随机过程-C4马尔可夫链复习过程
随机过程第四章马尔可夫链

0,
p(n) ij
1, i,
jI
jI
即P(n)也为随机矩阵.
当n
1时,
p (1) ij
pij
,
P (1)
P
当n
0时,规定pi(j0)
0 , i 1 , i
j j
13
4.1 马尔可夫链与转移概率
• 定理4.1 设{Xn, nT}为马尔可夫链, 则对任意 整数n0, 0l<n和i,jI, n步转移概率 p具i(jn) 有性
Ckx 0
pxqy ,
,
k ( j i)为偶数 k ( j i)为奇数
11
4.1 马尔可夫链与转移概率
例4.4 具有吸收壁和反射壁的随机游动状态空间 {1,2,3,4}, 1为吸收壁, 4为反射壁.
解:状态转移图
状态转移矩阵
1 3
1 0 0 0
1
1
3
1 1
3
1
1
1 1 1
1 3
1 3
2
P 3
5
4.1 马尔可夫链与转移概率
= =P{Xn=in|Xn-1=in-1}P{Xn-1=in-1 |Xn-2=in-2}
P{X1=i1|X0=i0}P{X0=i0} 马尔可夫链的统计特性完全由条件概率 P{Xn+1=in+1|Xn=in}确定。
6
4.1 马尔可夫链与转移概率
定义 称条件概率pij(n)= P{Xn+1=j|Xn=i} 为马尔 可夫链{Xn, nT}在时刻n的一步转移概率,简 称转移概率,其中i,jI.
P{X 0 i}P{X1 i1 | X 0 i} iI
P{X 2 i2 | X1 i1} P{X n in | X n1 in1}
马尔科夫链_马尔可夫过程

马尔科夫链_马尔可夫过程一、引言1、马尔科夫链的数学背景马尔可夫链,因安德烈?马尔可夫(A.A.Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。
该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。
马尔可夫链是随机变量X_1,X_2,X_3...的一个数列。
这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而X_n的值则是在时间n的状态。
如果X_{n+1}对于过去状态的条件概率分布仅是X_n的一个函数,则PX_{n+1}=x|X_0, X_1, X_2, \ldots, X_n = PX_{n+1}=x|X_n. 这里x为过程中的某个状态。
上面这个恒等式可以被看作是马尔可夫性质。
2、马尔科夫链的典型应用①马尔科夫链在股指期货投资中的应用马尔科夫链转移矩阵的有效状态以近时点动量策略原时点反转策略为主,有效抓住了上涨和下跌的中期和初期.从而准确的抓住了日内股指波动. ②马尔科夫链在天气预报中的应用通过对马尔科夫链理论和切普曼-柯尔莫哥洛夫方程方程的探讨,,结合天气情况不确定等诸多特点,构想了天气情况预报的马尔科夫链预测模型,给出了马尔科夫链的初始概率和多重转移概率的计算方法,根据此算法可以预报短期天气情况,同时扩展到对未来天气情况趋势的预测。
③马尔科夫链在环境预测中的应用鉴于目前环境质量预测在理论方法和实践上的缺乏,把马尔科夫链引入环境质量的预测中,将各种污染物的浓度变化过程视作马尔科夫过程,通过预测各种污染物的污染负荷系数来推知其浓度值/④马尔科夫链在桥梁状态预测中的研究与应用马尔科夫链以矩阵的形式来表达桥梁状况,通过求解状态转移矩阵,进一步预测桥梁未来数年内的基本状况。
综合考虑了桥梁检修的影响,给出了桥梁检修后不同状态的状态转移矩阵,为进一步引入实际数据做了充分的准备。
