eviews图像及结果分析报告
eview 报告分析

F检验的假设、对F值的判断、对F值的概率值的判断。
T检验的假设、对t值的判断、对t值的概率值的判断。
1、Y:社会消费总额X2:国民生产总值X3:城乡储蓄X4:农民人均收入Dependent Variable: YMethod: Least SquaresDate: 12/15/10 Time: 21:33Sample: 1994 2005Included observations: 12Variable Coefficient Std. Error t-Statistic Prob.C -231.7988 1139.887 -0.203353 0.8439X2 0.217218 0.053746 4.041582 0.0037X3 -0.023855 0.148371 -0.160777 0.8763X4 5.774893 3.066526 1.883203 0.0964R-squared 0.998370 Mean dependent var 10516.91 Adjusted R-squared 0.997759 S.D. dependent var 6729.635 S.E. of regression 318.5755 Akaike info criterion 14.62680 Sum squared resid 811922.8 Schwarz criterion 14.78843 Log likelihood -83.76079 F-statistic 1633.508 Durbin-Watson stat 1.823503 Prob(F-statistic) 0.000000(1)、根据T检验,分析哪些解释变量X对被解释变量Y有影响;在t检验中,我们设立原假设0:0iHβ= ()1i k≤≤和对立假设1:0iHβ≠。
根据上面的EVIEWS输出结果,可以看出:1、常数项C、X3、X4的t值较小,且其概率值P>0.05,因此,我们接受原假设0:0iHβ=,即认为常数项C、X3的系数、X4的系数为0,即常数项、城乡储蓄、农民人均收入对被解释变量Y(社会消费总额)无显著影响。
EViews计量经济学实验报告-简单线性回归模型分析

时间地点实验题目简单线性回归模型分析一、实验目的与要求:目的:影响财政收入的因素可能有很多,比如国内生产总值,经济增长,零售物价指数,居民收入,消费等。
为研究国内生产总值对财政收入是否有影响,二者有何关系。
要求:为研究国内生产总值变动与财政收入关系,需要做具体分析。
二、实验内容根据1978-1997年中国国内生产总值X和财政收入Y数据,运用EV软件,做简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用,得出回归结果。
三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用。
(一)模型设定为研究中国国内生产总值对财政收入是否有影响,根据1978-1997年中国国内生产总值X 和财政收入Y,如图1:1978-1997年中国国内生产总值和财政收入(单位:亿元)根据以上数据,作财政收入Y 和国内生产总值X 的散点图,如图2:从散点图可以看出,财政收入Y 和国内生产总值X 大体呈现为线性关系,所以建立的计量经济模型为以下线性模型:01i i i Y X u ββ=++(二)估计参数1、双击“Eviews ”,进入主页。
输入数据:点击主菜单中的File/Open /EV Workfile —Excel —GDP.xls;2、在EV 主页界面点击“Quick ”菜单,点击“Estimate Equation ”,出现“Equation Specification ”对话框,选择OLS 估计,输入“y c x ”,点击“OK ”。
即出现回归结果图3:图3. 回归结果Dependent Variable: Y Method: Least Squares Date: 10/10/10 Time: 02:02 Sample: 1978 1997 Included observations: 20Variable Coefficient Std. Error t-Statistic Prob. C 857.8375 67.12578 12.77955 0.0000 X0.1000360.00217246.049100.0000R-squared 0.991583 Mean dependent var 3081.158 Adjusted R-squared 0.991115 S.D. dependent var 