湖南省长沙市雅礼中学2019届高三上学期月考(一)数学(文)试卷及答案解析

合集下载

2019-2019学年度湖南省长沙市雅礼中学高三上学期月考(一)数学(文)试题含答案

2019-2019学年度湖南省长沙市雅礼中学高三上学期月考(一)数学(文)试题含答案

2019-2019学年度湖南省长沙市雅礼中学高三上学期月考(一)数学(文科)全卷满分150分,考试时间120分钟。

★祝考试顺利★注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题作答用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试卷和草稿纸上无效。

3.非选择题作答用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。

答在试卷和草稿纸上无效。

考生必须保持答题卡的整洁。

考试结束后,只需上交答题卡。

第I 卷 (选择题, 共60分)一、选择题(共12小题,每小题5分,共60分,每小题只有一个正确答案)在每小题给出的四个选项中,只有一项是最符合题目要求的,选出正确的选项并将该选项在答题卡上涂黑。

1.已知集合{}{}2lg(4),2,0,1,2A x y x B ==-=-,则A B =A .{}0,1B .{}1,0,1-C .{}2,0,1,2-D .{}1,01,2-2.在复平面内,复数121i i-+的共轭复数对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3执行如图所示的程序图,如果输入1a =,2b =,则输出的a 的值为A .7B .8C .12D .164.若变量x ,y 满足约束条件30101x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩,则2z x y =+的最大值为A .1B .3C .4D .55.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是A . 1.234y x ∧=+B . 1.230.8y x ∧=+C . 1.230.08y x ∧=+D . 1.230.08y x ∧=-6.在数列{}n a 中,11a =,数列{}n a 是以3为公比的等比数列,则20193log a 等于 A .2017 B .2018 C .2019 D .20207.设()s i n ()c o s ()5f x a x b x παπβ=++++,且(2018)2f =,则(2019)f 等于 A .2 B .2- C .8 D .8-8.某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的表面积为A .32π B.π.52π+.32π+9.将函数sin 2y x =的图象向右平移16π个单位后得到的函数为()f x ,则函数()f x 的图象 A .关于点(12π,0)对称 B .关于直线12x π=对称 C .关于直线512x π=对称 D .关于点(5,012π)对称 10.若函数6,2()(03log ,2x a x x f x a x -+≤⎧=>⎨+>⎩且1a ≠)的值域是[4,+∞),则实数a 的取值范围是A .(1,2]B .(0,2]C .[2,)+∞ D.(1 11.已知点F 是双曲线22221(0,0)x y a b a b-=>>的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABE 是饨角三角形,则该双曲线的离心率e 的取值范围是A .(1,)+∞B .(1,2) C.[1,1 D .(2,)+∞12.已知△ABC 是边长为2的等边三角形,P 为△ABC 所在平面内一点,则()PA PB PC ⋅+的最小值是A .32-B .2-C .43- D .1- 第II 卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试題考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小題,每小题5分,共20分13.锐角△ABC 中,AB =4,AC =3,△ABC 的面积为BC =_______。