3、相关文献《程序设计实践》作者 Brian W.Kernighan程序设计实践并不是只是写代码。
随机过程课件-马尔可夫链

对于不可约的马尔可夫链,其极限分 布是遍历的,即极限分布与初始状态 无关。
05
马尔可夫链的模拟与实现
随机数生成
伪随机数生成器
使用数学公式和种子值生成一系列近似 随机的数列。
VS
真随机数生成器
利用物理现象(如电路噪音)产生真正的 随机数。
马尔可夫链蒙特卡洛方法
采样分布
通过多次重复模拟马尔可夫链的路径来估计 某个事件的概率或某个参数的值。
收敛性
随着模拟次数的增加,估计值逐渐接近真实 值。
马尔可夫链在决策分析中的应用
要点一
决策树
要点二
强化学习
将马尔可夫链应用于决策分析中,帮助决策者评估不同策 略的风险和收益。
在强化学习中,马尔可夫链用于描述环境状态转移和奖励 函数。
06
马尔可夫链的扩展与改进
时齐马尔可夫链
定义
时齐马尔可夫链是指时间 参数为离散的马尔可夫链 ,其状态转移概率不随时 间而变化。
遍历性是马尔可夫链达到平稳分布的必要条件之一,也是判 断马尔可夫链是否具有唯一平稳分布的重要依据。
03
马尔可夫链的转移概率
转移概率的定义与性质
定义
马尔可夫链中,给定当前状态$i$,未来状态$j$在某个时间步长内发生的概率称为转移 概率,记作$P(i,j)$。
性质
转移概率具有非负性、归一性和时齐性。非负性指$P(i,j) geq 0$;归一性指对于每个 状态$i$,所有可能转移到该状态的转移概率之和为1,即$sum_{ j} P(i,j) = 1$;时齐性
周期性会影响马尔可夫链的平稳分来自的性质和计算。状态空间的分解
状态空间的分解是将状态空间划分为若干个子集,每个子集内的状态具有相似的 性质和转移概率。
概率统计和随机过程课件第十三章 马尔可夫链

9
n
(2)转移概率的性质:对于状态空间 S 内的任意两个
状态 i和 j ,恒有 (1) (2)
p (tm) 0
(n) ij
(n ) p , n 1 ,2 , ij (tm) 1 j S
p
jS
(n) ij
(tm ) S P { X ( t ) j |X ( t ) i } j m n m j S
P ( X 1 |X 1 )( P X 1 |X 1 ) n 1 n n 2 n 1 p p 0 . 8 1 1 11 1
24
三.有限维概率分布
X ( t ), t t , t , t , } 马尔可夫链 { 在初始时刻 t 0 的概率 0 1 2
进一步改写为矩阵形式
P P
(2)
2
(2 ) (2 ) 其中 P 是两步转移概率矩阵, P 是一步转移 (p ij )
20
用数学归纳法可得
P P
( n )
n
n 2 , 3 , 4 ,
P
(13.8)
(n)
这表明: n步转移概率矩阵
( p )
(n) ij
等于一步转移概率矩阵P的 n 次幂.
5
恒成立,则称此过程为马尔可夫链. 式(13.1)称为马尔可夫性,或称无后效性. 马氏性的直观含义可以解释如下:
将 t n 看作为现在时刻,那末 t1,t2,,tn1 ,就是过去时 刻,而 t n 1 则是将来时刻.于是, (13.1) 式是说,当已知
注: t , t ,, t 并 不 需 要 间 隔 相 等 , 比 如 1 2 n 1
马尔可夫链 是离散状态的马尔可夫过程, 最初是由俄国数学家马尔可夫1896年 提出和研究的应用十分广泛,其应用领域涉 及计算机,通信,自动.控制,随机服务,可靠性, 生物学,经济,管理,教育,气象物理,化学等等.
