abaqus后处理中各应力解释个人收集
abaqus 复合层后处理的应力

abaqus 复合层后处理的应力
在Abaqus中进行复合材料层后处理时,我们通常关注应力分布。
复合材料的应力分析涉及多个方面,包括层间剪切应力、法向应力、张热应力等。
在后处理中,我们可以通过Abaqus提供的可视化工具
和输出结果来分析这些应力。
首先,我们可以使用Abaqus的后处理模块来查看复合材料层的
应力分布。
在Abaqus/CAE中,我们可以选择合适的后处理模块,如XY数据、Contour Plot等,来查看不同位置的应力情况。
通过设置
合适的筛选条件和参数,我们可以获取层间剪切应力、法向应力等
数据,并进行可视化展示。
其次,Abaqus还提供了丰富的输出结果,如ODB文件,我们可
以通过Abaqus Viewer来打开这些文件,并查看复合材料层的应力
情况。
在Viewer中,我们可以选择不同的输出变量,如S11、S22、S12等,来查看不同方向上的应力分布情况。
此外,还可以通过Abaqus提供的Python脚本来自定义输出结果,实现更灵活的后处
理分析。
除了Abaqus自带的后处理工具,我们还可以通过其他工具对复
合材料层的应力进行分析。
比如,我们可以将Abaqus的输出结果导入到MATLAB或者Python等工具中,利用其强大的数据处理和可视化能力来进行更深入的分析。
总的来说,在Abaqus中进行复合材料层后处理的应力分析,我们可以通过Abaqus自带的后处理模块和输出结果来获取层间剪切应力、法向应力等数据,并通过可视化工具进行直观展示。
同时,还可以借助其他工具进行更深入的分析,以全面了解复合材料层的应力情况。
abaqus 节点应力 单元应力

abaqus 节点应力单元应力【原创版】目录一、引言二、Abaqus 的节点应力与单元应力1.节点应力2.单元应力三、节点应力与单元应力的计算方法1.节点变形量2.形函数方程四、同一节点周围单元的应力计算五、结论正文一、引言在有限元分析中,节点应力与单元应力是两个重要的概念。
本文以Abaqus 为例,介绍节点应力与单元应力的相关知识,包括它们的定义、计算方法以及在同一节点周围单元的应力计算。
二、Abaqus 的节点应力与单元应力1.节点应力在 Abaqus 中,节点应力是指作用在有限元模型节点上的应力。
节点应力可以通过计算节点的形变量来得到。
2.单元应力单元应力是指作用在有限元模型单元上的应力。
在 Abaqus 中,单元应力可以通过计算单元的形函数方程来得到。
三、节点应力与单元应力的计算方法1.节点变形量在 Abaqus 中,节点变形量是指节点在受力情况下的位移或形变。
可以通过计算节点周围的单元变形量来得到节点变形量。
2.形函数方程在 Abaqus 中,形函数方程是一组描述单元形变与应力之间关系的方程。
通过解这组方程,可以得到单元的应力。
四、同一节点周围单元的应力计算在有限元模型中,同一个节点周围有若干个单元。
这些单元的应力会影响到节点的应力。
在 Abaqus 中,可以通过计算节点周围单元的形函数方程来得到这些单元的应力。
五、结论节点应力与单元应力是 Abaqus 中有限元分析中的两个重要概念。
通过计算节点变形量和单元形函数方程,可以得到节点应力和单元应力。
abaqus中应力的理解

S33就是Z轴向的应力,正值为拉应力,负值为压应力;
S12就是在YZ平面上,沿Y向的剪力;
S13就是在YZ平面上,沿Z向的剪力;
S23就是在XZ平面上,沿Z向的剪力;
由于剪力的对称性:S12=S21,?S13=S31,?S23=S32
Mises应力是即第四强度理论,根据能量守恒原理,用于判断材料是否屈服的应力准则,即Mises准则,一般使用于判断延性比较好的材料,对于脆性材料,一般采用第一强度理论。
在ABAQUS中对应力的部分理解
关于abaqus中mises,s11s22s33,s12,trescapressure,maxprincipal,midprincipal,minprincipal。简单地理解,
在ABAQUS中,一般是把X轴当做1轴,Y轴当做2轴,Z轴当做3轴;那么:
S11就是X轴向的应力,正值为拉应力 Nhomakorabea负值为压应力;
ABAQUS中应力、应变详解