2212.591 S.E. of regression 208.5553 Akaike info criterion 13.61293 Sum squared resid 782915.7 Schwarz criterion 13.71250 Log likelihood -134.1293 F-statistic 2120.520 Durbin-Watson stat0.864032 Prob(F-statistic)0.000000参数估计结果为:i Y = 857.8375 + 0.100036i X(67.12578) (0.002172)t =(12.77955) (46.04910)2r =0.991583 F=2120.520 S.E.=208.5553 DW=0.8640323、在“Equation ”框中,点击“Resids ”,出现回归结果的图形(图4):剩余值(Residual )、实际值(Actual )、拟合值(Fitted ).(三)模型检验1、 经济意义检验回归模型为:Y = 857.8375 + 0.100036*X (其中Y 为财政收入,i X 为国内生产总值;)所估计的参数2ˆ =0.100036,说明国内生产总值每增加1亿元,财政收入平均增加0.100036亿元。
Eviews实验报告

Eviews实验报告
本次实验使用Eviews对数据进行了分析和建模,主要分为以下几个部分:
一、数据预处理
1. 数据清洗:对数据进行了初步的检查和清洗,处理了数据中的缺失值和异常值;
2. 数据变换:对原始数据进行了对数化处理,使其符合正态分布。
二、数据分析
1. 描述性统计:通过统计均值、标准差、相关系数等指标,对数据进行了分析和描述;
2. 单因素分析:使用单因素方差分析对不同自变量与因变量之间的关系进行了检验。
三、建模分析
1. 模型选择:根据变量相关性和变量显著性等因素,最终选择了一组自变量,建立了多元线性回归模型;
2. 模型检验:对建立的模型进行了残差分析,验证了模型的可靠性和稳定性;
3. 预测分析:利用建立的模型对新数据进行了预测,并进行了模型预测精度的评估。
四、实验结论
通过Eviews的分析和建模,得出了以下结论:
1. 数据清洗和变换可以提高数据分析的准确性和可靠性;
2. 描述性统计和单因素分析可以为建模提供有用的参考和决策依据;
3. 多元线性回归模型可以较好地解释自变量与因变量之间的关系,并可进行预测和决策分析。
综上所述,本次实验通过Eviews软件对数据进行了分析和建模,得出了有关数据的一些重要结论,为后续数据分析和决策提供了基础和支持。
eviews实验报告总结(范本)

eviews实验报告总结eviews实验报告总结篇一:Evies实验报告实验报告一、实验数据:1994至201X年天津市城镇居民人均全年可支配收入数据 1994至201X年天津市城镇居民人均全年消费性支出数据 1994至201X年天津市居民消费价格总指数二、实验内容:对搜集的数据进行回归,研究天津市城镇居民人均消费和人均可支配收入的关系。
三、实验步骤:1、百度进入“中华人民共和国国家统计局”中的“统计数据”,找到相关数据并输入Exc el,统计结果如下表1:表11994年--201X年天津市城镇居民消费支出与人均可支配收入数据2、先定义不变价格(1994=1)的人均消费性支出(Yt)和人均可支配收入(Xt)令:Yt=cn sum/priceXt=ine/pri ce 得出Yt与Xt的散点图,如图1.很明显,Yt和X t服从线性相关。
图1 Yt和Xt散点图3、应用统计软件EVies完成线性回归解:根据经济理论和对实际情况的分析也都可以知道,城镇居民人均全年耐用消费品支出Yt依赖于人均全年可支配收入Xt的变化,因此设定回归模型为 Yt=β0+β?Xt﹢μt(1)打开E Vies软件,首先建立工作文件, Fil e rkfile ,然后通过bject建立 Y、X系列,并得到相应数据。
(2)在工作文件窗口输入命令:l s y c x,按E nter键,回归结果如表2 :表2 回归结果根据输出结果,得到如下回归方程:Y t=977.908+0.670Xt s=(172.3797) (0.0122) t=(5.673) (54.950) R2=0.995385 Adjust ed R2=0.995055 F-sta tistic=3019.551 残差平方和Sum sq uared resi d =1254108回归标准差S.E.f regressi n=299.2978(3)根据回归方程进行统计检验:拟合优度检验由上表2中的数分别为0.995385和0.995055,计算结果表明,估计的样本回归方程较好地拟合了样本观测值。