第四章-马尔可夫链-随机过程

计算 n 步转移概率的方法。
切普曼一柯尔莫哥格夫方程:对一切n,m 0,一切 i,j,有(4.2.1)
P nm ij
Pikn Pkmj
k0
证明:
P nm ij
P{ X nm
j|
X0
i}
P{Xn k | X0 i}P{Xnm j | Xn k, X0 i}
顾客数构成一个泊松过程。所以,
Pi, j
e t (t )i1 j dG(t ), j 1,
0
(i 1 j)!
i 1
这是因为若一个来客发现有 i 个人在系统中,那么下一个来客将
发现人数为 i+1 减去已服务完毕的人数,易知有 i+1-j 个人被服
务完毕的概率(对相继来到之间的时间取条件)等于上式的右端。
0
0
0 P43
例 4.1(b) G/M/1 排队系统。假设顾客 依照一个任意的更新过
程来到一个单服务台的服务中心,来到间隔分布为 G。进一步
假设服务分布是指数分布,参数为。若以 Xn 记第 n 个顾客来
到时见到系统中的顾客数,以 Yn 记第 n 个顾客与第(n+1)个顾客
不可被 d 整除的 n 有 Piin 0,且 d 是具有此性质的最大整数(d 是
{n : Piin 0}的最大公约数)。(若对一切 n>0, Piin 0,则定义 i 的周 期是无穷大。)具有周期 1 的状态称为非周期的(aperiodic)。以 d(i)记 i 的周期。
例设马尔可夫链的状态空间I={1,2,,9}, 转移概率如下图
P nm ij
随机过程习题集-第四章马尔可夫过程

1第四章 马尔可夫过程内容提要1. 马尔可夫过程的概念 (1)马尔可夫过程给定随机过程{}(),X t t T ∈,如果对122,∀≥∀<<<∈n n t t t T ,有11221111{()|(),(),,()}{()|()}n n n n n n n n P X t x X t x X t x X t x P X t x X t x ----<====<=则称{}(),X t t T ∈为马尔可夫过程。
称(){}:,==∈E x X t x t T 为状态空间。
参数集和状态空间都是离散的马尔可夫过程称为离散参数马氏链. 参数连续、状态空间离散的马尔可夫过程称为连续参数马氏链. (2)k 步转移概率设{}(),0,1,2,=X n n 为离散参数马氏链,称()(),(,){|},0,1=+==≥≥i j p n k P X n k j X n i n k为{}(),0,1,2,=X n n 在时刻n 的k 步转移概率,称(),(,)((,)),P =∈i j n k p n k i j E为{}(),0,1,2,=X n n 在时刻n 的k 步转移概率矩阵. 特别地,当1k =时,在时刻n 的一步转移概率和一步转移概率矩阵分别简记为()ij p n 和()n P . (3)初始分布、绝对分布称((0)),,==∈i p P X i i E 为离散参数马氏链{}(),0,1,2,=X n n 的初始分布,记为0P ,称()(){},,==∈j p n P X n j j E 为马尔可夫链{}0n X n ≥的绝对分布,记为P n . (4)离散参数齐次马氏链设{}(),0,1,2,=X n n 是一离散参数马氏链,如果其一步转移概率()ij p n 恒与起始时刻n 无关,记为ij p ,则称{}(),0,1,2,=X n n 为离散参数齐次马氏链。
若{}(),0,1,2,=X n n2是离散参数齐次马氏链,则其k 步转移概率记为(),i j p k ,一步转移概率矩阵和k 转移概率矩阵分别记为P 和().P k(5) 离散参数齐次马氏链的遍历性离散参数齐次马氏链{X (n ) ,n=0,1,2… },若对一切状态i ,j ,存在与i 无关的极限()()lim 0,ij j n p n i j E →+∞=π>∈则称此马氏链具有遍历性.0,1j j j Ej E ππ∈>∈=∑若且则称{},j j E π∈为离散参数齐次马氏链{X (n ) ,n=0,1,2… }的极限分布,或称为最终分布,记为{},j j E ∏=∈π(6)离散参数齐次马氏链的平稳分布离散参数齐次马氏链{X (n ) ,n=0,1,2… },若存在{v j , j ∈E } 满足条件:1)0,2)13)j jj Ej i iji Ev j E vv v p ∈∈≥∈==∑∑则称此马氏链是平稳的,称 { v j , j ∈E } 为此马氏链的平稳分布。
第五章 随机过程中的马尔可夫过程

p(k m) ij
(n)
p(k il
)
(n)
p(m lj
)
(n
k
),
i, j S,
n, k, m 0
l
或
P(km) (n) P(k) (n)P(m) (n k)
证明
2006年9月
p(k ij
m)
(n)
P{X
nk
m
j|
Xn
i}