湖南省雅礼中学2019届高三上学期11月份月考(三)数学文科试题含答案

湖南省雅礼中学2019届高三上学期11月份月考(三)数学文科试题含答案

雅礼中学2019届高三月考试卷(三)数学(文科)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页。

时量120分钟。

满分150分。

第I 卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个,选项中只有一个选项是符合题目要求的.1(i 为虚数单位)等于 A.1 B .1- C .i D .i -2.若集合{13,11,A y y x x B x x A B ⎧⎫==-≤≤==⋂=⎨⎬⎩⎭,则A.(]1-∞,B.[]11-,C.∅D.{}13.已知向量()1,2a =,向量()(),2,b x a a b =-⊥-且,则实数x 等于A.9B.4C.0D.4-4.已知{}n a 为等差数列,若()15928cos a a a a a π++=+,则的值为A.12- B . C.12 D 5.若圆226260x y x y +--+=上有且仅有三个点到直线10ax y -+=(a 是实数)的距离为1,则a 等于A.1±B.±C. D .±6.在△ABC 中,角A ,B ,C 所对的边长分别是,,a b c ,若角,,,3B a b c π=成等差数列,且6ac b =,则的值是7.如图,函数()y f x =的图象在点()()5,5P f 处的切线方程是()()855y x f f '=-++=,则 A.12 B.1 C.2 D.08.若将函数cos y x x =的图象向左平移()0m m >个单位后,所得图象关于y 轴对称,则实数m 的最小值为 A.6π B.3π C.23π D.56π 9.不等式组0,34,34x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域的面积等于 A.32 B.23 C.43 D.3410.阅读右边的程序框图,则输出的S=A.14B.20C.30D.5511.函数()2,0,4sin ,0,x x f x x x π⎧≤=⎨<≤⎩则集合()(){}0x f f x =中元素的个数有A.2个B.3个C.4个D.5个12.已知定义在R 上的函数()f x 满足()()(),2f x f x f x -=--=()2,f x +x ∈且 ()1,0-时,()()()2122018log 205x f x f f =++=,则A.1 B .45 C.1- D .45- 第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4个小题,每小题5分,共20分.13.已知一个几何体的三视图如图所示(单位:cm),其中正视图是直角梯形,侧视图和俯视图都是矩形,则这个几何体的体积是____________cm 3.14.已知()2810,0x y x y x y+=>>+,则的最小值为__________. 15.已知()1,4,A F 是双曲线221412x y -=的左焦点,P 是双曲线右支上的动点,则PF PA +的最小值为_____________.16.若关于x 的不等式()2221x ax -<的解集中整数恰好有3个,则实数a 的取值范围是___________.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)设数列{}n a 的前n 项和为n S ,且()111,1n n a S a n N *+==-∈. (1)证明数列{}n a 是等比数列,并求{}n a 的通项公式;(2)若()21log nn n n b a a =+-,求数列{}n b 的前2项的和2n T .18.(本小题满分12分)如图,PA 垂直于矩形ABCD 所在的平面,2,AD PA CD E F ===、分别是AB 、PD的中点.(1)求证:AF ⊥平面PCD .(2)求三棱锥P EFC -的体积.为了了解某学校高三年级学生的数学成绩,从中抽取n名学生的数学成绩(百分制)作为样本;按成绩分成5组:[50,60),[60,70),[70,80),[80,90),[90,100],频率分布直方图如图所示.成绩落在[70,80)中的人数为20.(1)求a和n的值;(2)根据样本估计总体的思想,估计该校高三学生数学成绩的平均数x和中位数m;(3)成绩在80分以上(含80分)为优秀,样本中成绩落在[50,80)中的男、女生人数比为1:2,成绩落在[80,100]中的男、女生人数比为3:2,完成2×2列联表,并判断是否有95%的把握认为数学成绩优秀与性别有关.参考公式和数据:()()()()()22,n ad bcK n a b c da b c d a c b d-==+++ ++++.20.(本小题满分12分)知抛物线的顶点在原点,焦点在x轴的正半轴上,过抛物线的焦点且斜率为1的直线与抛物线交于A、B两点,若16AB=.(1)求抛物线的方程;(2)若AB的中垂线交抛物线于C、D两点,求过A、B、C、D四点的圆的方程.已知函数()1ln f x a x x =+. (1)若()12x f x =是的极值点,求a 的值,并求()f x 的单调区间; (2)在(1)的条件下,当0m n <<时,求证:()()22112.2m n f m n f n n m n --+-<++.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)(坐标系与参数方程)已知圆的极坐标方程为2cos 604πρθ⎛⎫--+= ⎪⎝⎭. (1)将圆的极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;(2)若点(),P x y 在该圆上,求x y +的最大值与最小值的和.23.(本小题满分10分)(不等式选讲)已知函数()f x x a =-.(1)若不等式()3f x ≤的解集为{}15x x -≤≤,求实数a 的值;(2)在(1)的条件下,若()()5f x f x m ++≥对一切实数x 恒成立,求实数m 的取值范围.。

2019届湖南省长沙市雅礼中学高三上学期月考(二)数学(文)试题

2019届湖南省长沙市雅礼中学高三上学期月考(二)数学(文)试题

雅礼中学2019届高三月考试卷(二)数学(文科)★祝你考试顺利★注意事项:1、考试范围:高考考查范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并请认真核准条形码上的准考证号、姓名和科目。

