机载和车载式激光扫描技术
三维激光扫描技术原理及应用

三维激光扫描仪作为现今时效性最强的三维数据获取工具,按照其有效扫描距离可进行如下分类:
(1)短距离激光扫描仪:其最长扫描距离不超过3m,一般最佳扫描距离为0.6~1.2m,通常这类扫描仪适合用于小型模具的量测,扫描速度快且精度较高,可以多达三十万个点,精度至±0.018mm。例如:美能达公司的VIVID 910,手持式三维数据扫描仪FastScan等,属于此类。
2.3 三维激光扫描仪工作原理
无论扫描仪的类型如何,其构造原理基本是相似的。三维激光扫描仪的主要构造是由一台高速精确的激光测距仪,配上一组可以引导激光并以均匀角速度扫描的反射棱镜。激光测距仪主动发射激光,同时接受由自然物表面反射的信号从而可以进行测距,针对每一个扫描点可测得测站至扫描点的斜距,再配合扫描的水平和垂直方向角,可以得到每一扫描点与测站的空间相对坐标。如果测站的空间坐标是已知的,则可以求得每一个扫描点的三维坐标。以Leica C10为例,该扫描仪是以反射镜进行垂直方向扫描,水平方向则以伺服马达转动仪器来完成水平360度扫描,从而获取三维点云数据。
2、三维激光扫描技术
随着三维激光扫描仪在工程领域的广泛应用,这项国际上近期发展的高新技术已经引起了广大科研人员的关注。这种技术采用非接触式高速激光测量方式,来获取地形或复杂物体的几何图形数据和影像数据,最终通过后处理软件对采集的点云数据和影像数据进行处理分析,转换成绝对坐标系中的三维空间位置坐标或者建立结构复杂、不规则场景的三维可视化模型,既省时又省力,同时点云还可输出多种不同的数据格式,做为空间数据库的数据源和满足不同应用的需要。
浅谈三维激光扫描技术原理及应用
摘要:三维激光扫描技术是—种新型的测绘技术,被称为“实景复制技术”。本文介绍了三维激光扫描仪的系统分类、基本原理、技术特点,探讨了三维激光扫描技术的应用。
激光雷达考试浓缩笔记

一、技术介绍1.激光雷达概念:激光探测与测量,Light Detection And Ranging,英文缩写为LiDAR,LiDAR的光源一般采用激光,原理与雷达原理相同,故都将LiDAR翻译为激光雷达,也可称为激光扫描仪。
工作原理:脉冲式和相位式,它有激光发射器、接收器、时间计数器、微电脑构成,成像为点云,并以数据为基础重建目标三维模型。
(相位式问题:相位测量仅能测出不足一周的相位差,相位差的分辨率限制测距的精度,为了保证精度而又兼顾测程,采用几个调制光波长配合测距。
)激光扫面技术分类:1D激光测距、2D激光测距、3D激光测距、多传感器的集成激光雷达和普通雷达的区别:普通雷达:射频电磁波被送到大气中,大气中的目标散射发射电磁波的一部分到普通雷达的接收器中。
激光雷达也发射和接收电磁波,但其频率相对较高,激光雷达工作在紫外光、可见光、近外红三个光谱波段激光雷达存在的问题两点同步难匹配、数据处理自动化程度低测量复杂度高、仪器昂贵、操作人员需要较高技巧、生产成本高、费时对天气、可见度等自然条件要求高很难获取较全面的信息2.三维激光扫描技术概念:三维激光扫描系统:由三维激光扫描仪、计算机、电源供应系统、支架以及系统配套软件构成、而三维激光扫描仪又由激光发射器、接收器、时间计数器、马达控制可旋转的滤光镜、控制电路板、微电脑、CCD相机以及软件组成。
三维激光扫描技术是一种先进的全自动高精度立体扫描技术,用三维激光扫描仪获取目标物表面各点的空间坐标,然后由获得的测量数据构造出目标物的三维模型的一种全自动测量技术。
是继GPS后的又一项测绘新技术,已成为空间数据获取的重要技术手段。
