美国MOOG伺服阀-伺服阀的工作原理及作用

合集下载

美国MOOG伺服阀,伺服阀的工作原理及作用

美国MOOG伺服阀,伺服阀的工作原理及作用

美国MOOG伺服阀,伺服阀的工作原理及作用1、电液伺服阀主要用于电液伺服自动控制系统,其作用是将小功率的电信号转换为大功率的液压输出,经过液压执行机构来完成机械设备的自动化控制. SupeSite/X-Space官方站y Q d:E p p.P伺服阀是一种经过改动输入信号。

依据输入信号的方式不同,分为电液伺服阀和机液伺服阀。

SupeSite/X-Space官方站(R w _ }/i-A电液伺服阀既是电液转换元件,又是功率放大元件,它的作用是将小功率的电信号输入转换为大功率的液压能(压力和流量)输出,完成执行元件的位移、速度、加速度及力控制。

+C6S c {(p a0液压泵的输出压力是指液压泵在实践工作时输出油液的压力,即泵工作时的出口压力,通常称为工作压力,其大小取决于负载。

SupeSite/X-Space官方站Y \ h+I r2k L电液伺服阀通常由电气—机械转换安装、液压放大器和反应(均衡)机构三局部组成。

反应战争衡机构使电液伺服阀输出的流量或压力取得与输入电信号成比例的特性。

压力的稳定通常采用压力控制阀,比方溢流阀等。

2.细致材料:典型电---气比例阀、伺服阀的工作原理电---气比例阀和伺服阀按其功用可分为压力式和流量式两种。

压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。

美国威格士VICKERS柱塞泵由于气体的可紧缩性,使气缸或气马达等执行元件的运动速度不只取决于气体流量。

还取决于执行元件的负载大小。

因而准确地控制气体流量常常是不用要的。

单纯的压力式或流量式比例/伺服阀应用不多,常常是压力和流量分离在一同应用更为普遍。

电---气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。

但随着近年来低价的电子集成电路和各种检测器件的大量呈现,在1电---气比例/伺服阀中越来越多地采用了电反应办法,这也大大进步了比例/伺服阀的性能。

电---气比例/伺服阀可采用的反应控制方式,阀内就增加了位移或压力检测器件,有的还集成有控制放大器。

伺服阀的工作原理及应用

伺服阀的工作原理及应用

伺服阀的工作原理及应用伺服阀是一种利用电磁力来控制液压流量的装置,广泛应用于机械工程、航空航天、汽车工业以及其他液压系统中。

它通过调节流体流量来控制执行器的位置和速度,从而实现对系统的精确控制。

本文将介绍伺服阀的工作原理及其在各个领域的应用。

首先,让我们来了解伺服阀的工作原理。

伺服阀由阀芯、阀座、电磁铁以及定向阀组成。

当电磁铁通电时,产生的电磁力会使阀芯与阀座分离,从而打开流体通道。

通过改变电磁铁的通电状态,可以控制阀芯的位置,从而调节流体的流量。

伺服阀的工作原理与一个负反馈控制系统类似。

当执行器达到设定的位置或速度时,反馈信号将被传送回来,通过比较反馈信号与设定值,控制系统将相应地调整电磁铁的通电状态,使阀芯位置逐渐接近设定值。

