM(1,1)模型的白化微分方程:(1)(1)dX aX u dt+= 其中a 为发展系数,可以证明,当GM(1,1)的发展系数||2a ≥时,GM(1,1)模型无意义。
因此,(,][,)22-∞-⋃+∞是GM(1,1)发展系数a 的禁区。
在此区间,GM(1,1)模型失去意义。
一般地,当||2a <时,GM(1,1)模型有意义。
但是,随着a 的不同取值,预测效果也不同。
通过数值分析,有如下结论:(1)当.03a -≤时,GM(1,1)的1步预测精度在98%以上,2步和5步预测精度都在97%以上,可用于中长期预测;(2)当..0305a <-≤时,GM(1,1)的1步和2步预测精度都在90%以上,10步预测精度也高于80%,可用于短期预测,中长期预测慎用; (3)当..0508a <-≤时,GM(1,1)用作短期预测应十分慎重;(4)当.081a <-≤时,GM(1,1)的1步预测精度已低于70%,应采用残差修正模型;(5)当1a ->时,不宜采用GM(1,1)模型。