原理:三维激光扫描仪发射器发出一个激光脉冲信号,经物体表面漫反射后沿几乎相同的路径反向传回到接收器,可以计算目标点P与扫描仪距离S。
激光测距技术是三维激光扫描仪的主要技术之一,激光测距的原理主要有基于脉冲测距法、干涉测距法、激光三角法三种类型。
机载三维激光雷达(LIDAR)扫描测量技术在长输管道测量中的应用

机载三维激光雷达(LIDAR)扫描测量技术在长输管道测量中的应用摘要:本文论述了机载三维激光雷达扫描测量技术在长输管道测量中的应用,并结合实际论述了该技术的方法和特点,该方法在管道测量中充分体现了其高精度、高密度、高效率、产品丰富等特点,为今后该技术在长输管道勘察设计中的应用提供了有力的技术支持。
关键词:机载激光雷达;激光点云;正射影响;数字高程模型1机载LIDAR技术简介机载三维激光雷达扫描测量(以下简称机载LIDAR- Light Detection and Ranger)技术是继GPS以来在测绘遥感领域的又一场技术革命。
LIDAR是一种集激光、全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。
机载激光扫描可以获取更小的目标信息,如高压线,可以穿透植被等覆盖物获得地面点数据,而且可实时得到地表大范围内目标点的三维坐标,同时它也是目前唯一能测定森林覆盖地区地面高程的可行技术,可以快速、低成本、高精度地获取三维地形地貌、航空数码影像及其它方面的海量信息。
特别是对长输管网工程地处山区密林、植被茂密、无人进入的区域,传统的测量技术无法满足工期的要求,而且人员进入测区非常困难,因此,本项目的测绘工作,采用了机载三维激光雷达扫描测量。
2技术内容2.1获取数据的方法和原理机载激光雷达测量系统设备主要包括三大部件:机载激光扫描仪、航空数码相机、定向定位系统POS(包括全球定位系统GPS和惯性导航仪IMU)。
其中机载激光扫描仪部件采集三维激光点云数据,测量地形同时记录回波强度及波形;航空数码相机部件拍摄采集航空影像数据;定向定位系统POS部件测量设备在每一瞬间的空间位置与姿态,由GPS确定空间位置,由IMU测量仰俯角、侧滚角和航向角数据。
激光雷达工作原理图LIDAR系统包括一个单束窄带激光器和一个接收系统。
激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。
车载三维激光扫描系统简介

一、系统简介三维激光扫描技术是上世纪九十年代中期开始出现的一项高新技术,是继GPS空间定位系统之后又一项测绘技术新突破。
它通过高速激光扫描测量的方法,大面积高分辨率地快速获取被测对象表面的三维坐标数据。
可以快速、大量的采集空间点位信息,为快速建立物体的三维影像模型提供了一种全新的技术手段。
近些年来,三维激光扫描仪已经从固定朝移动方向发展,最具代表性的就是车载三维激光扫描仪,车载三维激光扫描仪是将三维激光扫描设备、卫星定位模块、惯性测量装置、里程计、360°全景相机、总成控制模块和高性能板卡计算机集成并封装于汽车的刚性平台之上,在汽车移动过程中,快速获取高精度定位定姿数据、高密度三维点云和高清连续全景影像数据,通过统一的地理参考和摄影测量解析处理,实现无控制的空间地理信息采集与建库。
汽车、三维激光扫描仪、数据处理软件,这三部分共同组成了车载三维激光扫描系统。
图1.车载三维激光扫描系统图2.系统工作原理图二、发展状况随着地理空间信息服务产业的快速发展,地理空间数据的需求也越来越旺盛。
地理空间数据的生产,成为世界经济增长的一大热点。