将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。

如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带等。

写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6、保持卡面清洁,不折叠,不破损。

7、本科目考试结束后,请将答题卡依序排列上交。

8、本科目考试结束后,请将试卷自行保管,以供教师讲评分析试卷使用。

第Ⅰ卷一、选择题:本大题共12个小题,毎小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的 1.已知命题p :2,0x R x ∀∈>,则A .命题p ⌝:2,0x R x ∀∈≤,为假命题 B .命题p ⌝:2,0x R x ∀∈≤,为真命题C .命题p ⌝:200,0x R x ∃∈≤,为假命题D .命题p ⌝:200x ∃≤,为真命题2.已知i 是虚数单位,则41()1i i+-等于 A .i B .—i C .1 D .—1 3.“上医医国”出自《国语・晋语八》,比喻高贤能治理好国家.现把这四个字分别写在四张卡片上,其中“上”字已经排好,某幼童把剩余的三张卡片进行排列,则该幼童能将这句话排列正确的概率是 A .13 B .16 C .14 D .1124.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,一2),则它的离心率为A B C D 5.已知△ABC 是边长为1的等边三角形,D 为BC 中点,则()()AB AC AB DB +⋅-的值为A .32-B .32C .34-D .346.已知0x 是11()()2x f x x=+的一个零点,1020(,),(,0)x x x x ∈-∞∈,则A .f (x 1)<0,f (x 2)<0B .f (x 1)>0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)<0,f (x 2)>07.已知等比数列{}n a 中,各项都是正数,且a 1、12a 3、2a 2成等差数列,则91078____a a a a +=+A .3+B .1C .1D .3-8.函数2sin 2xy x =的部分图象可能是9.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为 A .814π B .16π C .9π D .274π10若函数()sin(2))()2f x x x πθθθ=+++<的图象关于点(,0)6π对称,则f (x )的单调速增区间为A .5[,],36k k k z ππππ++∈ B .[,],63k k k z ππππ-++∈C .7[,],1212k k k z ππππ-+-+∈D .5[,],1212k k k z ππππ-++∈ 11.设函数22()()(),,()x f x x t e t x R f x b =-+-∀∈≥恒成立,则实数b 的最大值为A B .12 C .1 D .e12.设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为A .3 B .23 C .1 D .2第Ⅱ卷本卷包括必考题和选考题两部分.第13~21題为必考题,每个试题考生都必须作答.第22~23題为选考题,考生根据要求作答二、填空题:本大题共4个小题,每小题5分,共20分13.已知函数2()2()log xa f x +=,若f (2)=0,则a =_____。

湖南省雅礼中学2019届高三上学期11月份月考(三)数学文试卷(含答案)

湖南省雅礼中学2019届高三上学期11月份月考(三)数学文试卷(含答案)

雅礼中学2019届高三月考试卷(三)数 学(文科)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页。

时量120分钟。

满分150分。

第I 卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个,选项中只有一个选项是符合题目要求的.1.复数313i i +-(i 为虚数单位)等于 A.1 B .1- C .i D .i -2.若集合{}13,11,1A y y x x B x x x A B ⎧⎫==-≤≤==-⋂=⎨⎬⎩⎭,则A. (]1-∞,B. []11-,C. ∅D. {}13.已知向量()1,2a =,向量()(),2,b x a a b =-⊥-且,则实数x 等于A.9B.4C.0D. 4-4.已知{}n a 为等差数列,若()15928cos a a a a a π++=+,则的值为 A. 12- B .32- C. 12 D .32 5.若圆226260x y x y +--+=上有且仅有三个点到直线10ax y -+=(a 是实数)的距离为1,则a 等于A. 1±B. 24±C. 2± D .32± 6.