Eviews实验报告4

【实验目的及要求】● 深刻理解平稳性的要求和arima 建模的思想。
● 学会如何通过观察自相关系数和偏相关系数,确定并建立模型。
● 学会如何利用模型进行预测。
● 熟练掌握EVIEWS 的结果,看懂eviews 的输出结果。
【实验原理】ARIMA(p, q )过程的平稳域和可逆域对于非平稳序列的时变均值函数,最简单的处理方法就是考虑均值函数可以由一个时间的确定性函数来描述,这时,可以用回归模型来描述。
假如均值函数服从于线性趋势我们可以利用确定性的线性趋势模型如果均值函数服从二次函数则我们可以用假如均值函数服从k 次多项式我们可以使用下列模型建模()22012,~0,t t t X t t WN αααεεσ=+++()201,~0,k t k t t X t t WN αααεεσ=++++【实验方案设计】4.2数据和指标的选取我们的模型估计选取了我国1990年1月到2008年12月的CPI月度数据附表(1))作为研究的对象。
度量通货膨胀的指标通常有CPI(消费者价格指生产者物价指数(PPI)、批发物价指数(wholesale price index)、GDP平减指数(deflator)等。
消费者物价指数(CPI)(consumer price index)是用来度量一期内居民所支付消费商品和劳务价格变化程度的相对数指标,它是反映通货水平的重要指标。
CPI指数作为生活成本指数,不仅能够及时和明确地反映子商品和服务价格的变化,而且是定期公布,广为人知,易于获取和明了,被公众理解。
选取CPI作为通货膨胀的指标有利于合理引导公众和市场对经预期,有利于政府综合运用价格和其他经济手段,实现宏观经济调控目标。
为了研究这些问题,笔者搜集了1985-2007年的年度中国消费者物价指数的相关数据,利用EVIEWS软件,将这几个指标数据进行了相关分析。
对于ARIMA(p q)模型,可以利用其样本的自相关函数和样本的偏自相关函数的截尾性判定模型的阶数,若平稳时间序列的偏相而自相关函数是截尾的则可断定此序列适合MA 模型; 若平稳时间序列的偏相关函数和自相关函数均是拖尾的则此序列适合模型。
计量经济学eviews报告

计量经济学eviews报告在经济学研究中,计量经济学是一个重要的分支领域,它利用数理统计和经济理论方法,对经济现象进行定量分析和预测。
而在进行计量经济学研究时,经济学家们通常会使用eviews软件来进行数据处理和分析。
本报告将对eviews软件在计量经济学研究中的应用进行介绍和分析。
首先,eviews软件作为一款专业的计量经济学软件,具有强大的数据处理和分析功能。
它可以对各种类型的经济数据进行处理,包括时间序列数据、截面数据和面板数据等。
同时,eviews还提供了丰富的统计分析工具,如回归分析、时间序列分析、方差分析等,可以帮助经济学家们快速准确地进行数据分析和模型建立。
其次,eviews软件在计量经济学研究中的应用非常广泛。
在实证研究中,经济学家们通常会使用eviews来进行数据的导入和清洗,然后进行相关的计量分析。
例如,他们可以利用eviews进行回归分析,来探讨不同经济变量之间的关系;也可以利用eviews进行时间序列分析,来预测未来的经济走势。
总之,eviews为经济学家们提供了一个强大的工具,帮助他们更好地进行计量经济学研究。
另外,eviews软件还具有友好的用户界面和丰富的图表展示功能,使得经济学家们可以直观地呈现研究结果。
他们可以通过eviews生成各种统计图表,如散点图、折线图、柱状图等,直观地展示数据之间的关系和变化趋势。
这些图表不仅可以帮助经济学家们更好地理解数据,还可以用于学术论文和研究报告的展示。
总之,eviews软件在计量经济学研究中发挥着重要的作用,它为经济学家们提供了强大的数据处理和分析工具,帮助他们更好地进行实证研究。
未来,随着计量经济学研究的深入发展,相信eviews软件将会继续发挥重要作用,为经济学研究提供更多的便利和支持。
eviews图像及结果分析

EViews图像及结果分析EViews软件提供了序列(Series)和序列组(Group)等对象的各种视图、统计分析方法和过程。
当序列对象中输入数据后,就可对序列对象中输入的数据进行统计分析,并且可以通过图、表等形式进行描述。
本章将介绍序列和序列组对象图形的生成和描述性统计量及其检验。
4.1 图形对象图形(Graph)对象可以形成序列和序列组等对象的各种视图,如线图(Line)、散点图(Scatter)以及饼图(Pie)等。
通过图形可以进一步观察和分析数据的变化趋势和规律。
下面介绍图形对象的基本操作。