目前世界上最大的两家导航数据生产商NavTech和Tele Atlas均将车载三维激光扫描系统作为其数据采集与更新的主要手段,并将该技术视为公司的核心技术。
我国在车载三维激光扫描系统测图领域的研究起步较早,现已在多传感器集成、系统误差检校、直接地理参考技术、交通地理信息系统等方面取得突破性的进展,其中最具代表性的有李德仁院士主持、立得空间信息技术有限公司研制的LD2000-RM车载道路测量系统和刘先林院长主持、首都师范大学研制的SSW车载测图系统。
三、国内的应用经过多年的发展和应用,车载三维激光扫描系统已在我国基础测绘、应急保障测绘、街景导航地图测绘、三维数字城市建设、矿山测绘、公路GIS与公路路产管理、电力GIS数据采集与可视化管理、铁路GIS与铁路资产管理、公安GIS数据采集等项目中得到广泛应用。
车载激光扫描技术

数据滤波与平滑
进一步处理点云数据,去除噪声和异常值,平滑 数以减小数据量,方 便存储和传输。
CHAPTER 04
车载激光扫描技术在不同领域的应 用案例
城市规划与建模
1 2 3
城市规划
数据裁剪
根据需要,对数据进行裁 剪和筛选,以去除不必要 的部分。
点云数据生成
激光扫描仪数据获取
通过激光扫描仪获取目标物体的三维坐标信息。
点云数据生成算法
利用点云数据生成算法,将多个扫描数据拼接成一个完整的点云数 据。
数据格式转换
将点云数据转换为常用的数据格式,如XYZ、LAS等。
数据后处理
数据分类
技术创新和产业升级将进一步推动车载激光扫描技术的发展和应用,实现更高效、更智能的 交通出行。
未来发展方向与挑战
未来发展方向
研究和发展更高精度的激光雷达技术,提高激光 扫描的精度和稳定性。
加强数据处理算法和软件技术的研发,提高数据 处理的速度和精度。
未来发展方向与挑战
• 探索和应用更多种传感器融合技术,提高激光扫描的适应性和 稳定性。
工作原理
激光扫描仪按照一定的角度旋转 ,同时车辆在行驶过程中不断通 过GPS和IMU获取位置和姿态信
息。
激光扫描仪发射的激光束遇到目 标物体后反射回来,通过计算激 光束往返时间,得到目标物体的
距离信息。
控制系统根据获取的距离信息、 车辆的位置和姿态信息生成三维
地形数据。
激光扫描仪性能指标
01
02
车辆平台选择
选择适合车载激光扫描设备的车 辆平台,考虑车辆的稳定性、行 驶速度、车辆改造难度等因素。
三维激光扫描分类及工作操作规范

一、地面激光扫描系统1、概述地面激光扫描仪系统类似于传统测量中的全站仪,它由一个激光扫描仪和一个内置或外置的数码相机,以及软件控制系统组成。
二者的不同之处在于激光扫描仪采集的不是离散的单点三维坐标,而是一系列的“点云”数据。
这些点云数据可以直接用来进行三维建模,而数码相机的功能就是提供对应模型的纹理信息。
2、工作原理三维激光扫描仪发射器发出一个激光脉冲信号,经物体表面漫反射后,沿几乎相同的路径反向传回到接收器,可以计算日标点P与扫描仪距离S,控制编码器同步测量每个激光脉冲横向扫描角度观测值a和纵向扫描角度观测值0。
三维激光扫描测量一般为仪器自定义坐标系。
X轴在横向扫描面内,Y轴在横向扫描面内与X轴垂直,Z轴与横向扫描面垂直。
获得P的坐标。
进而转换成绝对坐标系中的三维空间位置坐标或三维模型。
3、作业流程整个系统由地面三维激光扫描仪、数码相机、后处理软件、电源以及附属设备构成,它采用非接触式高速激光测量方式,获取地形或者复杂物体的几何图形数据和影像数据。
最终由后处理软件对采集的点云数据和影像数据进行处理转换成绝对坐标系中的空间位置坐标或模型,以多种不同的格式输出,满足空间信息数据库的数据源和不同应用的需要。