在△ABC 中,角A ,B ,C 所对的边长分别是,,a b c ,若角,,,3B a b c π=成等差数列,且6ac b =,则的值是A. 2B. 3C. 5D. 67.如图,函数()y f x =的图象在点()()5,5P f 处的切线方程是()()855y x f f '=-++=,则 A. 12 B. 1 C. 2 D.08.若将函数cos 3sin y x x =-的图象向左平移()0m m >个单位后,所得图象关于y 轴对称,则实数m 的最小值为 A. 6π B. 3π C. 23π D. 56π9.不等式组0,34,34x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域的面积等于 A. 32 B. 23 C. 43 D. 3410.阅读右边的程序框图,则输出的S=A.14B.20C.30D.5511.函数()2,0,4sin ,0,x x f x x x π⎧≤=⎨<≤⎩则集合()(){}0x f f x =中元素的个数有A.2个B.3个C.4个D.5个12.已知定义在R 上的函数()f x 满足()()(),2f x f x f x -=--=()2,f x +x ∈且()1,0-时,()()()2122018log 205x f x f f =++=,则 A.1 B .45 C. 1- D .45-第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4个小题,每小题5分,共20分.13.已知一个几何体的三视图如图所示(单位:cm),其中正视图是直角梯形,侧视图和俯视图都是矩形,则这个几何体的体积是____________cm 3.14.已知()2810,0x y x y x y+=>>+,则的最小值为__________. 15.已知()1,4,A F 是双曲线221412x y -=的左焦点,P 是双曲线右支上的动点,则PF PA +的最小值为_____________.16.若关于x 的不等式()2221x ax -<的解集中整数恰好有3个,则实数a 的取值范围是___________.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)设数列{}n a 的前n 项和为n S ,且()111,1n n a S a n N *+==-∈.(1)证明数列{}n a 是等比数列,并求{}n a 的通项公式;(2)若()21log n n n n b a a =+-,求数列{}n b 的前2项的和2n T .18.(本小题满分12分)如图,PA 垂直于矩形ABCD 所在的平面,2,22,AD PA CD E F ===、分别是AB 、PD 的中点.(1)求证:AF ⊥平面PCD .(2)求三棱锥P EFC -的体积.19.(本小题满分12分)为了了解某学校高三年级学生的数学成绩,从中抽取n 名学生的数学成绩(百分制)作为样本;按成绩分成5组:[50,60),[60,70),[70,80),[80,90),[90,100],频率分布直方图如图所示.成绩落在[70,80)中的人数为20.(1)求a 和n 的值;(2)根据样本估计总体的思想,估计该校高三学生数学成绩的平均数x 和中位数m ;(3)成绩在80分以上(含80分)为优秀,样本中成绩落在[50,80)中的男、女生人数比为1:2,成绩落在[80,100]中的男、女生人数比为3:2,完成2×2列联表,并判断是否有95%的把握认为数学成绩优秀与性别有关.参考公式和数据:()()()()()22,n ad bc K n a b c d a b c d a c b d -==+++++++.20.(本小题满分12分)知抛物线的顶点在原点,焦点在x 轴的正半轴上,过抛物线的焦点且斜率为1的直线与抛物线交于A 、B 两点,若16AB =.(1)求抛物线的方程;(2)若AB 的中垂线交抛物线于C 、D 两点,求过A 、B 、C 、D 四点的圆的方程.21.(本小题满分12分)已知函数()1ln f x a x x =+. (1)若()12x f x =是的极值点,求a 的值,并求()f x 的单调区间; (2)在(1)的条件下,当0m n <<时,求证:()()22112.2m n f m n f n n m n --+-<++.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)(坐标系与参数方程) 已知圆的极坐标方程为242cos 604πρρθ⎛⎫--+= ⎪⎝⎭. (1)将圆的极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;(2)若点(),P x y 在该圆上,求x y +的最大值与最小值的和.23.(本小题满分10分)(不等式选讲)已知函数()f x x a =-.(1)若不等式()3f x ≤的解集为{}15x x -≤≤,求实数a 的值;(2)在(1)的条件下,若()()5f x f x m ++≥对一切实数x 恒成立,求实数m 的取值范围.。

