如何理解线性赋范空间、希尔伯特空间, 巴拿赫空间,拓扑空间
集合的Banach空间与Hilbert空间

集合的Banach空间与Hilbert空间1. 集合的Banach空间定义:Banach空间是一个完备的赋范线性空间,即一个具有范数的线性空间,并且该范数满足完备性。
换句话说,Banach空间是一个具有范数的线性空间,其中任何柯西序列都收敛到空间中的一个元素。
例子:•实数空间ℝ是一个Banach空间,其中范数就是绝对值。
•复数空间ℂ是一个Banach空间,其中范数就是模。
•函数空间C[a,b]是一个Banach空间,其中范数就是函数在区间[a,b]上的最大值。
•平方可积函数空间L2[a,b]是一个Banach空间,其中范数就是函数在区间[a,b]上的平方可积。
2. 集合的Hilbert空间定义:Hilbert空间是一个完备的内积空间,即一个具有内积的线性空间,并且该内积满足完备性。
换句话说,Hilbert空间是一个具有内积的线性空间,其中任何柯西序列都收敛到空间中的一个元素。
例子:•实数空间ℝ是一个Hilbert空间,其中内积就是点积。
•复数空间ℂ是一个Hilbert空间,其中内积就是共轭复数的点积。
•函数空间L2[a,b]是一个Hilbert空间,其中内积就是函数在区间[a,b]上的平方可积。
3. Banach空间与Hilbert空间的区别Banach空间和Hilbert空间都是完备的赋范线性空间,但它们之间存在一些区别。
•内积: Hilbert空间具有内积,而Banach空间不具有。
内积使Hilbert空间具有几何性质,例如正交性、投影等。
•正交性:在Hilbert空间中,两个向量正交当且仅当它们的内积为零。
正交性在Hilbert空间中非常重要,它可以用来定义正交子空间、投影等概念。
•投影:在Hilbert空间中,可以将一个向量投影到另一个向量上。
投影可以用来分解向量、求解方程等。
4. Banach空间与Hilbert空间的应用Banach空间和Hilbert空间在数学和物理学中都有广泛的应用。
3.1 赋范线性空间和Banach空间

第3章 赋范线性空间3.1 赋范线性空间和Banach 空间3.1.1 赋范线性空间定义3.1.1 (范数,赋范线性空间) 设X 为是实(或:复)数域F 的线性空间,若对x X ∀∈,存在一个实数x 于之对应,且满足下列条件:(1) 0≥x ; 且0=x ⇔=0x ; (非负性 (non-negativity))(2) αα=x x ,α∈F ; (正齐(次)性 (positive homogeneity)) (3) +≤+x y x y ,,X ∈x y ; (三角不等式(triangle inequality)) 则称x 为x 的范数(norm),称(,)X ∙(或:X )为赋范线性空间(normed linear space),简称赋范空间(normed space).例3.1.1 空间[,]C a b 是闭区间[,]a b 上的连续函数全体所成的线性空间。
对[,]f C a b ∀∈,规定[,]max ()t a b f f t ∈=, (3.1.1)易证f 是f 的范数,则[,]C a b 按上述范数成为赋范线性空间。
例 3.1.2 设[,]a b L 是闭区间[,]a b 上的Lebesgue 可积函数全体所成的线性空间。
对[,]f a b ∀∈L ,规定()d baf f t t =⎰, (3.1.2)若将在[,]a b 上满足()()f t g t ∙=的两个函数,f g 视为同一个函数,即将在[,]a b 上满足()0f t ∙=的函数f 视为恒等于零的函数,即0f =,则在[,]a b L 上,f 是f 的范数,从而[,]a b L 按上述范数成为赋范线性空间。
例 3.1.3 在n 维实向量空间n R 或n 维复向量空间(称为酉空间)n C 中,对12(,,,)n n x x x x ∀=∈R (或n C ),令1221ni i x x =⎛⎫= ⎪⎝⎭∑, (3.1.3)或11ni i x x ==∑ 或 21m a x i i nx x ≤≤=,它们都是x 的范数,称(3.1.3)中的范数为Euclidean 范数,n R 按范数(3.1.3)所得到的赋范线性空间称为Euclidean 空间。