(1)、数据获取利用软件平台控制三维激光扫描仪对特定的实体和反射参照点进行扫描,尽可能多的获取实体相关信息。
三维激光扫描仪最终获取的是空间实体的几何位置信息,点云的发射密度值,以及内置或外置相机获取的影像信息。
这些原始数据一并存储在特定的工程文件中。
其中选择的反射参照点都具有高反射特性,它的布设可以根据不同的应用目的和需要选择不同的数量和型号,通常两幅重叠扫描中应有四到五个反射参照点。
(2)、数据处理1)数据预处理数据获取完毕之后的第一步就是对获取的点云数据和影像数据进行预处理,应用过滤算法剔除原始点云中的错误点和含有粗差的点。
对点云数据进行识别分类,对扫描获取的图像进行几何纠正。
2)数据拼接匹配一个完整的实体用一幅扫描往往是不能完整的反映实体信息的,这需要我们在不同的位置对它进行多幅扫描,这样就会引起多幅扫描结果之间的拼接匹配问题。
三维激光扫描技术

m e d i a 三维激光扫描技术简介1三维激光扫描技术三维激光扫描仪主要是一部快速准确的激光测距仪加上一组可导引激光以等速度扫描的反光棱镜,加高清晰摄像机组成。
激光测距仪采用脉冲式测量,可以主动发射激光同时接受来自自然物体的反射信号进行测距,针对每一扫描点可测得测站至扫描点的斜距,配合扫描的水平角和竖直角,可以求得每一扫描点与测站点之间的坐标差,若测站点和一个定向点的坐标为已知值,则可以求得每一扫描点的三维坐标。
三维激光扫描技术也被称为从单点测量进化到面测量的革命性技术突破。
该技术在文物古迹保护、建筑、规划、土木工程、工厂改造、室内设计、建筑监测、交通事故处理、法律证据收集、灾害评估、船舶设计、数字城市、军事分析等领域也有了很多应用。
2技术优势(1)非接触测量。
三维激光扫描技术采用非接触扫描目标的方式进行测量,对扫描目标物体不需进行任何表面处理,直接采集物体表面的空间三维数据且真实可靠。
可以用于解决危险目标、环境(或柔性目标)及人员难以企及的情况,具有传统测量方式难以完成的技术优势。
(2)数据采样率高。
三维激光扫描仪可以达到数十万点/秒。
采样速率是传统测量方式难以比拟的。
m e d i a (3) 主动发射扫描光源。
三维激光扫描技术采用主动发射扫描光源(激光),通过探测自身发射的激光回波信号来获取目标物体的数据信息,因此在扫描过程中,可以实现不受扫描环境的时间和空间的约束。
(4) 高分辨率、高精度。
三维激光扫描技术可以快速、高精度获取海量点云数据,可以对扫描目标进行高密度的三维数据采集,从而达到高分辨率的目的。
(5) 数字化采集,兼容性好。
三维激光扫描技术所采集的数据是直接获取的数字信号,具有全数字特征,易于后期处理及输出。
用户界面友好的后处理软件能够与其它常用软件进行数据交换及共享。
(6) 可与GPS 系统配合使用。
这些功能大大扩展了三维激光扫描技术的使用范围,对信息的获取更加全面、准确。
激光在军事当中的应用

激光技术的军事应用武器:激光技术是20世纪60年代初发展起来的一门高新技术,经过40多年的发展,从机理原理,实验手段到制造工艺都已逐步成熟,受到各大军事强国的重视,未来有望成为军事技术最活跃的一个领域。
高亮度,方向性强,单色性好。
相干性好。
由于激光具有上述特点,激光技术在军事领域得到广泛的应用。
其主要应用有:激光武器用于杀伤敌重武器装备时,需要较高的能量,通常称为高能激光武器或称激光炮。
目前美国已研制出机载和车载激光炮。
激光炮的威力强大,命中率极高。
由于强激光束具有很强的烧蚀作用、幅射作用和激光效应,因而对武器装备具有很大的破坏力。