4.1.1 图形(Graph)对象的生成图形对象也是工作文件中的基本对象之一。
要生成图形对象需首先打开序列对象窗口或序列组对象窗口,选择对象窗口工具栏中的“View”|“Graph”选项。
选择的对象类型不同,将弹出不同的窗口。
如果在序列对象窗口下选择“View”|“Graph”选项,将弹出如图4-1所示的界面。
图4-1 序列窗口下图形对象的生成此时“Graph”弹出的菜单中有6种图形可供选择。
“Line”表示生成的是折线图,如图4-2所示,其横轴表示时间或序列的顺序,纵轴表示序列对象观测值的大小。
“Area”表示生成面积图,其图形的形状与“Line”(折线图)相同,不同的是“Area”(面积图)曲线下方是被填满的,而“Line”(折线图)下方是空白。
图4-2 “Line”折线图“Bar”表示为条形图,用条状的高度表示观测值的大小。
“Spike”表示尖峰图,由竖线组成,每根竖线的高度代表观测值的大小。
“Seasonal Stacked Line”表示生成的是季节性堆叠图,“Seasonal Split Line”表示生成的是季节性分割线。
如果在序列组(群)对象窗口下选择“View”|“Graph”选项,将弹出如图4-3所示的界面。
这里有9种图形可供选择。
其前4种与上面讲述的相同。
图4-3 序列组(群)窗口下图对象的生成其中,“Scatter”表示生成散点图。
eviews图像及结果分析报告

EViews图像及结果分析EViews软件提供了序列(Series)和序列组(Group)等对象的各种视图、统计分析方法和过程。
当序列对象中输入数据后,就可对序列对象中输入的数据进行统计分析,并且可以通过图、表等形式进行描述。
本章将介绍序列和序列组对象图形的生成和描述性统计量及其检验。
4.1 图形对象图形(Graph)对象可以形成序列和序列组等对象的各种视图,如线图(Line)、散点图(Scatter)以及饼图(Pie)等。
通过图形可以进一步观察和分析数据的变化趋势和规律。
下面介绍图形对象的基本操作。
4.1.1 图形(Graph)对象的生成图形对象也是工作文件中的基本对象之一。
要生成图形对象需首先打开序列对象窗口或序列组对象窗口,选择对象窗口工具栏中的“View”|“Graph”选项。
选择的对象类型不同,将弹出不同的窗口。
如果在序列对象窗口下选择“View”|“Graph”选项,将弹出如图4-1所示的界面。
图4-1 序列窗口下图形对象的生成此时“Graph”弹出的菜单中有6种图形可供选择。
“Line”表示生成的是折线图,如图4-2所示,其横轴表示时间或序列的顺序,纵轴表示序列对象观测值的大小。
“Area”表示生成面积图,其图形的形状与“Line”(折线图)相同,不同的是“Area”(面积图)曲线下方是被填满的,而“Line”(折线图)下方是空白。
图4-2 “Line”折线图“Bar”表示为条形图,用条状的高度表示观测值的大小。
“Spike”表示尖峰图,由竖线组成,每根竖线的高度代表观测值的大小。
“Seasonal Stacked Line”表示生成的是季节性堆叠图,“Seasonal Split Line”表示生成的是季节性分割线。
如果在序列组(群)对象窗口下选择“View”|“Graph”选项,将弹出如图4-3所示的界面。
这里有9种图形可供选择。
其前4种与上面讲述的相同。
图4-3 序列组(群)窗口下图对象的生成其中,“Scatter”表示生成散点图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章图形和统计量分析EViews软件提供了序列(Series)和序列组(Group)等对象的各种视图、统计分析方法和过程。
当序列对象中输入数据后,就可对序列对象中输入的数据进行统计分析,并且可以通过图、表等形式进行描述。
本章将介绍序列和序列组对象图形的生成和描述性统计量及其检验。
4.1 图形对象图形(Graph)对象可以形成序列和序列组等对象的各种视图,如线图(Line)、散点图(Scatter)以及饼图(Pie)等。
通过图形可以进一步观察和分析数据的变化趋势和规律。
下面介绍图形对象的基本操作。
4.1.1 图形(Graph)对象的生成图形对象也是工作文件中的基本对象之一。
要生成图形对象需首先打开序列对象窗口或序列组对象窗口,选择对象窗口工具栏中的“View”|“Graph”选项。
选择的对象类型不同,将弹出不同的窗口。
如果在序列对象窗口下选择“View”|“Graph”选项,将弹出如图4-1所示的界面。
. .图4-1 序列窗口下图形对象的生成此时“Graph”弹出的菜单中有6种图形可供选择。
