有限差分和有限体积的 有限元等

合集下载

cfd控制方程的离散方法

cfd控制方程的离散方法

cfd控制方程的离散方法
CFD(Computational Fluid Dynamics,计算流体力学)是一种利用数值方法解决流体力学问题的技术。

在CFD中,控制方程是描述流体运动的基本方程,包括质量守恒方程、动量守恒方程和能量守恒方程。

离散方法是将连续的物理方程转化为离散的代数方程,以便通过计算机进行求解。

离散方法常用的有有限差分法(Finite Difference Method)、有限体积法(Finite Volume Method)和有限元法(Finite Element Method)。

对于CFD中的控制方程,离散方法的选择取决于问题的性质和所需的精度。

以下是几种常用的离散方法:
1. 有限差分法:将微分算子近似为差分形式,通过在网格上进行逐点近似来离散化方程。

有限差分法简单易用,适用于规则网格和简单几何形状的问题。

2. 有限体积法:将控制方程应用到一个控制体积(Control Volume)上,使用积分形式得到离散化的方程。

有限体积法适用于复杂几何形状和非结构网格,能够保持物理量的守恒性。

3. 有限元法:将求解域划分为离散的有限元,使用基函数对方程进行近似。

有限元法适用于复杂几何形状和非结构网格,能够处理不规则网格以及局部自适应网格细化。

这些离散方法各有优缺点,需要根据具体问题的性质和要求选择合适的方法。

同时,为了保证数值解的准确性和稳定性,还
需要考虑网格的划分方式、边界条件的处理以及迭代求解算法等因素。

有限元素法有限体积法有限差分法有限容积法的区别

有限元素法有限体积法有限差分法有限容积法的区别

1.1 概念有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。

该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。

有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。

该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

1.2 差分格式(1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。

(2)从差分的空间形式来考虑,可分为中心格式和逆风格式。

(3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。

目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。

差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

1.3 构造差分的方法构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。

其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。

通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

2. FEM2.1 概述有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

采用不同的权函数和插值函数形式,便构成不同的有限元方法。

2.2 原理有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。

有限差分、有限元区别

有限差分、有限元区别

有限差分方法(Finite Differential Method)是计算机数值模拟最早采用的方法,至今仍被广泛运用。

该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。

有限差分法以泰勒级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。

该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。

从差分的空间形式来考虑,可分为中心格式和逆风格式。

考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。

目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。

差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。

其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。

通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

有限元法(Finite Element Method)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

采用不同的权函数和插值函数形式,便构成不同的有限元方法。

有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。

有限体积WENO格式及其应用

有限体积WENO格式及其应用

有限体积WENO格式及其应用在数值模拟领域,有限体积WENO(Weighted EssentiallyNon-Oscillatory)格式是一种广泛使用的非线性数值逼近方法,适用于解决流体力学中的各种问题。

由于其具有高精度、低振荡和低数值弥散等优点,有限体积WENO格式在气象预报、气候模拟、流体动力学等领域中得到了广泛应用。

本文将详细介绍有限体积WENO格式的定义、特点、应用、优势、不足以及结论。

有限体积WENO格式是一种基于有限体积方法的气象预报和流体动力学数值模拟算法。

该方法通过非线性加权差分函数,在每个控制体网格中心进行积分,进而得到流体的宏观量如速度、压力等在该网格中心的数值近似。

高精度:有限体积WENO格式具有高精度的特点,能够准确捕捉到流体的详细变化特征。

低振荡:由于有限体积WENO格式采用非线性加权差分函数,因此能够有效避免数值振荡现象,提高模拟结果的稳定性。

低数值弥散:有限体积WENO格式在模拟过程中产生的数值弥散较小,能够更好地保持流场的结构特征。

有限体积WENO格式在气象预报、气候模拟、流体动力学等领域中得到了广泛应用。

例如,在气象预报领域,有限体积WENO格式被广泛应用于天气预报和气候预测。

在流体动力学领域,有限体积WENO格式被用于模拟湍流、燃烧等复杂流动现象。

在这些应用中,有限体积WENO格式都展现出了其高精度、低振荡和低数值弥散等优点。

有限体积WENO格式在实际应用中具有以下优势:高精度:有限体积WENO格式能够准确捕捉到流体的变化特征,提高模拟结果的精度。

适用范围广:有限体积WENO格式适用于各种复杂流动现象的模拟,能够适应不同领域的需求。

稳定性好:由于有限体积WENO格式采用非线性加权差分函数,能够有效避免数值振荡现象,提高模拟结果的稳定性。

计算效率高:有限体积WENO格式的计算效率较高,适用于大规模并行计算,能够处理大规模问题。

虽然有限体积WENO格式具有许多优点,但也存在一些不足之处:计算成本较高:由于有限体积WENO格式需要进行非线性加权差分函数的计算,因此需要消耗更多的计算资源,导致计算成本较高。