激光武器可以破坏制导系统、引爆弹头和毁坏壳体、拦击制导炸弹、炮弹、导弹、卫星、飞机、巡航导弹和破坏雷达、通信系统等。
激光摧毁卫星可由地面、空中和空间进行。
目前一个激光器的能量还无法将高轨卫星摧毁,但能用几个激光器同时对准1颗卫星进行攻击将其摧毁。
空间激光反卫星是将激光器装在卫星或航天飞机上,攻击对方的卫星;空中激光反卫星是将激光器装在飞机上攻击卫星,它可克服地面发射激光攻击卫星的许多缺点,但不如航天器攻击卫星那么理想,因航天器比飞机平稳,没气流和飞行振动的干扰,激光的能量可充分发挥。
激光武器用于杀伤敌方人员和破坏某些仪器设备时,所需发射的能量一般要求不高,称为低能激光武器,它主要使敌方人员致盲和使某些光电测量仪器的光敏元件受到破坏甚至失效,或可用来在城市、森林大面积点火。
据报导,脉冲功率100兆焦的激光,可使500米处人眼的玻璃体溢血,在2公里处可烧坏视网膜。
目前已研制出激光致盲武器,可使500米处的人永久失明,使2公里处的人暂时失明。
在反坦克、反潜艇中,激光致盲武器也有很大发展潜力,坦克和潜艇的活动离不开潜望镜,因此对准潜望镜入口发射激光,就会把在用潜望镜观看外部情况的指挥员、驾驶员的眼睛损伤,坦克和潜艇也就失去作战能力。
侦察卫星靠装在其中的各种光电传感器侦察地面目标,如果用激光束照射其中的光电传感器也会使侦察卫星变为“瞎子”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机载和车载式激光扫描技术2011-03-04 16:26:18 作者:admin来源:浏览次数:为将基础设计方案作为设计规划的基础,用于地区通道巴苏木的改建和扩建工程,需要借助直升飞机和车辆上安装的测量系统来提取存档数据,并用CARD/1进行处理,准备用于设计。
测量控制中要遵守RAS测量规范中对于这一测量方法的准确度要求。
同样这一测量方式的安全性、便捷性和节约成本的特点都为您的设计拓宽了发展空间。
在交通车辆范围内对存档数据进行提取,这种操作模式对测量提出了特殊的挑战和要求。
需要采取安全防护和隔离措施,才能允许并可能执行测量操作。
尽管已提供了安全保护措施,在道路或轨道区域内进行的工作,对于测量小组而言仍然是危险的。
而且几乎就不可能做到在毫无干扰的情况下完成一次测量操作。
此外,测量作业还经常会对交通运行状况造成影响,特别是在车流量非常大的高速公路或主干线上根本不能长时间封锁车道。
下面介绍了一种测量方法,可以允许在道路交通中安全无干扰的完成测量,并同时可为道路设计提取适宜的基础数据,而且还满足了RAS测量规范的准确度要求。
项目在已设计的OD Bassum的改建和扩建工程中,要将路段的长度从11.64km缩短为10.037km,下萨克森州政府下属的道路施工和交通部门、尼恩堡的业务部(Dipl.-Ing. Bernd Habermann)共同承担了任务,完成工程所需的测量工作,并建立基础设计图作为整体设计的基础资料。
这一任务的重要组成部分就是借助车载扫描仪(MLS)和机载扫描仪(ALS),完成一条1.3km长的地图通道的存档数据提取。
并基于国家特殊的“编码2000“完成已提取点云的矢量化操作。
利用大地坐标控制测量方式,除了可提交证明,而且用这种组合式的数据采集方法也可达到一定的准确度要求,并且允许在道路设计方案中使用扫描数据。
机载扫描技术(ALS) 和车载扫描技术(MLS)为完成点数据和图片数据的采集,需要利用直升飞机和车辆上安装的测量系统来执行测量。
在这一过程中需要用到TopEye (ALS)和Streetmapper (MLS)两种系统。