P{U( X nk l), X nkm j | X n i} l
i
P( X 0 i)P( Xt1 i1 | X 0 i)P( X t2 i2 | X 0 i, X t1 i1)L i
• P( X tn in | X 0 i, X t1 i1, X t2 i2 ,L , X tn1 in1)
P( X 0 i)P( X t1 i1 | X 0 i)P( X t2 i2 | X 0 i)P( X tn in | X tn1 in1)
i
qi0
pt1 ii1
(0)
pt2 i1i2
t1
(t1
)L
p (t ) tn tn1
in1in
n1
i
2006年9月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
3) 绝对分布
称q(jn) P(Xn j), n 0, j S为马尔可夫链{Xn,n 0}的绝对分布。
2006年9月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
一种最简单的形式:
P{X (t1) i1, X (t2 ) i2,L , X (tn1) in1, X (tn ) in} P{X (t1) i1}P{X (t2) i2}L P{X (tn ) in}
随机过程马氏过程

本章只介绍马尔可夫过程和马尔可夫 链的基本概念,以及转移概率的基本性质.
第六章 基本要求
1. 理解马尔可夫性与马尔可夫过程概念, 学会判别马尔可夫过程的方法; 2. 理解马尔可夫链与齐次马尔可夫链的 概念,会求一步转移概率及一步转移概率 矩阵。会画概率转移图; 3. 掌握n步转移概率求法及切普曼—柯 尔莫哥洛夫方程,了解初始分布概率,会 求绝对分布. 4. 理解转移概率的遍历性,会求平稳分布.
§6.1 马尔可夫过程概念 §6.2 马尔可夫链 §6.3 切普曼—柯尔莫哥洛 夫方程 §6.4 过程,它 是在20世纪初由前苏联学者A.A.Markov在 研究随机过程中得到的,在众多科学家的共同 努力下,马尔可夫过程已成为内容丰富,理论严 谨,应用广泛的一门随机数学分支.由于马尔可 夫过程在信息理论、自动控制、数值计算、近 代物理、交通运输、工程技术及生物科学等方 面起到的异乎寻常的作用,使得现代科学家与 工程技术人员越来越重视马尔可夫过程的理论 及其应用的研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机过程-C4马尔可夫链收集于网络,如有侵权请联系管理员删除练习四:马尔可夫链 随机过程练习题1.设质点在区间[0,4]的整数点作随机游动,到达0点或4点后以概率1停留在原处,在其它整数点分别以概率31向左、右移动一格或停留在原处。
求质点随机游动的一步和二步转移的概率矩阵。
2.独立地重复抛掷一枚硬币,每次抛掷出现正面的概率为p ,对于2≥n 求,令n X =0,1,2或3,这些值分别对应于第1-n 次和第n 次抛掷的结果为(正,正),(正,反),(反,正)或(反,反)。
求马尔可夫链},2,1,0,{Λ=n X n 的一步和二步转移的概率矩阵。
3.设}0,{≥n X n 为马尔可夫链,试证:(1)},,,|,,,{11002211n n m n m n n n n n i X i X i X i X i X i X P ======++++++ΛΛ }|,,,{2211n n m n m n n n n n i X i X i X i X P =====++++++Λ(2)}|,,,,,,{11221100++++++======n n m n m n n n n n i X i X i X i X i X i X P ΛΛ}|,,,{111100++=====n n n n i X i X i X i X P Λ==⋅+++m n n n X i X P ,,{22Λ }|11+++=n n m n i X i4.设}1,{≥n X n 为有限齐次马尔可夫链,其初始分布和转移概率矩阵为==0{X P p i 4,3,2,1,41}==i i ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4/14/14/14/18/34/18/14/14/14/14/14/14/14/14/14/1P ,试证 }41|4{}41,1|4{12102<<=≠<<==X X P X X X P5.设}),({T t t X ∈为随机过程,且)(11t X X =,,),(22Λt X X =Λ),(n n t X X =为独立同分布随机变量序列,令2,,)(,011110≥=+===-n X cY Y X t Y Y Y n n n ,试证}0,{≥n Y n 是马尔可夫链。