这种闭环控制系统可以实现高度精确的位置和速度控制。

接下来,我们来看一下伺服阀的应用领域。

伺服阀被广泛应用于需要精确控制位置和速度的系统中。

在机械工程中,伺服阀被用于控制工业机械、机器人以及其他自动化设备。

例如,在自动化生产线上,伺服阀被用于控制机械臂的位置和运动速度,从而实现高效的生产。

在航空航天领域,伺服阀被用于控制飞机的液压系统。

它们能够精确地控制飞行器的操作和动力系统,包括起落架、襟翼和刹车系统。

由于伺服阀能够快速响应和高度精确的控制,它们在飞机的操纵系统中起到了至关重要的作用。

在汽车工业中,伺服阀被广泛应用于汽车刹车系统和液压悬挂系统。

伺服阀能够根据司机的踏板操作精确地控制刹车力度,从而提供安全和可靠的刹车体验。

在液压悬挂系统中,伺服阀能够实现对车身的主动控制,提供更平稳的行驶和更舒适的乘坐体验。

此外,伺服阀还被应用于医疗设备、舞台设备和工程机械等领域。

在医疗设备中,伺服阀被用于控制手术机器人的精确运动,提供高度精确的手术操作和治疗。

在舞台设备中,伺服阀被用于控制灯光和音响设备,实现精确的舞台效果。

在工程机械中,伺服阀被用于控制挖掘机、起重机和压力机等设备,提供高效、安全的工作。

moog伺服阀

moog伺服阀

喷嘴挡板伺服阀工作原理
电液伺服阀的组成
由力矩马达和液压放大器组成。 力矩马达组成
由一对永久磁铁1、导磁体2和 4、衔铁3、线圈5和内部悬置挡板 7的弹簧管6等组成 。 液压放大器组成 置放大器 前置放大级是一个双 喷嘴挡板阀,它主要由挡板7 喷嘴 8节流孔10和滤油器11组成。 功率放大器 功率放大级主要由 滑阀9和挡板下部 的反馈杆组 成。
MOOG伺服阀概述
三级阀,喷嘴挡板前置级D791、D792 插装阀DSHR、SE3 机械反馈伺服阀(不集成控制器) 72、78、79-100、79-200、G631、G761
MOOG伺服阀概述
综合来说,moog伺服阀从原理上可以分 为喷嘴挡板前置级伺服阀、射流管前置 级和直接驱动式电液伺服阀三类
直接驱动式电液伺服阀
DDV633电反馈直动阀的结构
集成式 伺服阀 控制器
LVDT位 移传感器
滑阀
驱动 部分
直接驱动式电液伺服阀
力马达工作原理
射流管伺服阀பைடு நூலகம்作原理
射流管伺服阀工作原理
射流管伺服阀工作原理
谢谢!
喷嘴挡板伺服阀工作原理
前置放大级工作原理
压力油经滤油器和节 流孔流到滑阀左、右两端 油腔和两喷嘴腔,由喷嘴 喷出,经阀芯中部流回油箱 力矩马达无输出信号时, 挡板不动,滑阀两端压力相 等。当矩马达有信号输出时,挡板偏转,两喷嘴与挡板之间 的间隙不等,致使滑阀两端压力不等,推动阀芯移动。
功率放大级工作原理
当前置放大级有压差信号 使滑阀阀芯移动时,主油路 被接通。滑阀位移后的开度 正比于力矩马达的输入电流, 则阀的输出流量和输入电流 成正比;当输入电流反向时, 输出流量也反向。滑阀移动 同时,挡板下端的小球亦随 同移动,使挡板弹簧片产生 弹性反力,阻止滑阀继续移动;挡板变形又使它在两喷嘴间的 位移量减小,实现了反馈。当滑阀上的液压作用力和挡板弹性 反力平衡时,滑阀便保持在这一开度上不再移动。