机械工程中的数值计算与有限元分析

机械工程中的数值计算与有限元分析

机械工程中的数值计算与有限元分析随着科学技术的发展,数值计算方法在机械工程中变得越来越重要。

机械工程师们通过数值计算,可以更准确地预测和分析各种运算,从而帮助他们设计更高效、更可靠的机械系统。

在机械工程中,数值计算主要用于模拟和分析各种物理现象。

其中,有限元分析是一种广泛应用的数值计算方法。

有限元分析通过将复杂的连续体分割成许多小的离散单元,然后以数值方法求解这些单元的行为,从而近似求解整个物体的行为。

有限元分析可以用于解决各种力学问题,如结构分析、热传导分析和流体力学分析等。

在有限元分析中,首先需要将要分析的物体划分成许多离散的单元。

这些单元可以是一维、二维或三维的,根据实际情况来确定。

然后,通过应力平衡、热传导方程和流体力学方程等,建立每个单元内部的力学模型。

接下来,通过数值方法求解单元之间的边界条件和相互作用,从而得到整个物体的行为。

在有限元分析中,广泛使用的数值方法有有限差分法、有限体积法和有限元法等。

其中,有限元法是最常用的数值方法之一。

有限元法将连续体分割成许多小的单元,在每个单元上建立一个适当的数学模型,并将这些模型组合成整个物体的数学模型。

然后,通过数值方法求解这个数学模型,得到物体的应力、应变、温度等重要信息。

有限元分析在机械工程中的应用非常广泛。

例如,在结构分析中,有限元分析可以帮助工程师验证和改进结构的强度和刚度。

工程师可以通过建立合适的力学模型,分析结构在外力作用下的应力分布和变形情况,并进一步评估结构的耐久性和安全性。

在流体力学分析中,有限元分析可以用于模拟流体在复杂空间中的运动和交互。

工程师可以根据流体力学方程,建立合适的数学模型,并通过求解这个模型来分析流体的压力、速度和温度等重要参数。

除了有限元分析,机械工程中的数值计算还有很多其他应用。

例如,工程师可以使用有限差分法来解决一些偏微分方程。

有限差分法通过将空间和时间离散化,将偏微分方程转化为一组代数方程,并通过迭代求解这组方程,得到偏微分方程的数值解。

有限差分及有限单元法的区别

有限差分及有限单元法的区别

1 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。

该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。

有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。

该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。

从差分的空间形式来考虑,可分为中心格式和逆风格式。

考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。

目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。

差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。

其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。

通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

2 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

采用不同的权函数和插值函数形式,便构成不同的有限元方法。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。

根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。

求解偏微分方程三种数值方法

求解偏微分方程三种数值方法

数值模拟偏微分方程的三种方法介绍(有限差分方法、有限元方法、有限体积方法)I.三者简介有限差分方法(Finite Difference Methods)是数值模拟偏微分方程最早采用的方法,至今仍被广泛使用。

该方法包括区域剖分和差商代替导数两个步骤。

首先将求解区域划分为差分网格,用有限个网格节点代替连续的求解区域。

其次,利用Taylor级数展开等方法将偏微分方程中的导数项在网格节点上用函数值的差商代替进行离散,从而建立以网格节点上的值为未知量的代数方程组。

该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且十分成熟的数值方法。

差商代替导数后的格式称为有限差分格式,从格式的精度来考虑,有一阶格式、二阶格式和高阶格式。

从差分的空间离散形式来考虑,有中心格式和迎风格式。

对于瞬态方程,考虑时间方向的离散,有显格式、隐格式、交替显隐格式等。

目前常见的差分格式,主要是以上几种格式的组合,不同的组合构成不同的差分格式。

差分方法主要适用于结构网格,网格的大小一般根据问题模型和Courant 稳定条件来决定。

有限元方法(Finite Element Methods)的基础是虚位移原理和分片多项式插值。

该方法的构造过程包括以下三个步骤。

首先,利用虚位移原理得到偏微分方程的弱形式,将计算区域划分为有限个互不重叠的单元(三角形、四边形、四面体、六面体等),在每个单元上选择合适的节点作为求解函数的插值点,将偏微分方程中的变量改写成由各变量或其导数的节点值与所选用的分片插值基函数组成的线性表达式,得到微分方程的离散形式。