数值分析(02)线性空间与赋范线性空间

Rm×n(Cm×n):实数域(复数域)上所有m×n矩
阵的集合。按矩阵的加法和数乘矩阵定义加法和数乘, 构成线性空间;
P[x]n:实数域上所有次数≤n的多项式。按多项式加法和 数乘多项式定义加法和数乘,构成线性空间。但次数=n 的多项式全体不能构成线性空间; P[x]:实数域上多项式全体.按多项式加法和数乘多项式法 则构成线性空间;
代数运算的八条规则 设 , , V ; , F (1) ; ( 2) ;
( 3) 在V中存在零元素 0, 对任何 V , 都有 0 ; (4)对任何 V , 都有的负元素 V , 使 0; (5) 1 ; (6) ;
验证:R
mn
中任意两个矩阵定义矩阵的“加法”
和“数乘”运算,且封闭
即:A (aij )mn R mn , B (bij )mn R mn 加法 A B (aij bij )mn R mn 数乘 A ( aij )mn R mn , R mn 所以R 是线性空间。
C[a,b]:区间[a,b]上一元连续函数的全体。是 R上的线性空间,因为两个连 续函数之和以及实数k与连续函数乘积仍是连续函数; Cn[a,b]:类似于C[a,b],在区间[a,b]上 n阶连续可微的一元函数全体.构成R上的线性空间。
线性空间的判定方法
(1)一个集合,如果定义的加法和数乘运算是通常的 实数间的加乘运算,则只需检验对运算的封闭性. 例1 实数域上的全体 m n矩阵,对矩阵的加法 n 和数乘运算构成实数域上的线性空间,记作 R m.
x 为行向量 , 向量的“维”是指向量 所含 分量的个数 .
T
线性空间是为了解决实际问题而引入的,它是某一类 事物从量的方面的一个抽象,即把实际问题看作线性空间, 进而通过研究线性空间来解决实际问题.
希尔伯特空间入门

希尔伯特空间入门希尔伯特空间是数学中的一个重要概念,它是由德国数学家希尔伯特在20世纪初提出的。
希尔伯特空间是一种具有内积的完备线性空间,它在数学分析、量子力学等领域中有着广泛的应用。
本文将介绍希尔伯特空间的基本概念、性质以及一些常见的例子。
一、希尔伯特空间的定义希尔伯特空间是一个向量空间,它具有内积的结构。
设H是一个实数域或复数域上的向量空间,如果在H上定义了一个满足以下条件的二元运算(内积)<x, y>,则称H为希尔伯特空间:1. 对于任意的x, y∈H,有<x, y>=<y, x>(对称性);2. 对于任意的x, y, z∈H和任意的实数a,有<a*x+y, z>=a<x,z>+<y, z>(线性性);3. 对于任意的x∈H,有<x, x>≥0,并且当且仅当x=0时,<x, x>=0(正定性)。
二、希尔伯特空间的性质1. 希尔伯特空间是一个完备的度量空间。
这意味着在希尔伯特空间中,任意一个柯西序列都收敛于该空间中的一个元素。
2. 希尔伯特空间中的范数可以由内积来定义。
对于任意的x∈H,定义||x||=√<x, x>,则||x||是H上的一个范数。
3. 希尔伯特空间中的向量可以进行正交分解。
设H是一个希尔伯特空间,x, y∈H,如果<x, y>=0,则称x和y是正交的。
4. 希尔伯特空间中的向量可以进行投影分解。
设H是一个希尔伯特空间,x, y∈H,如果y是x的一个投影,则y是x在H上的正交投影。
三、希尔伯特空间的例子1. 有限维希尔伯特空间:设V是一个n维向量空间,定义内积为<x, y>=x1y1+x2y2+...+xnyn,则V是一个希尔伯特空间。
2. L2空间:L2空间是所有平方可积函数的集合,定义内积为<f,g>=∫f(x)g(x)dx,则L2空间是一个希尔伯特空间。
函数分析中的巴拿赫空间与算子理论

巴拿赫空间是函数分析中的重要概念,与算子理论密切相关。
本文将从巴拿赫空间的定义和性质入手,介绍巴拿赫空间在算子理论中的应用。
首先,我们来了解一下巴拿赫空间的概念。
巴拿赫空间是一种完备的赋范空间,它的一个重要特点是任何一个柯西序列都在该空间中收敛。
一个赋范空间被称为巴拿赫空间,是指其上的每一个柯西序列都能收敛于该空间中的某个元素。
巴拿赫空间的概念最早由斯蒂凡·巴拿赫在20世纪初引入,并由此奠定了函数分析的基础。