穆格伺服阀工作原理

穆格伺服阀工作原理

穆格伺服阀工作原理穆格伺服阀是一种常用的控制装置,广泛应用于工业自动化系统中。

它的工作原理是通过调节阀门的开度来控制介质的流量,从而实现对系统的控制。

穆格伺服阀的工作原理基于流体力学原理和电气控制原理。

它由阀体、阀芯、电磁线圈和控制电路等组成。

当控制电路接通时,电磁线圈产生磁场,吸引阀芯向开口方向移动,从而打开阀门。

当控制电路断开时,电磁线圈停止产生磁场,阀芯受到弹簧的作用返回原位,阀门关闭。

穆格伺服阀的特点是具有快速响应、高精度和稳定性好等优点。

它能够根据控制信号的变化调节阀门的开度,从而实现对介质流量的精确控制。

在工业自动化系统中,穆格伺服阀被广泛应用于流体控制领域,如液压系统、气动系统等。

穆格伺服阀的工作过程可以分为三个阶段:启动阶段、运行阶段和停止阶段。

在启动阶段,控制电路接通,电磁线圈产生磁场,吸引阀芯向开口方向移动,阀门逐渐打开,介质开始流动。

在运行阶段,控制电路保持稳定,阀门保持在一定的开度,介质保持一定的流量。

在停止阶段,控制电路断开,电磁线圈停止产生磁场,阀芯受到弹簧的作用返回原位,阀门关闭,介质停止流动。

穆格伺服阀的工作原理可以通过控制电路中的反馈信号来实现闭环控制。

在控制电路中,通常会设置一个传感器来检测阀门的开度或介质的流量,并将检测到的信号反馈给控制器。

控制器会根据反馈信号与设定值之间的差异来调整控制信号,从而实现对阀门开度的精确控制。

穆格伺服阀的工作原理还与阀芯的设计有关。

阀芯通常采用蜗杆传动机构,通过蜗杆和蜗轮的传动来实现阀芯的线性运动。

蜗轮的齿数和蜗杆的螺旋角度决定了阀芯的行程,从而影响阀门的开度。

通过调节蜗轮和蜗杆的参数,可以实现对阀芯行程的精确控制。

穆格伺服阀是一种常用的控制装置,它通过调节阀门的开度来控制介质的流量,实现对系统的控制。

它具有快速响应、高精度和稳定性好等优点,在工业自动化系统中得到广泛应用。

穆格伺服阀的工作原理基于流体力学原理和电气控制原理,通过控制电路中的反馈信号实现闭环控制。

MOOG伺服阀J761-原理……MOOG办事处

MOOG伺服阀J761-原理……MOOG办事处

MOOG伺服阀J761-原理……MOOG办事处MOOG伺服阀J761-003原理……MOOG办事处美国穆格MOOGJ761-003,J761-003系列直动式伺服阀型号:D633,D634系列生产厂家:MOOG 产品说明:高性能直动式伺服阀,由线性力马达直接驱动阀芯运,阀内带有电子放大器对阀芯位置进行闭环控制。

直动式设计避免了先导级的泄漏损失,且动态响应与系统工作压力无关。

安装底面符合ISO4401标准。

频率响应:70HZ阶跃响应:15ms流量控制:3.8-100l/min(1-26gpm)最大工作压力:31.5Mpa该阀适应于金属压制设备,例如剪板机,折弯机,弯管机,木材压机.另外我司优势提供意大利atos阿托斯全系列!备有常规阀现货期待您的来电咨询MOOG伺服阀J761-003原理……MOOG办事处MOOG伺服阀J761-003原理……MOOG办事处格公司(MOOG)是全球电液伺服元件及伺服系统设计及制造领域的领导者,由电液伺服阀的发明者William C. Moog于1951年创立。

产品广泛应用于飞机、卫星、航天飞机、火箭以及各种工业自动化设备。

在工业领域,注塑设备及吹塑设备的伺服控制是我们的重要研究领域之一。

MOOG 是最早进入全电动注塑行业的专业控制厂商之一,向合作伙伴提供DBS、DBM、DS2000 系列驱动器FASTACT 系列电机。

DS2000 驱动器和FAS T 交流伺服电机具有以下一些特点:驱动器可接受三相,50HZ,65到506V间的任意电压;可设定控制交流伺服电机或异步电机;电流环可根据伺服电机特点配置,并按DC BUS变化自动调节,同时提供B.E.M.F 补偿以及相位自校正功能;速度环内集成了三种数字滤波器,动态性能良好,等等MOOG伺服阀原理J761-003&MOOG办事处MOOG伺服阀J761-003 现货供应!常用系列:D634系列,J761系列,G761系列, D791系列;D792系列,D661系列;D662系列;D663系列;D664系列;D665系列;D633系列等MOOG品牌最早起源于航空航天军事工业领域伺服阀及系统制造,主要经营伺服阀,伺服控制器,电动缸,伺服电机,伺服控制软件,行业应用领域广泛,涉及钢铁冶金,电力电站系统,注塑吹塑成型,材料试验,汽车测试仿真系统,航空测试仿真系统等,MOOG伺服阀J761-003/J761-004稳定可靠全部采用进口低飘移、高稳定度的运算放大器,使控制系统能长期、可靠、稳定地工作。