6.已知随机游动的转移概率矩阵为⎪⎪⎪⎭⎫ ⎝⎛=5.005.05.05.0005.05.0P ,求三步转移概率矩阵)3(P 及当初始分布为1}3{,0}2{}1{000======X P X P X P 时经三步转移后处于状态3的概率。
7.已知本月销售状态的初始分布和转移概率矩阵如下:(1))4.0,2.0,4.0()0(=TP ,⎪⎪⎪⎭⎫ ⎝⎛=6.02.02.02.07.01.01.08.08.0P ;收集于网络,如有侵权请联系管理员删除(2))3.0,3.0,2.0,2.0()0(=T P ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=5.02.01.01.02.06.01.01.01.02.06.01.01.01.01.07.0P ;求下一、二个月的销售状态分布。
8.某商品六年共24个季度销售记录如表(状态1——畅销,状态2——滞阵及三步转移后的销售状态分布。
10.讨论下列转移概率矩阵的马尔可夫链的状态分类。
(1)⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=010006.04.0000000100003.07.0005.03.02.0P ;(2)⎪⎪⎪⎪⎪⎭⎫⎝⎛=02.02.06.0007.03.000010100P ; (3)⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000000000001ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛp r q p r q p r q P ,其中1=++p r q ,},,1,0{b I Λ=11.设马尔可夫链的转移概率矩阵为(1)⎪⎪⎭⎫⎝⎛3/23/12/12/1;(2)⎪⎪⎪⎭⎫ ⎝⎛332211000p q q p q p ;计算)(11n f ,)(12n f ,3,2,1=n 12.设马尔可夫链的状态空间}7,,2,1{Λ=I ,转移概率矩阵为收集于网络,如有侵权请联系管理员删除⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2.08.0000007.03.000000003.05.02.000006.004.0000004.06.0001.01.01.02.02.03.01.01.01.01.001.02.04.0P求状态的分类及各常返闭集的平稳分布。
13.设马尔可夫链的转移概率矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ΛΛΛΛΛΛΛΛΛΛΛΛ000000102211p q p q P ,求它的平稳分布。
14.艾伦菲斯特(E renfest)链。
设甲乙两个容器共有N 2个球,每隔单位时间从这N 2个球中任取一球放入另一容器中,记n X 为在时刻n 甲容器中球的个数,则}0,{≥n X n 是齐次马尔可夫链,称为艾伦菲斯特链,求该链的平稳分布。
15.将2个红球4个白球任意地分别放入甲、乙两个盒子中,每个盒子放3个,现从每个盒子中各任取一球,交换后放回盒中(甲盒内取出的球放入乙盒中,乙盒内取出的球放入甲盒中),以)(n X 表示经过n 次交换后甲盒中红球数,则}0),({≥n n X 为一齐次马尔可夫链,(1)求一步转移概率矩阵;(2)证明}0),({≥n n X 是遍历链;(3)求2,1,0,lim )(=∞→j P n ijn 16.设}1),({≥n n X 为非周期不可约马尔可夫链,状态空间为I ,若对一切I j ∈,其一步转移概率矩阵满足条件:1=∑∈Ii j i p ,试证(1)对一切I j ∈,1)(=∑∈Ii n j i p ;(2)若状态空间},,2,1{m I Λ=,计算各状态的平均返回时间。
17.设河流每天的BOD (生物耗氧量)浓度为齐次马尔可夫链,状态空间}4,3,2,1{=I 是按BOD 浓度为极低、低、中、高分别表示的,其一步转移概率矩阵(以一天为单位)为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4.04.02.001.06.02.01.01.02.05.02.001.04.05.0P 。
若BOD 浓度为高,则称河流处于污染状态。
(1)证明该链是遍历链;(2)求该链的平稳分布;(3)河流再次达到污染的平均时间4μ。