ALS/MLS系统基本上是由下面几种组件构成的:▲GPS, INS/IMU▲一台或多台激光扫描仪▲照相机和录像机系统▲用于MLS的计程仪(Wegmesser)由于车载系统的照相机图片对于高精度要求的项目而言,通常都只能用于识别对象。
并且由于行驶速度,要求仪器必须要达到相当高的数据采集频率。
因此照相机系统通常配备的是中等的分辨率(2-4百万分辨率)。
相对而言,飞机上装配的激光扫描系统就配备了一台高分辨率并且已校准过的照相机(Rollei AIC,39百万分辨率)。
这两种系统都可在最短的时间内为长路段设施准确的提取存档数据。
由于车载式测量系统较高的扫描频率,并且测量车是与行驶中的车流“一同行驶“的,因此避免了对交通状况造成影响。
飞行为了从空中提取尽可能高分辨率的航拍图,并保存激光扫描数据,飞行过程中只能保持到地面150m的高度。
在两条平行线路上方完成的飞行测量保证了为以后的分析操作准备一个足够宽的走廊带。
对于航拍数据可以达到下面的分辨率:航拍图:地表分辨率2cm点云:大约为每平方米50个测量点行驶测量车辆可沿两个行驶方向完成对每条行驶轨迹的测量。
数据采集速度受交通状况影响,在30km/h到50km/h之间。
基于较低的速度进行统计,两台扫描仪(测量频率为200000点/秒)采集的点密度为每平方米3000个测量点。
两种照相机系统都是沿行驶方向架设的。
在行驶方向上还可增加一台录像机,记录整个过程。
对测量数据的分析在结束了飞行和行驶过程后,测量数据就已准备完毕。
然后需要将激光扫描数据转换到本地的坐标系中,并自动进行分类。
对分类后的结果进行一次可视的检查,或者进行一次手动的后续编辑,都可保障已准备的点的数据质量。
两种扫描系统的激光扫描数据可组合使用,因此在后续的分析过程中,可使用一个点密度非常高的3D点云。
从航拍过程得到的单张图片计算出一张均衡的图片组合图,然后在地面线上进行调整。
作为结果,高分辨率,拥有几何数据参考的航拍照片,在整个项目区中会将地表的分辨率仅以2cm的单位显示。
测量车辆上两台照相机所采集的数据也要按照地理数据完成编码,,因此也可在完成数位化的过程中使用。
可将这些图片数据换算为正交像片,但是由于数据采集方向的差别,以及照相机镜头会对图像产生一定程度的变形扭曲。
因此推荐您在软件中使用点云来完成数据注释和颜色确定。
准确度直升飞机和测量车辆的位置确定操作,通过对GPS/GLONASS观测的分析在后处理进程中完成。
这里使用的测量操作,与RTK计算方法中相同,测量系统位置所设置的准确度在平面位置和高程中大约为2-3cm。
为此需要检查系统中限定的错误成分,这样道路设计的结果才能达到一定的准确程度。
为了更好的配置图片数据和激光扫描数据,在相应基准点或控制点的采集区域中要借助GPS、全站仪和抄平等工具来确定配置。
因此可以在局部范围内确定车道标记,或者在侧向车道的高速公路上确定特殊标记。
测量操作可以与基准点的确定操作一同执行,用于以后的施工措施。
对于巴苏姆的一条1.3km长的通道,需要确定大约20个地面控制点。
通过一次转换操作要在平面和高程中优化ALS和MLS测量的测量数据。
在这里要将MLS扫描数据的高程准确度确定为±1 cm (1σ),ALS扫描数据的准确度确定为± 1,5 cm (1σ)。
正交像片的平面位置准确度要优于1个像素,也就是优于± 2 cm。
为了让最终的结果能够维持已达到的准确程度,需要对10个横断面进行测量。
对明确定义的点的比较,从两种测量方法出发可达到的最大差值为2cm。
同样在另一个项目中的调查研究也检验了这一准确度。