利用插值函数的局部支集性质及数值积分可以得到未知量的代数方程组。

有限元方法有较完善的理论基础,具有求解区域灵活(复杂区域)、单元类型灵活(适于结构网格和非结构网格)、程序代码通用(数值模拟软件多数基于有限元方法)等特点。

有限元方法最早应用于结构力学,随着计算机的发展已经渗透到计算物理、流体力学与电磁学等各个数值模拟领域。

污染物扩散模型的数值模拟与优化

污染物扩散模型的数值模拟与优化

污染物扩散模型的数值模拟与优化随着工业和城市化的快速发展,各类污染物不断排放,对环境和人类健康造成了严重威胁。

因此,对污染物的扩散和传播进行研究具有重要的意义。

数值模拟是一种有效的研究手段,可以在实验基础上快速地得到大量的数据,研究污染物的扩散规律,寻求优化控制的方法。

一、数值模拟的方法数值模拟是通过将被研究的环境、污染物和物理运动模拟成一组方程来分析污染物扩散的过程。

目前常用的数值模拟方法有有限差分法、有限体积法、有限元法等。

有限差分法是较为常用的数值模拟方法之一,它将被研究的区域划分为网格,然后通过网格上的数值解来逼近偏微分方程的解。

对于二维或三维问题,数值模拟需要进行平面或空间离散化,对于各个离散化单元上的物理参数进行计算,根据物质守恒、动量守恒和能量守恒等定律,得到污染物浓度场的变化规律。

有限体积法是一种与有限差分法相似的方法,也是将研究区域离散化为有限个体积,解决物理现象的积分方程,逼近偏微分方程解的方法。

在这种方法中,需要进行通量获得、反演验证等步骤。

有限元法是一种广泛应用于流体力学、热力学等领域的数值模拟方法。

它将物理场分割成一些小的网格区域,在每个小区域内由一组代表物理场变化的方程求解,再利用边界条件拼接起来,最终得到整个场的解。

它的优势在于对不规则计算区域更加适应,能够准确地刻画污染物扩散和传播过程。

二、污染物扩散模型的建立在进行数值模拟时,必须建立严格的污染物扩散模型。

建立的过程中要考虑诸多因素,如污染源的性质、环境条件、气象因素等。

对于不同类型的污染源和环境,需要选择不同的数值模型来进行计算。

对于一些简单的情况,如单一污染物、平坦地形等,可以采用简单模型来计算。

但是,对于复杂情况,如多种污染物、复杂地形、复杂气象条件等,则需要建立更加复杂的模型。

三、数值模拟中需要考虑的因素在进行数值模拟时,需要考虑环境和气象因素对污染物扩散的影响。

这些因素包括风速、风向、大气稳定度、地形高度等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限差分和有限体积的有限元等
有限元法、有限差分法和有限体积法的区别
标签:函数有限元插值差分格式
有限差分方法(Finite Differential Method)是计算机数值模拟最早采用的方法,至今仍被广泛运用。

该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。

有限差分法以泰勒级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。

该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。

从差分的空间形式来考虑,可分为中心格式和逆风格式。

考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。

目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。

差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。

其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。

通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

有限元法(Finite Element Method)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

采用不同的权函数和插值函数形式,便构成不同的有限元方法。

有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。

根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。

从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法。

从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。

不同的组合同样构成不同的有限元计算格式。

对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。

令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。

插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。

有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。

单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。

常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。

在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。

对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函
数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。

有限体积法(Finite Volume Method)又称为控制体积法。

其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。

其中的未知数是网格点上的因变量的数值。

为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。

从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。

简言之,子区域法属于有限体积发的基本方法。

有限体积法的基本思路易于理解,并能得出直接的物理解释。

离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。

有限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。

这是有限体积法吸引人的优点。

有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。

就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。

有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。

有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。

有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。

在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程中不同的项采取不同的插值函数。

相关文档
最新文档