湖南省长沙市雅礼中学2024-2025学年高三上学期月考卷(一) 语文试卷(含解析)

湖南省长沙市雅礼中学2024-2025学年高三上学期月考卷(一) 语文试卷(含解析)

炎德·英才大联考雅礼中学2025届高三月考试卷(一)语文本试卷共四道大题,23道小题,满分150分。

时量150分钟。

一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。

材料一:积极情绪(Positive Emotion)可以定义为正面的情绪或者具有正面向上价值的情绪。

情绪的认知理论认为,“积极情绪就是在目标实现过程中取得进步或得到他人积极评价时所产生的感受。

”由此可见,积极情绪就是经历了内在、外在的刺激,正确地解决了问题,达到某种成功与满意度,满足了个体的需求,感觉到个体的存在价值伴有随之而来的愉悦的心情与感受。

积极情绪并不是消极接受、坦然享受、乐不思蜀的感觉。

这些只是浅薄的感受,即时地享乐。

积极情绪拓展到更深的层面——从欣赏到热爱。

它并不是简单的迷恋,而是一种真心喜欢、经过努力而获得的欢愉、欣喜。

“积极情绪”这个词,指向了重要的人性瞬间。

那些轻微而短暂的愉悦状态,其实要比你想象的强大得多。

作为人类,生来就能够体验到微弱短促却愉悦舒畅的积极情绪。

它有着不同的形态和滋味。

回想一下,当感到与他人或与所爱的人心灵相通时;当感到有趣、有创意或忍俊不禁时;当感到自己的灵魂被蕴含在生命中的纯粹的美所打动时;或者当因一个新颖的主意或爱好而感到活力无限、兴致勃勃时,你都会不由自主地产生爱、喜悦、感激、宁静、兴趣和激励这样的积极情绪,它们会打开你的心扉。

然而,无论是迷恋、欢笑还是爱,你由衷的积极情绪总是无法持续很长的时间。

良好的感觉来了又去,就如同好天气一样,这是人类的本性。

积极情绪会逐渐消退,如果它长盛不衰,人们会很难适应变化,无法觉察到好消息和坏消息之间的差异,或是邀请与冒犯之间的差异。

如果你想重塑生活,让它变得更美好,秘诀就是不要把积极情绪抓得太紧,也不要抗拒它稍纵即逝的本性,而是将它更多地植入生活——久而久之,你就会提高积极情绪的分量。

我们发现,在这一秘诀中最重要的是积极率,这是用来描述积极情绪与消极情绪的数量关系的一种方法。

湖南省长沙市雅礼中学2018-2019学年高三上学期第三次月考试卷数学含答案

湖南省长沙市雅礼中学2018-2019学年高三上学期第三次月考试卷数学含答案

增,所以1
h(x)
Hale Waihona Puke e2.当k
1
时,
g
'( x)
0

g(x)
在 [0,
]上递增,
g(x)
g (0)
0
,符合题意;当
2
k
e2
时,
g
'( x)
0

g(x)
在 [0,
] 上递减,
g(x)
g (0)
0
,与题意不合;当1
k
e2
时,
g ( x)
为一
2
个递增函数,而
g
'(0)
1
k
0