因此在一个长度为2km的四车道道路上,大约要将500个以全站仪确定的测量点,与基于MLS和ALS 数据确定的点进行比较。
这一研究的结果将平面位置以及高程的准确度设定为± 1,5 cm。
参考对地面基准点的测量,组合使用ALS/MLS数据,得到的结果对于设计规划方案而言,不仅仅能够达到足够的准确程度,而且也满足了RAS测量规范的要求。
存档数据基于航拍数据和车载测量数据,要在CARD/1中分析所有相关的存档数据。
借助高分辨率的航拍图,可根据平面位置提取地理数据,并根据预设内容为矢量单元确定属性。
在区分对象的过程中,例如针对交通指示牌,可构成测量车辆的图片信息和影像信息。
通过使用点云,可为每个对象确定一个高程,在道路区域中使用移动式扫描仪获取的数据,在外围区域中使用直升机安装的扫描仪所采集的数据。
作为结果,获取了三位的点对象、线对象和面积对象。
这样获取的断裂边缘以及剪切后的点云仍然可作为一个高准确度的数字地面模型生成。
用CARD/1可调用一种软件,通过组合使用ALS/MLS数据完成对存档数据的整体分析过程。
除了对正交像片的可视化管理和数位化操作,也可简单的调用和编辑点云。
为不同国家的特殊对象确定属性的操作,地面模型的建立或者以及ALK/ALB数据的录入都不会对任务委托人造成问题...为什么使用ALS和MLS数据?这两个测量系统从非常不同的视角提取了地形数据。
直升机上安装的扫描仪系统大约位于距地面150m的高度,而车辆上的扫描仪距地面距离仅仅为2-3m。
因此从空中提取的激光扫描数据对于道路侧向的区域也是必要的。
陡坎或沟渠使用车辆上的激光扫描仪才能完成部分采集,因为这部分道路构造物通常位于道路水平面以下。
同样对象的数位化也可完全以点云为基础来完成,只是较为困难。
如出水口或小水沟这一类的对象,在密集显示激光扫描数据的情况下很难甚至完全无法识别。
相对于车辆上的扫描仪提取的图片,高分辨率的航拍图在设计中也更加高效。
计算方法和系统决定了,行驶过程中采集的正交像片所能达到的准确程度仍然无法低于2cm。
ALS/MLS计算方法可同时为另外五个其他的道路设计项目成功的完成设计测量操作。
激光扫描数据在设计过程中是基础资料,例如用于设计一个节点、联邦高速公路和高速公路的路面翻新工程以及桥梁施工工程。
同样,在调用基于测量技术建立的基础设计方案,为汉堡的BAB A7公路在隧道和边界间改建为一条六车道或八车道的线路,这一切操作都要借助ALS和MLS系统数据。
结果观测这里所描述的计算方法能够做到按照全站仪的精度来完成存档数据的采集。
此外,允许在道路区域以及轨道区域中几乎毫无干扰的执行完一次测量任务。
作为标准测量的剩余价值,还存在正交像片、点云以及照相机数据和录像数据。
这点可用于其它细节方面的分析操作,以及对分析过程的完整性和正确性进行控制。
同样这一计算方法节约的成本,特别是其计算的快速程度也是值得一提的。
当然,动态测量系统节约的成本并不是很明显。
当然省略了昂贵的道路封锁措施,并且可组合一次性测量多个小项目,也是对成本的大幅度削减措施。
如果两个系统都能够正确的“在行驶中或在飞行中”,那么每日就可轻松的采集100km 的数据。
即使是在德国,虽然车流量非常大,交通网也非常的密集,但是也可使用并实施这一测量方法。
当然还存在很多其他的应用功能,在运行过程中也可快速显示。
ALS系统TopEye. 直升机安装了一套复杂的系统,用于以三维形式采集数据。
安装了MLS系统Streetmapper的车辆,用于采集道路表面和邻近区域的数据。
包含彩色标记存档对象的3D点云Bassum地下通道的高精度数字地面模型。