收集于网络,如有侵权请联系管理员删除答 案1.解:质点随机游动的一步转移的概率矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=100003/13/13/10003/13/13/10003/13/13/100001P质点随机游动的二步转移的概率矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡==100009/49/29/29/109/19/29/39/29/109/19/29/2/9/4000012)2(P P2.解:马尔可夫链},2,1,0,{Λ=n X n 的一步转移的概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=q p q p q p q p P 00000000 马尔可夫链},2,1,0,{Λ=n X n 的一步和二步转移的概率矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==222222222)2(q pq pqpq pq pq p q pq pqpq pq pq p P P 3.证:(1)},,,|,,,{11002211n n m n m n n n n n i X i X i X i X i X i X P ======++++++ΛΛ},,,{},,,,,,,{110022111100n n m n m n n n n n n n i X i X i X P i X i X i X i X i X i X P ==========++++++ΛΛΛn n mn m n n n n n i i i i i i i i i i i i i i p p p p p p p p 1100111100-+-++-=ΛΛΛm n m n n n i i i i p p +-++=11Λ }{},,,{11n n m n m n n n n n i X P i X i X i X P =====++++Λ}|,,,{2211n n m n m n n n n n i X i X i X i X P =====++++++Λ收集于网络,如有侵权请联系管理员删除(2)}|,,,,,,{11221100++++++======n n m n m n n n n n i X i X i X i X i X i X P ΛΛ }{},,,,,,,{1122111100++++++++========n n m n m n n n n n n n i X P i X i X i X i X i X i X P ΛΛ},,|,,{}{},,{110022111100++++++++++========n n m n m n n n n n n n i X i X i X i X P i X P i X i X P ΛΛΛ}|,,{1100++====n n n n i X i X i X P Λ}|,,{1122++++++===⋅n n m n m n n n i X i X i X P Λ4.证:}41,1{},4,41,1{}41,1|4{10210102<<==<<==<<==X X P X X X P X X X P}3,1{}2,1{},4,3,1{}4,2,1{1010210210==+=====+====X X P X X P X X X P X X X P1311213413124121p p p p p p p p p p ++=16541414141834141414141=⨯+⨯⨯⨯+⨯⨯=}41{}41,4{}41|4{11212<<<<==<<=X P X X P X X P}3{}2{}4,3{}4,2{112121=+===+===X P X P X X P X X P }3{}2{}3{}2{11341241=+==+==X P X P p X P p X P )(34123413441224i i i i i i i i i i p pp p p p p p p ++=∑∑∑===)(34124133441224i i i i i i i p pp p p p ++=∑∑∑===1871838741+⨯+⨯=6019=5.解:由题意1--=n n n CY X Y 知n Y 是),,(1n X X Λ的函数,由于ΛΛ,,,1n X X 是相互独立的随机变量,故对0≥∀n ,1+n X 与),,,(10n Y Y Y Λ独立。
},,,0|{11011n n n n i Y i Y Y i Y P ====++Λ },,,0|{11011n n n n n n i Y i Y Y Ci i CY Y P ===+=+=++Λ },,,0|{11011n n n n n i Y i Y Y Ci i X P ===+==++Λ}{11n n n Ci i X P +==++}|{11n n n n n i Y Ci i X P =+==++}|{11n n n n i Y i Y P ===++ 由k i ,1,,2,1+=n k Λ的任意性知}0,{≥n Y n 为马尔可夫链。