MOOG穆格伺服阀的工作原理_4

MOOG穆格伺服阀的工作原理_4

MOOG穆格伺服阀的工作原理1.采用干式力矩电机和两级液压放大器结构。

2.先导级是一个低摩擦的双喷嘴挡板阀。

3.阀芯驱动力大。

4.安装尺寸符合ISO4401标准(外部控油口不符合ISO4401标准)5.坚固耐用的设计。

6.高分辨率和低迟滞。

7.所有的数据都在工厂进行了调整。

8.可以选择第五个油口来独立控制先导阀。

9.先导阀碟形滤油器可现场更换。

MOOG穆格伺服阀两级电液伺服阀工作原理向力矩电机线圈输入一个电流指令信号,会产生电磁力作用在衔铁两端,带动弹簧管内的挡板偏转。

挡板的偏转会降低某个喷嘴的流量,进而改变与这个喷嘴连通的阀芯一侧的压力,推动阀芯向一侧移动。

MOOG伺服阀电液伺服阀可用作三通和四通节流流量控制阀,用作四通阀时控制性能更好。

该系列阀门是一种高性能的两级电液伺服阀,在额定压降7Mpa的情况下,额定流量为5L/min~75L/min。

MOOG伺服阀阀芯的位移打开供油口(P)与一个控制油口之间的通道,连通回油口(T)与另一个控制油口之间的油路。

同时,阀芯的位移也在弹簧杆上产生作用力,对衔铁挡板组件形成恢复力矩。

当恢复扭矩与由于力矩电机的电磁力作用在电枢挡板上的扭矩平衡时,挡板回到零位,滑阀芯在这种平衡状态下保持打开位置,直到给定的输入信号发生变化。

MOOG伺服阀阀门的特点;1.采用干式力矩电机和两级液压放大器结构。

2.先导级是一个低摩擦的双喷嘴挡板阀。

3.阀芯驱动力大。

4.安装尺寸符合ISO4401标准(外部控油口不符合ISO4401标准)5.坚固耐用的设计。

6.高分辨率和低迟滞。

7.所有的数据都在工厂进行了调整。

8.可以选择第五个油口来独立控制先导阀。

9.先导阀碟形滤油器可现场更换。

该阀适用于位置、速度和力(或压力)的伺服控制系统,具有较高的动态响应。

MOOG穆格伺服阀的工作原理_5

MOOG穆格伺服阀的工作原理_5

MOOG穆格伺服阀的工作原理MOOG伺服阀是MOOG公司研发的电液伺服控制中的关键元件,它是一种接受模拟电信号后,相应输出调制的流量和压力的液压控制阀;具有动态响应快、控制精度高、使用寿命长等优点,已广泛应用于航空、航天、舰船、冶金、化工等领域的电液伺服控制系统中。

那么下面也来了解下美国穆格伺服的工作原理和功能特点。

MOOG伺服阀原理典型的伺服阀由永磁力矩马达、喷嘴、档板、阀芯、阀套和控制腔组成。

当输入线圈通入电流时,档板向右移动,使右边喷嘴的节流作用加强,流量减少,右侧背压上升;同时使左边喷嘴节流作用减小,流量增加,左侧背压下降。

阀芯两端的作用力失去平衡, 阀芯遂向左移动。

高压油从S流向C2,送到负载。

负载回油通过C1流过回油口,进入油箱。

阀芯的位移量与力矩马达的输入电流成正比,作用在阀芯上的液压力与弹簧力相平衡,因此在平衡状态下力矩马达的差动电流与阀芯的位移成正比。

如果输入的电流反向,则流量也反向。

伺服阀主要用在电气液压伺服系统中作为执行元件(见液压伺服系统)。

在伺服系统中,液压执行机构同电气及气动执行机构相比,具有快速性好、单位重量输出功率大、传动平稳、抗干扰能力强等特点。

另一方面,在伺服系统中传递信号和校正特性时多用电气元件。

因此,现代高性能的伺服系统也都采用电液方式,伺服阀就是这种系统的必需元件。

伺服阀结构比较复杂,造价高,对油的质量和清洁度要求高。

新型的伺服阀正试图克服这些缺点,例如利用电致伸缩元件的伺服阀,使结构大为简化。

另一个方向是研制特殊的工作油(如电气粘性油)。

这种工作油能在电磁的作用下改变粘性系数。

利用这一性质就可通过电信号直接控制油流。

MOOG伺服控制器功能特点·通用的易理解的参数名称按照用户友好方式进行组织·控制电路非常合理的设计和布局极大的提高了功能性和灵活性·集成了电源 - 为使 DS2000 成为自含独立伺服驱动器,我们已在内嵌式电源中集成了以下控制和监测电路:·驱动配置 - 可通过内置键盘和显示器或通过 PC 配置驱动。