g
'( )
2
e2
k
0
,由零点存在性定理,必存在一个零点
2. 【答案】D 【解析】
考 点:函数导数与不等式.1
【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令 f x 0 将函数变为两个函 数 g x ex 2x 1 , h x ax a ,将题意中的“存在唯一整数,使得 g t 在直线 h x 的下方”,转化为 存在唯一的整数,使得 g t 在直线 h x ax a 的下方.利用导数可求得函数的极值,由此可求得 m 的取值
湖南省长沙市雅礼中学 2018-2019 学年高三上学期第三次月考试卷数学含答案(参考答案) 一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.每小题给出的四个选项中,只有一项是 符合题目要求的.)
1. 【答案】C
【解析】由已知等式,得 c 3b cos C 3c cos B ,由正弦定理,得 sin C 3(sin B cos C sin C cos B) ,则 sin C 3sin(B C) 3sin A ,所以 sin C : sin A 3 :1 ,故选 C.

湖南省长沙市雅礼中学2019届高三上学期月考(一)数学(文)试卷(含答案)

湖南省长沙市雅礼中学2019届高三上学期月考(一)数学(文)试卷(含答案)

雅礼中学2019届高三月考试卷(一)数学(文科)第I卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的1.已知集合,则A. B. C. D.【答案】A【解析】【分析】化简集合A,根据交集的定义写出A∩B.【详解】,∴故选:A【点睛】在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2.在复平面内,复数的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】利用两个复数代数形式的除法,虚数单位i的幂运算性质化简复数z,求出其共轭复数,从而得到答案.【详解】∵复数===﹣1﹣3i,∴,它在复平面内对应点的坐标为(﹣1,3),故对应的点位于在第二象限,故选:B.【点睛】本题主要考查两个复数代数形式的除法,共轭复数,虚数单位i的幂运算性质,复数与复平面内对应点之间的关系,属于基础题.3.执行如图所示的程序图,如果输入,,则输出的的值为A. 7B. 8C. 12D. 16【答案】B【解析】【分析】根据程序框图,依次判断是否满足条件即可得到结论.【详解】若输入a=1,b=2,则第一次不满足条件a>6,则a=2,第二次不满足条件a>6,则a=2×2=4,第三次不满足条件a>6,则a=4×2=8,此时满足条件a>6,输出a=8,故选:B.【点睛】本题主要考查程序框图的识别和运行,依次判断是否满足条件是解决本题的关键,比较基础.4.若变量x,y满足约束条件,则的最大值为A. 1B. 3C. 4D. 5【答案】D【解析】【分析】画出满足条件的平面区域,求出A点的坐标,将z=2x+y转化为y=﹣2x+z,结合函数图象求出z的最大值即可.【详解】画出满足条件的平面区域,如图示:,由,解得:A(2,1),由z=2x+y得:y=﹣2x+z,显然直线y=﹣2x+z过(2,1)时,z最大,故z的最大值是:z=4+1=5,故选:D.【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.5.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是A. B.C. D.【答案】C【解析】【分析】根据回归直线方程一定经过样本中心点这一信息,即可得到结果.【详解】由条件知,,设回归直线方程为,则.∴回归直线的方程是故选:C【点睛】求解回归方程问题的三个易误点:(1)易混淆相关关系与函数关系,两者的区别是函数关系是一种确定的关系,而相关关系是一种非确定的关系,函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.(2)回归分析中易误认为样本数据必在回归直线上,实质上回归直线必过(,)点,可能所有的样本数据点都不在直线上.(3)利用回归方程分析问题时,所得的数据易误认为准确值,而实质上是预测值(期望值).6.在数列中,,数列是以3为公比的等比数列,则等于A. 2017B. 2018C. 2019D. 2020【答案】B【解析】【分析】由等比数列通项公式得到,再结合对数运算得到结果.【详解】∵,数列是以3为公比的等比数列,∴∴故选:B【点睛】本题考查等比数列通项公式,考查指对运算性质,属于基础题.7.设,且,则等于A. 2B.C. 8D.【答案】C【解析】【分析】由题意利用诱导公式求得asinα+bcosβ=﹣3,再利用诱导公式求得f(2019)的值.【详解】∵∴即而=8故选:C【点睛】本题主要考查诱导公式的应用,体现了整体的思想,属于基础题.8. 某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的表面积为( )A. B. C. D.【答案】D【解析】试题分析:由三视图可知,该几何体为圆锥的一半,那么该几何体的表面积为该圆锥表面积的一半与轴截面面积的和.又该半圆锥的侧面展开图为扇形,所以侧面积为,底面积为,由三视图可知,轴截面为边长为2的正三角形,所以轴截面面积为,则该几何体的表面积为.选D考点:几何体的表面积,三视图9.将函数的图象向右平移个单位后得到的函数为,则函数的图象A. 关于点(,0)对称B. 关于直线对称C. 关于直线对称D. 关于点()对称【答案】C【解析】【分析】利用平移变换得到,然后研究函数的对称性.【详解】将的图象右移个单位后得到图象的对应函数为,令得,,取知为其一条对称轴,故选:C.【点睛】函数的性质(1) .(2)周期(3)由求对称轴(4)由求增区间;由求减区间.10.若函数且)的值域是[4,+∞),则实数的取值范围是A. B. C. D.【答案】A【解析】【分析】先求出当x≤2时,f(x)≥4,则根据条件得到当x>2时,f(x)=3+log a x≥4恒成立,利用对数函数的单调性进行求解即可.【详解】当时,,要使得函数的值域为,只需的值域包含于,故,所以,解得,所以实数的取值范围是.故选:A【点睛】本题主要考查函数值域的应用,利用分段函数的表达式先求出当x≤2时的函数的值域是解决本题的关键.11.已知点是双曲线的左焦点,点是该双曲线的右顶点,过且垂直于轴的直线与双曲线交于两点,若是钝角三角形,则该双曲线的离心率的取值范围是()A. B. C. D.【答案】D【解析】如图,根据双曲线的对称性可知,若是钝角三角形,显然为钝角,因此,由于过左焦点且垂直于轴,所以,,,则,,所以,化简整理得:,所以,即,两边同时除以得,解得或(舍),故选择D.点睛:求双曲线离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量的方程或不等式,利用和转化为关于的方程或不等式,通过解方程或不等式求得离心率的值或取值范围,在列方程或不等式的过程中,要考虑到向量这一重要工具在解题中的应用.求双曲线离心率主要以选择、填空的形式考查,解答题不单独求解,穿插于其中,难度中等偏高,属于对能力的考查. 12.已知△ABC是边长为2的等边三角形,P为△ABC所在平面内一点,则的最小值是A. B. C. D.【答案】A【解析】【分析】根据条件建立坐标系,求出点的坐标,利用坐标法结合向量数量积的公式进行计算即可.【详解】以为轴,的垂直平分线为轴,为坐标原点建立坐标系,则,设,所以,所以,,故选:A【点睛】本题主要考查平面向量数量积的应用,根据条件建立坐标系,利用坐标法是解决本题的关键.第II卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试題考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小題,每小题5分,共20分13.锐角中,,△ABC的面积为,则=_______。