“Line”表示生成的是折线图,如图4-2所示,其横轴表示时间或序列的顺序,纵轴表示序列对象观测值的大小。
“Area”表示生成面积图,其图形的形状与“Line”(折线图)相同,不同的是“Area”(面积图)曲线下方是被填满的,而“Line”(折线图)下方是空白。
图4-2 “Line”折线图“Bar”表示为条形图,用条状的高度表示观测值的大小。
“Spike”表示尖峰图,由竖线组成,每根竖线的高度代表观测值的大小。
“Seasonal Stacked Line”表示生成的是季节性堆叠图,“Seasonal Split Line”表示生成的是季节性分割线。
如果在序列组(群)对象窗口下选择“View”|“Graph”选项,将弹出如图4-3所示的界面。
这里有9种图形可供选择。
其前4种与上面讲述的相同。
图4-3 序列组(群)窗口下图对象的生成其中,“Scatter”表示生成散点图。
在“Scatter”弹出的菜单中有5个选项,分别是“Simple Scatter”(简单散点图)、“Scatter with Regression”(带有回归线的散点图)、“Scatter with Nearest Neighbor Fit”(近邻匹配散点图)、“Scatter with Kernel Fit”(核心匹配散点图)、“XY Pairs”(XY成对散点图)。
当序列组中包含两个序列对象时,第一个序列对象的观测值构成散点图的横坐标,第二个序列对象的观测值构成散点图的纵坐标,如图4-4所示。
当序列组中有三个以上的序列对象时,第一个序列对象构成散点图的横坐标,其余序列对象构成散点图的纵坐标。
图4-4 简单散点图(“Simple Scatter”)“XY line”表示X与Y的折线图,横纵坐标分别表示两个序列对象的观测值。
“Error Bar”表示误差长条图,“High-Low”表示高低图,“Pie”表示饼图。
另外,在序列组(群)对象窗口下还可通过选择“View”|“Multiple Graphs”选项来生成图形。
此时图形显示在不同的坐标系中,即每个序列对象各形成一个图形,并显示在同一个窗口中。
除上面介绍的在序列对象窗口中生成图对象外,还可以通过选择EViews主菜单中的“Quick”|“Graph”选项来生成。
在“Graph”的菜单中选择图的类型,将弹出图4-5所示的文本框。
在文本框输入序列或序列组的名称,例如“fdi”,然后单击“OK”按钮,即可打开相应的图。
此时所生成的图对象未被命名,单击图对象窗口中的“Name”按钮即可命名。
图4-5 生成图对象的文本框. .4.1.2 图形的冻结在上面所介绍的两种图对象生成方法中,通过“Quick”|“Graph”选项生成图形对象,单击图对象窗口工具栏中的“Name”选项,在弹出的对话框中输入该对象的名称,单击“OK”按钮后该对象即可被保存,并在工作文件窗口中显示图对象的图标。
但直接在序列对象窗口中形成的图形未被保存,当序列对象中的观测值发生改变时,或当前工作文件的样本围发生变化时,图形也将随之改变。
如果要保留所建立的图形,使之不随样本及观测值的改变而发生变化,则可以通过序列对象窗口中的“Freeze”键来冻结图形。
EViews软件将被冻结的图形以一个图(Graph)对象的形式保存在工作文件中。
当选择序列对象窗口中的“Freeze”键时,会弹出图对象窗口。
其中有几个键值得关注,一个是“AddText”功能键,通过它可以将文字显示在图形中,并且可以选择显示的位置。
一个是“Line/Shade”功能键,通过它可以改变图形的背景颜色,横纵坐标轴的线条类型和颜色等。
还有一个是“Remove”功能键,可以用来删除图形中的一些附加要素。
例如,将在图形中所建立的文字删除,应首先用鼠标单击所需删除的容,使其被选中,然后单击“Remove”键,则文字即被删除。
用同样的方法也可以删除为图形所设置的颜色等。
4.1.3 图形的复制如果需要将图形保存到其他文件中,例如放在Word文档中,则选择图对象窗口中的“Proc”|“Copy”选项,然后在弹出的对话框中单击“OK”按钮。
或者将鼠标移动到图形上,右击,在弹出的快捷菜单中选择“Copy”命令。
再打开需要粘贴的文件,进行粘贴即可。
4.2 描述性统计量EViews软件中包含一些基本的描述性统计量,有直方图、均值、方差、协方差、自相关等。
本节主要介绍序列和序列组对象窗口下的描述性统计量及其检验。
4.2.1 描述性统计量概述序列窗口下的描述性统计量和序列组窗口下的描述性统计量有所不同。
在序列窗口下有4种描述性统计量,分别是“Histogram and Stats”(直方图和统计量)、“Stats Table”(统计表)、“Stats by Classification”(分类统计量)和“Boxplots by Classification”(箱线图/箱尾图分类)。