MOOG伺服阀结构及工作原理

MOOG伺服阀结构及工作原理

MOOG伺服阀结构及工作原理MOOG伺服阀是电液转换元件,它能把微小的电气信号转换成大功率的液压输出。

其性能的优劣对电液调节系统的影响很大,因此,它是电液调节系统的核心和关键。

为了能够正确使用电液调节系统,必须了解MOOG伺服阀的工作原理。

1MOOG伺服阀的分类1)按液压放大级数可分为单级MOOG伺服阀,两级MOOG伺服阀,三级MOOG伺服阀。

2)按液压前置级的结构形式,可分为单喷嘴挡板式,双喷嘴挡板式,滑阀式,射流管式和偏转板射流式。

3)按反馈形式可分为位置反馈式,负载压力反馈式,负载流量反馈式,电反馈式。

4)按电机械转换装置可分为动铁式和动圈式。

5)按输出量形式分为流量伺服阀和压力控制伺服阀。

2MOOG伺服阀结构及工作原理(以双喷嘴挡板为例)双喷嘴挡板式力反馈二级MOOG伺服阀由电磁和液压两部分组成。

电磁部分是永磁式力矩马达,由永久磁铁,导磁体,衔铁,控制线圈和弹簧管组成。

液压部分是结构对称的二级液压放大器,前置级是双喷嘴挡板阀,功率级是四通滑阀。

画法通过反馈杆与衔铁挡板组件相连。

力矩马达把输入的电信号(电流)转换为力矩输出。

无信号时,衔铁有弹簧管支撑在上下导磁体的中间位置,永久磁铁在四个气隙中产生的极化磁通是相同的力矩马达无力矩输出。

此时,挡板处于两个喷嘴的中间位置,喷嘴两侧的压力相等,滑阀处于中间位置,阀无液压输出;若有信号时控制线圈产生磁通,其大小和方向由信号电流决定,磁铁两极所受的力不一样,于是,在磁铁上产生磁转矩(如逆时针),使衔铁绕弹簧管中心逆时针方向偏转,使挡板向右偏移,喷嘴挡板的右侧间隙减小而左侧间隙增大,则右侧压力大于左侧压力,从而推动滑阀左移。

同时,使反馈杆产生弹性形变,对衔铁挡板组件产生一个顺时针方向的反转矩。

当作用在衔铁挡板组件上的电磁转矩、弹簧管反转矩反馈杆反转矩等诸力矩达到平衡时,滑阀停止移动,取得一个平衡位置,并有相应的流量输出。

滑阀位移,挡板位移,力矩马达输出力矩都与输出的电信号(电流)成比例变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

美国MOOG伺服阀,伺服阀的工作原理及作用
1、电液伺服阀主要用于电液伺服自动控制系统,其作用是将小功率的电信号转换为大功率的液压输出,经过液压执行机构来完成机械设备的自动化控制.
伺服阀是一种经过改动输入信号。

依据输入信号的方式不同,分为电液伺服阀和机液伺服阀。

电液伺服阀既是电液转换元件,又是功率放大元件,它的作用是将小功率的电信号输入转换为大功率的液压能(压力和流量)输出,完成执行元件的位移、速度、加速度及力控制。

液压泵的输出压力是指液压泵在实践工作时输出油液的压力,即泵工作时的出口压力,通常称为工作压力,其大小取决于负载。

电液伺服阀通常由电气—机械转换安装、液压放大器和反应(均衡)机构三局部组成。

反应战争衡机构使电液伺服阀输出的流量或压力取得与输入电信号成比例的特性。

压力的稳定通常采用压力控制阀,比方溢流阀等。

2.细致材料:
典型电---气比例阀、伺服阀的工作原理
电---气比例阀和伺服阀按其功用可分为压力式和流量式两种。

压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。

美国威格士VICKERS柱塞泵由于气体的可紧缩性,使气缸或气马达等执行元件的运动速度不只取决于气体流量。

还取决于执行元件的负载大小。

因而准确地控制气体流量常常是不用要的。

单纯的压力式或流量式比例/伺服阀应用不多,常常是压力和流量分离在一同应用更为普遍。

相关文档
最新文档