湖南省长沙市雅礼中学2019届高三上学期月考(一)数学(文)试题答案

湖南省长沙市雅礼中学2019届高三上学期月考(一)数学(文)试题答案



#
二 填空题 本大题共)小题 每小题&分 共# $分 ! " ( ! " ( 槡 " ) ! # "" $ + " " ' !$ )

" 6 7 % 1 % 8 #0 , " " 得6 解析 由+ % 1 7 0 " % 8 " # 0 " # - # " 所以%#" 0 % 1 !
*) *) *) *) *) 设 , 所以, 所以, ) " *0 !" , (0 !"!" , )0 "!" (1, )0 " $ !# !# (!# 槡 #
# # ( ! ( &! ( ! *) *) *) ! # " , * , (1, ) " ! # " 1 # #!槡 ! # 0 # 0 # (! 槡 # # # # # #
设回归直线方程为$ 则%0 解析 由条件知 " 0 ) & " ! # ( "1 % " ! # ( " 0 $ ! $ + ! & ! /! " " #0 #! #0 解析 将#0 2 3 4# " 的图象右移 % ! /! 个单位后得到图象的对应函数为 令# "! 0 2 3 4# "! &" 0 ' ( (
(0平面 , * +% (0, 3% , 30平面 * ( ) +! 9* :* 4,!* ( ) +0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长沙市雅礼中学2019届高三月考试巻(一)数学(文科)第I卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的1.已知集合,则A. B. C. D.【答案】A【解析】【分析】化简集合A,根据交集的定义写出A∩B.【详解】,∴故选:A【点睛】在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2.在复平面内,复数的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】利用两个复数代数形式的除法,虚数单位i的幂运算性质化简复数z,求出其共轭复数,从而得到答案. 【详解】∵复数===i,∴i,,它在复平面内对应点的坐标为(),故对应的点位于在第二象限,故选:B.【点睛】本题主要考查两个复数代数形式的除法,共轭复数,虚数单位i的幂运算性质,复数与复平面内对应点之间的关系,属于基础题.3.执行如图所示的程序图,如果输入,,则输出的的值为A. 7B. 8C. 12D. 16【答案】B【解析】【分析】根据程序框图,依次判断是否满足条件即可得到结论.【详解】若输入a=1,b=2,则第一次不满足条件a>6,则a=2,第二次不满足条件a>6,则a=2×2=4,第三次不满足条件a>6,则a=4×2=8,此时满足条件a>6,输出a=8,故选:B.【点睛】本题主要考查程序框图的识别和运行,依次判断是否满足条件是解决本题的关键,比较基础.4.若变量x,y满足约束条件,则的最大值为 ( )A. 1B. 3C. 4D. 5【答案】D【解析】【分析】画出满足条件的平面区域,求出A点的坐标,将z=2x+y转化为y=﹣2x+z,结合函数图象求出z的最大值即可.【详解】画出满足条件的平面区域,如图示:,由,解得:A(2,1),由z=2x+y得:y=﹣2x+z,显然直线y=﹣2x+z过(2,1)时,z最大,故z的最大值是:z=4+1=5,故选:D.【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.5.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是A. B.C. D.【答案】C【解析】【分析】根据回归直线方程一定经过样本中心点这一信息,即可得到结果.【详解】由条件知,,设回归直线方程为,则.∴回归直线的方程是故选:C【点睛】求解回归方程问题的三个易误点:(1)易混淆相关关系与函数关系,两者的区别是函数关系是一种确定的关系,而相关关系是一种非确定的关系,函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.(2)回归分析中易误认为样本数据必在回归直线上,实质上回归直线必过(,)点,可能所有的样本数据点都不在直线上.(3)利用回归方程分析问题时,所得的数据易误认为准确值,而实质上是预测值(期望值).6.在数列中,,数列是以3为公比的等比数列,则等于A. 2017B. 2018C. 2019D. 2020【答案】B【解析】【分析】由等比数列通项公式得到,再结合对数运算得到结果.【详解】∵,数列是以3为公比的等比数列,∴∴故选:B【点睛】本题考查等比数列通项公式,考查指对运算性质,属于基础题.7.设,且,则等于A. 2B.C. 8D.【答案】C【解析】【分析】由题意利用诱导公式求得asinα+bcosβ=﹣3,再利用诱导公式求得f(2019)的值.【详解】∵∴即而=8故选:C【点睛】本题主要考查诱导公式的应用,体现了整体的思想,属于基础题.8.某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的表面积为( )B. C. D.【答案】A【解析】【分析】三视图复原可知几何体是圆锥的一半,根据三视图数据,求出几何体的表面积.【详解】由题目所给三视图可得,该几何体为圆锥的一半,那么该几何体的表面积为该圆锥表面积的一半与轴截面面积的和.又该半圆锥的侧面展开图为扇形,所以侧面积为,底面积为观察三视图可知,轴截面为边长为2的正三角形,所以轴截面面积为,则该几何体的表面积为:.故选C.【点睛】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.9.将函数的图象向右平移个单位后得到的函数为,则函数的图象A. 关于点(,0)对称B. 关于直线对称C. 关于直线对称D. 关于点()对称【答案】C【解析】【分析】利用平移变换得到,然后研究函数的对称性.【详解】将的图象右移个单位后得到图象的对应函数为,令得,,取知为其一条对称轴,故选:C.【点睛】函数的性质(1) .(2)周期(3)由求对称轴(4)由求增区间;由求减区间.10.若函数且)的值域是[4,+∞),则实数的取值范围是A. B. C. D.【答案】A【解析】【分析】先求出当x≤2时,f(x)≥4,则根据条件得到当x>2时,f(x)=3+log a x≥4恒成立,利用对数函数的单调性进行求解即可.【详解】当时,,要使得函数的值域为,只需的值域包含于,故,所以,解得,所以实数的取值范围是.故选:A【点睛】本题主要考查函数值域的应用,利用分段函数的表达式先求出当x≤2时的函数的值域是解决本题的关键.11.已知点是双曲线的左焦点,点是该双曲线的右顶点,过且垂直于轴的直线与双曲线交于两点,若是钝角三角形,则该双曲线的离心率的取值范围是()A. B. C. D.【答案】D【解析】如图,根据双曲线的对称性可知,若是钝角三角形,显然为钝角,因此,由于过左焦点且垂直于轴,所以,,,则,,所以,化简整理得:,所以,即,两边同时除以得,解得或(舍),故选择D.点睛:求双曲线离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量的方程或不等式,利用和转化为关于的方程或不等式,通过解方程或不等式求得离心率的值或取值范围,在列方程或不等式的过程中,要考虑到向量这一重要工具在解题中的应用.求双曲线离心率主要以选择、填空的形式考查,解答题不单独求解,穿插于其中,难度中等偏高,属于对能力的考查.12.已知△ABC是边长为2的等边三角形,P为△ABC所在平面内一点,则的最小值是A. B. C. D.【答案】A【解析】【分析】根据条件建立坐标系,求出点的坐标,利用坐标法结合向量数量积的公式进行计算即可.【详解】以为轴,的垂直平分线为轴,为坐标原点建立坐标系,则,设,所以,所以,,故选:A【点睛】本题主要考查平面向量数量积的应用,根据条件建立坐标系,利用坐标法是解决本题的关键.第II卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试題考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小題,每小题5分,共20分13.锐角中,,△ABC的面积为,则=_______。