ABAQUS中应⼒、应变详解
真实应⼒、名义应⼒、真实应变、名义应变的关系
名义应变,⼜称相对应变或⼯程应变、适⽤于⼩应变分析。
名义应变⼜可分线应变和切应变。
真实应变,⼜称对数应变;假设物体内两质点相距为 L0, 经变形后距离为 Ln, 则相对线应变为ε = (Ln-L0)/L0 ,这种相对线应变⼀般⽤于⼩应变情况。
⽽在实际变形过程中,长度L0系经过⽆穷多个中间的数值变成 L, 如 L0,L1,L2,L3 …… Ln-1,Ln, 其中相邻两长度相差均极微⼩,由 L0-Ln 的总的变形程度,可以近似地看作是各个阶段相对应变之和,
⼤多数实验数据常常是⽤名义应⼒和名义应变值给出的,所以我们应将其转换为真实应⼒和真实应变。
其转换公式如下:
塑性分析中的注意问题:对于⼤应变,真实应变和名义应变之间的差值就会很⼤,所以在给abaqus提供应⼒-应变数据时,⼀定要注意正确的给予赋值,在⼩应变的情况下,真实应变和名义应变之间的差别很⼩,不是很重要。
⼏何⾮线性开关打开时,ABAQUS中可输出LE(真实应变)、EE(弹性应变)、NE(名义应变)等
⼏何⾮线性开关关闭时,ABAQUS中可输出E(真实应变)、EE(弹性应变)等。
abaqus中应力的理解

a b a q u s中应力的理解 This model paper was revised by the Standardization Office on December 10, 2020
在ABAQUS中对应力的部分理解
关于abaqus中 mises, s11 s22 s33 ,s12,tresca pressure, max principal,mid principal,min principal。
简单地理解,
在ABAQUS中,一般是把X轴当做1轴,Y轴当做2轴,Z轴当做3轴;那么:
S11就是X轴向的应力,正值为拉应力,负值为压应力;
S22就是Y轴向的应力,正值为拉应力,负值为压应力;
S33就是Z轴向的应力,正值为拉应力,负值为压应力;
S12就是在YZ平面上,沿Y向的剪力;
S13就是在YZ平面上,沿Z向的剪力;
S23就是在XZ平面上,沿Z向的剪力;
由于剪力的对称性:S12=S21,S13=S31,S23=S32
Mises应力是即第四强度理论,根据能量守恒原理,用于判断材料是否屈服的应力准则,即Mises准则,一般使用于判断延性比较好的材料,对于脆性材料,一般采用第一强度理论。
abaqus中应力应变的理解[整理版]
![abaqus中应力应变的理解[整理版]](https://img.taocdn.com/s3/m/c804c62582c4bb4cf7ec4afe04a1b0717fd5b391.png)
在ABAQUS 中对应力的部分理解1、三维空间中任一点应力有6个分量yz xz xy z y ,,,σσσσσσ,,x ,在ABAQUS 中分别对应S11,S22,S33,S12,S13,S23。
2、一般情况下,通过该点的任意截面上有正应力及其剪应力作用。
但有一些特殊截面,在这些截面上仅有正应力作用,而无剪应力作用。
称这些无剪应力作用的面为主截面,其上的正应力为主应力,主截面的法线叫主轴,主截面为互相正交。
主应力分别以321,,σσσ表示,按代数值排列(有正负号)为321σσσ≥≥。
其中321,,σσσ在ABAQUS 中分别对应Max. Principal 、Mid. Principal 、Min. Principal ,这三个量在任何坐标系统下都是不变量。
可利用最大主应力判断一些情况:比如混凝土的开裂,若最大主应力(拉应力)大于混凝土的抗拉强度,则认为混凝土开裂,同时通过显示最大主应力的法线方向,可以大致表示出裂缝的开裂方向等。
利用最小主应力,可以查看实体中残余压应力的大小等。
3、弹塑性材料的屈服准则3.1、Mises 屈服准则22132322212)()()(Sσσσσσσσ=-+-+- 其中s σ为材料的初始屈服应力。
在三维空间中屈服面为椭圆柱面;在二维空间中屈服面为椭圆。
Mises 等效应力的定义为:(牵扯到张量知识)其中 S 为偏应力张量,其表达式为其中为应力,I 为单位矩阵,p 为等效压应力(定义如下):, 也就是我们常见的)(31z y x p σσσ++=。
还可以具体表达为:其中,,为偏应力张量(反应塑性变形形状的变化)。
q 在ABAQUS 中对应 Mises ,它有6个分量(随坐标定义的不同而变化)S11,S22,S33,S12,S13,S233.2、Trasca 屈服准则 主应力间的最大差值=2k若明确了321σσσ≥≥,则有k =-)(2131σσ,若不明确就需要分别两两求差值,看哪个最大。
abaqus 应力参数解读

abaqus 应力参数解读
在ABAQUS中,应力参数的解读主要涉及以下几个方面:
1.最大应力值:在应力云图中,最红色箭头的长度代表结构中的最大应
力值。
这个值可以用来评估结构的稳定性以及是否需要进行改进。
2.应力分布:通过观察整个ABAQUS应力云图,可以了解结构中应力
的分布情况。
不同颜色代表的应力大小,可以让我们了解哪些部位的应力值偏大,哪些部位应力较小。
3.应力集中:云图中的一些局部区域可能会出现颜色变化明显的地方,
这代表着应力集中。
这种集中可能会导致结构的损坏,需要加强这些区域的支撑。
在ABAQUS应力云图中,颜色的深浅表明不同的应力值大小,深色表示高应力区域,浅色则表示低应力区域。
图表上的数字则表示应力云图中点的应力大小,通常是以Pa(帕斯卡)为单位的应力值。
这些数字通常以阈值的形式显示,用户可以设定不同的阈值,仅显示应力值大于某个数值的点。
ABAQUS中应力应变详解

最新资料推荐ABAQUS中应力、应变详解放飞梦想2011-04-28 10:32:381、三维空间中任一点应力有6个分量q,丐,馮,陽,込^鼻,在ABAQUS中分别对应Sil, S22, S33, S12, S13, S23。
,2、一股情况下,通过该点的任意截面上有正应力及其剪应力作用。
但有一些特殊截面,在这些截面上仅有正应力作用,而无剪应力作用。
称这些无剪应力作用的面为主截面,其上的正应力为主应九主截面的法线叫主轴,主截面为互相正交。
主应力分别以巧,6,码表示,按代数值排列(有正负号)为cq > cr2 > cr3o其中cr lf cr2,cr3在ABAQUS 中分别对应Max. Principal. Mid. Principal、Min. Principal,这三个量在任何坐标系统下都是不畫量。
u°可利用最大主应力判断一些情况:比如混凝土的开裂,菽励;主应力(拉应力)大于混凝土的抗拉强度,则认为混凝土开裂,同时通过显示最大主应力的法线方向,可以大致表示岀裂缝的开裂方向等。
2利用最小主应力,可以查看实体中残余压应力的大小等。
3b3、弹塑性材料的屈服准则屮3.1、魄甥唸屈服准则"(巧-引2+® _还)2+(円-巧尸=2氏其中£为材料的初始屈服应力。
-在三维空间中屈服面为椭圆柱面;在二维空间中屈服面为椭圆。
〜癒吟效应力的定义为:(牵扯到张量知识*q= \/1°尽其中s为偏应力张量,其表达式为S = C7 + 〃I.其中”为应力, I为单位矩阵,P为等效压应力〔定义如下):I匸-如,也就是我们常见的八£© +巧+碍)。
3 还可以具体表达为:Pq =底2小其中Sij = Cj +"% P = -抄",加为偏应力张量〔反应塑性变形形状的变化*q S ABAQUS中对应期烁,它有6个分量(随坐标定义的不同而变化)S11, S22, S33, S12, S13, S23 “址新资料推荐32琢辣屈服准则Q主应力间的最大差值=23若明确了巧王帀王円,则有2(“-5)=上,若不明确就需要分别两两求差值,2看哪个最大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a b a q u s后处理中各应
力解释个人收集
GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-
ABAQUS中的壳单元S33代表的是壳单元法线方向应力,S11 S22 代表壳单元面内的应力。
因为壳单元的使用范围是“沿厚度方向应力为0”,也即沿着法相方向应力为0,且满足几何条件才能使用壳单元,所以所有壳单元的仿真结果应力查看到的S33应力均为0。
S11 S22 S33 实体单元是代表X Y Z三个方向应力,但壳单元不是,另外壳单元只有S12,没有S13,S23。
4、定义塑性数据时,应尽可能让其中最大的真实应力和塑性应变大于模型中可能出现的应力和应变值。
5、对于塑性损伤模型,其应力应变曲线中部能有负斜率。