巴拿赫空间的特性使得它在算子理论中具有广泛的应用。
其中一项重要的应用是对于线性算子的定义域的描述。
对于给定的线性算子,它的定义域可以是一个巴拿赫空间。
定义域是指使得算子在该空间中有意义的所有元素的集合。
通过巴拿赫空间的完备性质,我们可以更好地描述和研究线性算子的性质和行为。
另外,巴拿赫空间还在算子理论中的算子收敛性和算子拓扑等方面发挥着重要作用。
在巴拿赫空间上,我们可以定义不同类型的算子拓扑,如弱拓扑和强拓扑。
这些拓扑给予了巴拿赫空间上的算子收敛的不同定义,从而更好地描述了算子在巴拿赫空间中的收敛性质。
通过对拓扑的分析,我们可以得到算子序列的极限行为和收敛性质,对于算子的研究和应用具有重要意义。
最后,巴拿赫空间在算子理论中的应用还体现在函数逼近和泛函分析方面。
巴拿赫空间上的函数逼近是指通过一系列基本元素(也称为基底)来逼近一个未知函数。
通过基底的选择和逼近方法的设计,我们可以得到对于需要逼近的函数足够接近的近似函数。
这对于实际问题的求解和函数的近似具有重要意义。
泛函分析是研究巴拿赫空间上的泛函的理论和方法。
泛函是一类对于函数或者函数序列的函数,通过泛函分析,我们可以研究泛函的性质和应用,为函数的分析和求解提供更多的工具和理论支持。
综上所述,巴拿赫空间在函数分析中具有重要的地位和作用。
它的完备性质使得其在算子理论中有广泛的应用,可以描述线性算子的定义域和收敛性质。
巴拿赫空间上的算子拓扑和收敛性研究对于算子的行为和性质具有重要意义。
函数分析中的Hilbert空间和Banach空间

函数分析是现代数学的一个重要分支,它研究的是函数空间及其中函数的性质。
在函数分析中,Hilbert空间和Banach空间是两个非常重要的概念。
本文将介绍Hilbert空间和Banach空间的定义及其在函数分析中的应用。
首先,让我们来了解一下Hilbert空间。
Hilbert空间是由一个内积所赋予的完备性质的向量空间。
对于一个Hilbert空间,我们可以定义内积运算,并且该向量空间在内积的度量下是完备的,也就是说,任一柯西序列都有极限。
Hilbert空间的内积具有线性性、对称性和正定性等性质,同时满足柯西-施瓦茨不等式和三角不等式。
经典的例子包括欧几里得空间,即n维实数向量空间R^n。
Hilbert空间在函数分析中有着广泛的应用。
例如,存在一个重要的表示定理,称为Reisz表示定理,它指出每一个有界线性泛函都可以用内积表示。
这个定理在函数分析的研究中起到了关键的作用,为研究函数空间中的函数提供了重要的工具。
接下来,让我们来了解一下Banach空间。
Banach空间是一个完备的赋范向量空间,也就是说该向量空间中的每一个柯西序列都有极限。
与Hilbert空间不同的是,Banach空间中没有内积结构,而是通过范数来定义空间中向量的大小。
范数具有非负性、齐次性和三角不等式等性质。
经典的例子包括连续函数空间C[0,1]和Lp空间。
Banach空间在函数分析中也有着重要的应用。
特别是在函数空间的研究中,Banach空间提供了非常有力的解析工具。
例如,通过引入范数的概念,我们可以定义连续函数的收敛性和一致连续性,并研究它们的性质。
此外,Banach空间上的算子理论也是函数分析中的重要研究内容,它包括线性算子、有界算子、紧算子等的定义和性质。
总结起来,Hilbert空间和Banach空间是函数分析中两个非常重要的概念。
Hilbert空间通过内积结构提供了一种自然的度量方式,并且有着重要的表示定理。
而Banach空间则通过范数结构定义了向量的大小,并且在函数空间的研究中起到了关键作用。
泛函分析知识总结

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
泛函中三大定理的认识

泛函中三大定理的认识泛函中三大定理及其应用泛函分析科学体系的建立得益于20世纪初关于巴拿赫空间的三大基本定理,即Hahn-Banach 定理,共鸣定理和开映射、逆算子及闭图像定理。
其中:一致有界定理,该定理描述一族有界算子的性质;谱定理包括一系列结果,其中最常用的结果给出了希尔伯特空间上正规算子的一个积分表达,该结果在量子力学数学描述中起核心作用;罕-巴拿赫定理(Hahn-Banach Theorem )研究了如何保范地将某算子从某子空间延拓到整个空间。