【答案】【解析】【分析】利用三角形的面积公式求出A,再利用余弦定理求出BC.【详解】因为锐角△ABC的面积为3,且AB=4,AC=3,所以×3×4×sinA=3,所以sinA=,所以A=60°,所以cosA=,所以BC===.故答案为:.【点睛】本题考查三角形的面积公式,考查余弦定理的运用,属于基础题.14.函数且)的图象必过点A,则过点A且与直线2x+y-3=0平行的直线方程是____________________。

【答案】【解析】【分析】由题意可得函数且)的图象必过点A,结合点斜式得到所求直线的方程. 【详解】由题意可得:A,又与直线2x+y-3=0平行,∴直线斜率为,∴所求直线方程为:故答案为:【点睛】本题考查了直线方程的求法,考查了对数函数的图象与性质,属于基础题.15.已知正三棱锥的侧面是直角三角形,的顶点都在球O的球面上,正三棱锥的体积为36,则球O的表面积为__________。

【答案】108【解析】【分析】先利用正三棱锥的特点,将球的内接三棱锥问题转化为球的内接正方体问题,从而将问题转化为正方体的外接球问题.【详解】∵正三棱锥P﹣ABC,PA,PB,PC两两垂直,∴此正三棱锥的外接球即以PA,PB,PC为三边的正方体的外接球O,设球O的半径为R,则正方体的边长为,∵正三棱锥的体积为36,∴V=∴R=∴球O的表面积为S=4πR2=108故答案为:108.【点睛】本题考查球的内接三棱锥和内接正方体间的关系及其相互转化,棱柱的几何特征,球的几何特征,三棱锥体积的表示方法,有一定难度,属中档题.16.已知函数的定义域为D,若满足:①在D内是单调函数;②存在使得在上的值域为那么就称为“成功函数”。

若函数是“成功函数”,则的取值范围为_____________。

【答案】【解析】【分析】根据“成功函数”的概念利用对数函数的性质和一元二次方程根的判别式求解.【详解】依题意,函数g(x)=log a(a2x+t)(a>0,a≠1)在定义域上为单调递增函数,且t≥0,而t=0时,g(x)=2x不满足条件②,∴t>0.设存在[m,n],使得g(x)在[m,n]上的值域为[m,n],∴,即,∴m,n是方程(a x)2﹣a x+t=0的两个不等的实根,设y=a x,则y>0,∴方程等价为y2﹣y+t=0的有两个不等的正实根,即,∴,解得0,故答案为:.【点睛】本题主要考查对数的基本运算,准确把握“成功函数”的概念,合理运用对数函数的性质和一元二次方程根的判别式是解决本题的关键.综合性较强.三、解答題:本大题共70分.解答应写出文字说明、证明过程或演算步骤17.已知公差不为0的等差数列,满足:成等比数列(1)求数列的通项公式及其前n项和。

(2)令,求数列的前项和。

【答案】⑴⑵【解析】【分析】(1)通过将已知各项用首项和公差表示,利用已知条件计算即得结果;(2)通过裂项可知b n=,利用裂项相消求和即可.【详解】(1)设等差数列的首项为,公差为,由于,又成等比数列,即,所以解得由于,所以(2)因为,所以,因此故,.所以数列的前项和【点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.18.如图,在四棱锥中,,且900.(1)求证:;(2)若,四棱锥的体积为9,求四棱锥的侧面积【答案】⑴证明略;⑵【解析】【分析】(1)推导出AB⊥PA,CD⊥PD,从而AB⊥PD,进而AB⊥平面PAD,由此能证明平面; (2)设PA=PD=AB=DC=a,取AD中点E,连结PE,则P E⊥底面ABCD,由四棱锥P﹣ABCD的体积为9,求出a=3,由此能求出该四棱锥的侧面积.【详解】(1)又又(2)设,则.过作,为垂足,为中点....四棱锥P-ABCD的侧面积为:,。

相关文档
最新文档