序列组窗口下有3种描述性统计量,分别是“Common Sample”(普通样本)、“Individual Samples ”(个体样本)和“Boxplots ”(箱线图/箱尾图)。
下面分别进行详细介绍。
(1) 序列窗口下的描述性统计量在序列(Series)对象窗口下选择工具栏中的“View ”|“Descriptive Statistics ”(描述性统计量)选项,将出现4个选项。
第一个选项是“Histogram and Stats ”(直方图和统计量),能显示序列对象的直方图和描述性统计量的值。
下面以建立好的序列对象“fdi ”为例来进行说明。
如图4-6所示,图的左侧显示的是该序列对象的直方图,为观测值的频率分布。
右侧分三个部分,最上面显示的是序列对象的名称、样本的围和样本数量。
中间部分显示的是各统计量的值。
其中,“Mean ”表示均值,即序列对象观测值的平均值;“Median ”表示中位数,即从小到大排列的序列对象观测值的中间值,是对序列分布中心的一个大致估计;“Maximum ”和“Minimum ”表示的是该序列观测值中的最大值和最小值;“Std.Dev ”表示标准差,用来衡量序列观测值的离散程度。
其计算公式为∑=--=N i x x N i 1)(112σ(4-1)式中,σ为标准差,N 为样本观测值个数,x i 是样本观测值,x 为样本均值。
图4-6 序列对象“fdi ”的直方图分布形状和相关统计量的描述“Skewness ”表示偏度,用来衡量观测值分布偏离均值的状况。
其计算公式为31ˆ1∑=⎪⎭⎫ ⎝⎛-=N i x x N S i σ (4-2)式中,σˆ是变量方差的有偏估计。
当S =0时,序列的分布是对称的,如正态分布;当S >0时,序列分布为右偏;当S <0时,序列分布为左偏。
例如图4-6中的偏度为1.422 500>0,. .所以我国的外商直接投资(fdi)的分布是不对称的,为右偏分布形态。
“Kurtosis ”表示峰度,用来衡量序列分布的凸起状况。
其计算公式为41ˆ1∑=⎪⎭⎫ ⎝⎛-=N i x x N K i σ (4-3)正态分布的K 值为3,当K >3时,序列对象的分布凸起程度大于正态分布的凸起程度;当K <3时,序列对象的分布凸起程度要比正态分布小。
例如,图4-6中的峰度为4.898 917 >3,外商直接投资(fdi)的分布呈尖峰状态。
最下方是JB(Jarque-Bera)统计量及其相应的概率(Probability)。
JB 统计量用来检验序列观测值是否服从正态分布,该检验的零假设为样本服从正态分布。
在零假设下,JB 统计量服从χ2(2)分布。
根据第1章所介绍的假设检验,P(Probability)值为拒绝原假设所犯第Ⅰ类错误的概率。
在本例中P 值接近于0,因而可在1%的显著性水平下拒绝零假设,即序列不服从正态分布。
第二个选项是“Stats Table ”(统计表),它将描述性统计量值通过电子表格的形式显示在对象窗口中。
第三个选项是“Stats by Classification ”(分类统计量),它将样本分为若干组后再对各组观测值分别进行描述统计。
选择此项后将弹出如图4-7所示的对话框,其中包括三部分容。
在左边“Statistics ”选项中勾选需要显示的统计量,其中“# of NAs ”为无观测个数,“Observations ”为观测值个数。
在“Series/Group for classify ”中输入需分类的序列或序列组对象名称,右侧“Output Layout ”为输出结果的显示形式。
选择好后单击“OK ”按钮即可。
图4-7 “Stats by Classification ”(分类统计量)对话框第四个选项是“Boxplots by Classification ”(分类箱线图/箱尾图),将序列分布按照箱线图/箱尾图进行分类。
箱线图(Boxplot)也称为箱尾图,是利用数据统计量来描述数据的一种方法,它可以粗略地看出数据是否具有对称性,分布的分散程度等。
图4-8所示为fdi 序列的分类箱线图。
图4-8 fdi序列对象的分类箱线图(“Boxplots by Classification”)(2) 序列组窗口下的描述性统计量在序列组(Group)对象窗口下选择工具栏中的“View”| “Descriptive Statistics”(描述性统计量)选项,将弹出3个选项。
第一个选项是“Common Sample”(普通样本),选择该项将得到含有均值、中位数、最大/小值等统计量的一电子表格。