另一个相关结果则是描述对偶空间非平凡性的;开映射定理和闭图像定理。
1、Hahn-Banach 延拓定理定理:设G 为线性赋范空间X 的线性子空间,f 是G 上的任一线性有界泛函,则存在X 上的线性有界泛函F ,满足:(1) 当x G ∈时,()()F x f x =; (2) XGF f=;其中XF表示F 作为X 上的线性泛函时的范数;Gf 表示G 上的线性泛函的范数.延拓定理被应用于Riesz 定理、Liouville 定理的证明及二次共轭空间等的研究中.2、逆算子定理在微积分课程中介绍过反函数的概念,并且知道“单调函数必存在反函数”,将此概念和结论推广到更一般的空间.定义1逆算子(广义上):设X 和Y 是同一数域K 上的线性赋范空间,G X ?,算子T :G Y →,T 的定义域为()D T G =;值域为()R T .用1T -表示从()()R T D T →的逆映射(蕴含T 是单射),则称1T -为T 的逆算子(invertiable operator).定义2正则算子:设X 和Y 是同一数域K 上的线性赋范空间,若算子T :()G X Y ?→满足(1)T 是可逆算子; (2) T 是满射,即()R T Y =; (3) 1T -是线性有界算子,则称T 为正则算子(normal operator).注:①若T 是线性算子,1T -是线性算子吗?②若T 是线性有界算子,1T -是线性有界算子吗?性质1 若T :()G X Y ?→是线性算子,则1T -是线性算子.证明:12,y y Y ∈,,αβ∈K ,由T 线性性知:1111212(())T T y y T y T y αβαβ---+--1111212()TT y y TT y TT y αβαβ---=+--1212()y y y y αβαβ=+--0=由于T 可逆,即T 不是零算子,于是1111212()T y y T y T y αβαβ---+=+,故1T -是线性算子.□定理2逆算子定理:设T 是Banach 空间X 到Banach 空间Y 上的双射(既单又满)、线性有界算子,则1T -是线性有界算子.例1 设线性赋范空间X 上有两个范数1?和2?,如果1(,)X ?和2(,)X ?均是Banach 空间,而且2?比1?强,那么范数1?和2?等价.(等价范数定理)证明:设I 是从由2(,)X ?到1(,)X ?上的恒等映射,由于范数2?比1?强,所以存在0M >,使得x X ?∈有112Ix x M x=≤于是I 是线性有界算子,加之I 既是单射又满射,因此根据逆算子定理知1I -是线性有界算子,即存在0M'>,使得x X ?∈有1212I xx M'x -=≤.故范数1?和2?等价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 对 称 性 ;
(2) 对 第 一 变 元 的 线 性 性 ;
(3) 正 定 性 ;
则称(x, y) 为内积 所以内积又是比范数更加具体的东西,因为范数只是到0的距离的时候多了线性性。但是 内积是线性性的充分条件【A>B,B不能>A就称为A是B的充分条件;类似的,B>A,A不 能>B,则称A是B的必要条件】 举个栗子: 我们可以把内积定义为:(x, y) = ∑Ni=1xiyi 也可以定义为:(f, g) = ∫∞0 f(x)g(y)dx 所以:内积可导出范数 | | x | | 2 = (x, x); 在线性空间上定义内积;其空间称为内积空间; 内积可在空间中建立 欧几里得空间学,例如交角,垂直和投影等,故习惯上称其为欧几 里得空间。 所以,我们平日中生活的空间就是欧几里得空间 接下来,我们看几个听起来似乎很牛逼哄哄的东西
赋予范数或者距离的集合分别称为:赋范空间和度量空间 若在其上再加上线性结构称为:线性赋范空间和线性度量空间
那么,我们日常生活的空间可以称为赋范空间或者度量空间么? 答案是否定的因为这样的空间缺少角度的概念,从前面的定义中我们无法退出角度。所 以,我们才有了接下来的内容。
内积空间
赋范空间有向量的模长,即范数。但是还缺乏一个很重要的概念——两个向量的夹角,为 了克服这一缺陷,我们引入:内积 定义:
赋线空范性间空度,间量拓,空扑度间空量,间空希如间尔何,伯不线特被性空他赋间们范,吓空到巴间?拿,赫 函数空间
一、问题的提出
在微积分中可以定义极限和连续,依赖于距离 那么,什么是距离呢? 通俗的看法,大家都认为距离就是所谓的直线
但是,在这张图中,我们如何衡量两点之间的距离? 因为地球仪上不能画直线,所以这里的距离显然就不是直线了。我们只能沿着地球仪取曲 线作为距离 再来看一张图
定义范数
定义:设
| |x| | 是 Rn 的 范 数
若满足:
(1) | | x | | ≥ 0, ∀x ∈ Rn; | | x | | = 0 ↔ x = 0; (2) | | αx | | = | α | | | x | | , ∀α ∈ R, x ∈ Rn; (3) | | x + y | | ≤ | | x | | + | | y | | , ∀x, y ∈ Rn
√ d1(x, y) = (x1 − y1)2 + . . . + (xn − yn)2 情形2: 情形 : d2(x, y) = max{ | x1 − y1 | , . . . , | xn − yn | }
3 d3(x, y) = | x1 − y1 | + | xn − yn |
其中d1是最常见的也就是中学所学的距离,而d3 则是天安门图中从A到B的距离 ###(曲线的距离)
注意:可以简单的看成到零点距离多了(2);所以范数就是一个更加具体的距离!!! 我们接下来,有两个方向可以走,一个是在距离上面加东西,让距离更加具体化,另一种 是在距离上减东西,让距离更加抽象画,像范数就是让距离更加具体化了 所以 范数有如下情况:
注意:
由范数可以定义距离:
d(x, y) = | | x − y | |
注意这里只能取最大值,不能取最小值。一旦取了最小值,则任意两个有交点的曲线的距 离都为0,显然,这样是有问题,所以只能去最大值
定义距离
看了那么多距离,我们如何定义呢?
则称d(x, y)是这两点之间的距离。
线性空间
有向量的加法和数乘 满足: 1. 向量加法结合律:u + (v + w) = (u + v) + w; 2. 向量加法交换律:v + w = w + v; 3. 向量加法的单位元:V 里有一个叫做零向量的 ,0 ∀ v ∈ V , v + 0 = v; 4. 向量加法的逆元素:∀v∈V, ∃w∈V,使得 v + w = 0; 5. 标量乘法分配于向量加法上:a(v + w) = a v + a w; 6. 标量乘法分配于域加法上: (a + b)v = a v + b v; 7. 标量乘法一致于标量的域乘法: a(b v) = ; (ab)v 8. 标量乘法有单位元: 1 v = v, 这里 1 是指域 F 的乘法单位元。
内 积 空 间 + 完 备 性 → Hilbert 空 间
线 性 赋 范 空 间 + 完 备 性 → 空 Banach 间
那么什么是完备性呢?
简单的说就是空间在极限运算中,取极限不能跑出去。所以,显然有理数集,无理数集不 具有完备性。实数集具有完备性 ##拓扑空间 我们向更加抽象的地方走。 欧几里得几何学需要内积,但连续的概念不需要内积,甚至不需要距离。 例如:社交圈的描述;学号的指定是“连续”的; 所以所谓的拓扑空间实际上就是个圈子。 总结:任何空间,你永远问两件事:1.元素是什么 2.规则是什么;知道这两个就知道怎么 描述一个空间。 所以最后的总结: 范数可以定义为“强化”了的距离; 内积是较距离和范数有更多内涵; 拓扑是“弱化”了的距离;
但由距离不一定可以定义范数,例如: 但 | | x | | = d(0, x), | | αx | | = d(0, αx) ≠ | α | | | x | | ,
所以,一旦定义了抽象的距离,我们就必须习惯用定义去证明对错,而不能用中学的距 离,来进行判断。
赋范空间、度量空间、线性赋范空间、线性度量空间
从A到B的距离又是多少呢? 显然不能计算直线距离,比较合理的距离,应该是走一个L字型 (这里就不画出来了...) 两个向量之间的距离又该如何定义呢? 两条曲线之间的距离呢?
二、距离、ቤተ መጻሕፍቲ ባይዱ数
(向量的距离)
到 的距离 x = (x1, . . . , xn) y = (y1, . . . , yn) 情形1: