湖南省长沙市雅礼中学2020届高三月考试卷(五)数学理科试题含答案

合集下载

2020届湖南省长沙市雅礼中学高三上学期第三次月考数学(理)试题(解析版)

2020届湖南省长沙市雅礼中学高三上学期第三次月考数学(理)试题(解析版)

2020届湖南省长沙市雅礼中学高三上学期第3次月考数学(理)试题一、单选题1.若复数z 满足()11i z i +=-(其中i 是虚数单位),则1z +=( ) A .2 B .3C .2D .5【答案】A【解析】对复数进行化简变形11iz i i-==-+,11z i +=-即可得解. 由题:()11i z i +=-,()()()()11121112i i i i z i i i i ----====-++-,112z i +=-=.故选:A此题考查复数的基本运算,涉及乘法运算和除法运算,求复数的模长. 2.下列命题中,真命题是( ) A .00,0x x R e∃∈≤B .0a b +=的充要条件是0a b ==C .若,0x R x ∀∈>D .若,x y R ∈,且2x y +>,则,x y 至少有一个大于1 【答案】D【解析】试题分析:00,x e >∴Q A 假;0,,a b a b +=∴=-∴Q C 假;无意义,C 假,故选D. 【考点】命题的真假.3.已知2log 0.8a =,0.82b =,20.8c =,则a ,b ,c 的大小关系为( ) A .a b c << B .b c a <<C .a c b <<D .c a b <<【答案】C【解析】根据指数函数和对数函数单调性,结合中间值1,0进行比较. 由题:22log 0.8log 10a =<=,0.80221b =>=,2000.80.81c <=<=,所以a c b <<. 故选:C此题考查指数对数的大小比较,关键在于熟练掌握指数函数和对数函数的性质,根据单调性结合特殊值进行比较.4.中国的嫦娥四号探测器,简称“四号星”,是世界首个在月球背面软着陆和巡视探测的航天器.2019年9月25日,中国科研人员利用嫦娥四号数据精确定位了嫦娥四号的着陆位置,并再现了嫦娥四号的落月过程,该成果由国际科学期刊《自然·通讯》在线发表.如图所示,现假设“四号星”沿地月转移轨道飞向月球后,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行.若用12c 和22c 分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子:①1122a c a c +=+;②1122a c a c -=-;③1212c c a a <;④1212c c a a >.其中正确的式子的序号是( )A .①③B .①④C .②③D .②④【答案】D【解析】根据图形关系分析1212,a a c c >>,1122a c PF a c -==-,辨析为1221a c a c +=+平方处理,结合2212b b >即可得到离心率的关系.由图可知:1212,a a c c >>所以1122a c a c +>+,所以①不正确;在椭圆轨道Ⅰ中可得:11a c PF -=,椭圆轨道Ⅱ中可得:22PF a c =-, 所以1122a c a c -=-,所以②正确;1221a c a c +=+,同时平方得:22221212212122a c a c a c a c ++=++,所以22221112222122a c a c a c a c -+=-+,即2211222122b a c b a c +=+,由图可得:2212b b >,所以122122a c a c <,2121c c a a <,所以③错误,④正确. 故选:D此题考查椭圆的几何性质,根据几何性质辨析两个椭圆a ,b ,c 的基本关系,涉及等价变形处理离心率关系.5.函数()21sin 1xx e f x ⎛⎫=- ⎪+⎝⎭的图象大致形状为( ) A . B .C .D .【答案】A【解析】根据函数解析式得函数为偶函数,计算()221s 202in 1e ef -=⋅<+即可得出选项. ()211sin sin 11x x xe xf x x e e -⎛⎫=-=⋅ ⎪++⎝⎭, ()()()()11sin sin sin 1111x x xx x xe e e x x xf x f x e e e ----=⋅-=⋅---=++⋅=+,所以()f x 为偶函数,排除CD ;()221s 202in 1e e f -=⋅<+,排除B ,故选:A此题考查根据函数解析式选择函数图象,涉及奇偶性与特殊值的辨析,此类图象问题常用排除法求解.6.一个多面体的三视图如图所示,其中正视图是正方形,侧视图是等腰三角形,则该几何体的表面积为( )A .168B .98C .108D .88【答案】D【解析】由三视图可知该几何体是直三棱柱,且三棱柱的高为4,底面是等腰三角形,三角形的底边边长为6,高为4,求出底面三角形的周长,利用侧面积公式与三角形的面积公式计算可得答案.由三视图知该几何体是直三棱柱,且三棱柱的高为4, 底面是等腰三角形,三角形的底边边长为6,高为4, ∴腰长为5,∴底面三角形的周长为5+5+6=16, ∴几何体的表面积S =2×12×6×4+(5+5+6)×4=24+64=88. 故选:D .本题考查了由三视图求几何体的表面积,解答此类问题的关键是判断几何体的形状及数据所对应的几何量.7.在边长为2的正ABC ∆中,设2BC BD =u u u r u u u r ,3CA CE =u u u r u u u r ,则AD BE ⋅=u u u r u u u r( ) A .-2 B .-1C .23-D .83-【答案】B【解析】根据平面向量线性关系表示出()12AD AB AC =+u u u r u u u r u u u r ,23BE AC AB =-u u u r u u u r u u u r,结合数量积的运算量即可求解.边长为2的正ABC ∆中,22cos602AB AC ︒⋅=⨯⨯=u u u r u u u r设2BC BD =u u u r u u u r ,3CA CE =u u u r u u u r ,()12AD AB AC =+u u u r u u u r u u u r23BE AE AB AC AB =-=-u u u r u u u r u u u r u u u r u u u r ,所以AD BE ⋅=u u u r u u u r ()1223AB AC AC AB ⎛⎫+- ⎪⎝⎭u u ur u u u r u u u r u u u r 22121233AB AC AB AC ⎛⎫=-+-⋅ ⎪⎝⎭u u ur u u u r u u u r u u u r 1824233⎛⎫=-+- ⎪⎝⎭1=-故选:B此题考查平面向量的基本运算,涉及线性运算和数量积运算,关键在于根据运算法则准确计算求解,此类问题常用一组基底表示其余向量求解.8.在ABC ∆中,角A ,B ,C 所对的边长分别为a ,b ,c ,若120C =︒,sin C A =,则( )A .a b =B .a b <C .a b >D .a 与b 的大小关系不能确定【答案】C【解析】根据120C =︒,sin C A =求出sin A A ==<=30A ︒>,则30B ︒<,结合正弦定理即可得解.由题:在ABC ∆中,120C =︒,A为锐角,sin C A =,A =,sin A A ==<=所以30A ︒>,则30B ︒<, 所以,sin sin A B A B >>, 根据正弦定理a b >. 故选:C此题考查根据三角形三内角和的关系求解三角函数值并根据三角函数值比较角的大小,结合正弦定理比较边的大小关系.9.在某种信息传输过程中,用6个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,例如001100就是一个信息.在所有信息中随机取一信息,则该信息恰有3个0的概率是( ) A .516B .1132C .2132D .1116【答案】A【解析】求出6个数字表示的信息一共64个,该信息恰有3个0共20种情况,即可得到概率.用6个数字的一个排列(数字允许重复),所用数字只有0和1, 可以表示的信息一共6264=个,该信息恰有3个0:共有3620C =个,所以所有信息中随机取一信息,则该信息恰有3个0的概率是2056416=. 故选:A此题考查求古典概型,关键在于准确求出基本事件总数和恰有3个0包含的基本事件个数,其本质考查基本计数原理,组合的知识.10.关于统计数据的分析,有以下几个结论,其中正确的个数为( )①利用残差进行回归分析时,若残差点比较均匀地落在宽度较窄的水平带状区域内,则说明线性回归模型的拟合精度较高;②将一组数据中的每个数据都减去同一个数后,期望与方差均没有变化;③调查剧院中观众观后感时,从50排(每排人数相同)中任意抽取一排的人进行调查是分层抽样法;④已知随机变量X 服从正态分布()3,1N ,且()240.6826P X ≤≤=,则()40.1587P X >=.A .1B .2C .3D .4【答案】B【解析】①④说法正确,将一组数据中的每个数据都减去同一个数后,期望发生改变,调查剧院中观众观后感时,从50排(每排人数相同)中任意抽取一排的人进行调查,没有明显层次,不是分层抽样法;根据利用残差进行回归分析可得①说法正确;将一组数据中的每个数据都减去同一个数后,方差均没有变化,期望发生改变,所以②说法错误;调查剧院中观众观后感时,从50排(每排人数相同)中任意抽取一排的人进行调查,没有明显层次,不是分层抽样法,所以③错误;已知随机变量X 服从正态分布()3,1N ,且()240.6826P X ≤≤=,根据正态分布密度曲线特征则()10.682640.15872P X ->==,所以④正确. 故选:B此题考查回归分析,抽样方法,期望方差的性质,正态分布的特点,需要熟练掌握,统计相关概念及结论辨析和基本计算.11.关于函数()()()sin cos cos sin f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 在区间0,2π⎛⎫⎪⎝⎭单调递减; ③()f x 的周期是π;④()f x 的最大值为2. 其中所有正确结论的编号是( ) A .①②③ B .②④C .①②D .①③【答案】C【解析】根据()f x -判断奇偶性,结合复合函数单调性判断②,利用反证法排除③④.()()()sin cos cos sin f x x x =+,()()()()()()()sin cos cos sin sin cos cos sin f x x x x x -=-+-=+- ()()()sin cos cos sin x x f x =+=,所以()f x 为偶函数,①正确;()()0,,sin 0,1,cos 0,12x x x π⎛⎫∈∈∈ ⎪⎝⎭,0,,sin 2x x π⎛⎫∈ ⎪⎝⎭单调递增,cos x 单调递减,()0,1,sin t t ∈单调递增,cos t 单调递减,根据复合函数单调性判断法则,0,2x π⎛⎫∈ ⎪⎝⎭,()()sin cos ,cos sin y x y x ==均为减函数,所以()f x 在区间0,2π⎛⎫⎪⎝⎭单调递减,所以②正确;假设()f x 的周期是π,必有()()0ff π=()()()0sin cos0cos sin0sin111f =+=+>, ()()()sin cos cos sin sin1cos11f πππ=+=-+<,所以()()0ff π≠,所以()f x 的周期不可能是π,所以③错误;假设()f x 的最大值为2,取()2f a =,必然()()sin cos 1,cos sin 1a a ==, 则cos 2,2a k k Z ππ=+∈与[]cos 1,1a ∈-矛盾,所以()f x 的最大值小于2,所以④错误. 故选:C此题考查三角函数相关性质的辨析,涉及奇偶性单调性周期性的综合应用,以及利用反证法推翻命题.12.已知1F ,2F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,过1F 的直线与圆222x y a +=相切且分别交双曲线的左、右两支于A 、B 两点,若2AB BF =,则双曲线的渐近线方程为( )A .30x y ±=B .0y ±=C .)10x y ±=D .)10x y ±=【答案】C【解析】根据双曲线的定义结合几何性质,利用圆的切线形成的垂直关系和余弦定理构造齐次式求解.由双曲线的定义可知12112a BF BF BF AB AF =-=-=,2124AF a AF a =+=,在12AF F ∆中,()()()()()22212224cos 222a c a bAF F c a c +-=∠=, 整理得22220b ab a --=.解得1ba=所以双曲线的渐近线方程为(1y x =±+.故选:C此题考查双曲线的几何特征,结合直线与圆的位置关系和余弦定理解题,求渐近线方程或离心率常用到构造齐次式解题.二、填空题13.根据下列算法语句,当输入x 为80时,输出y 的值为______.【答案】33【解析】根据算法语句得出分段函数关系即可求值. 由算法语句可得,该程序的作用是:求解函数值, 当50x ≤时,0.5y x =,当50x >,()150.650y x =+-,所以当输入x 为80时,输出()150.6805033y =+-=. 故答案为:33此题考查根据算法语句输入数值,求输出的值,关键在于读懂算法语句表达的意思. 14.已知()()2*0121,2nnn x a a x a x a xn N n +=++++∈≥L ,若02a ,1a ,2a 成等差数列,则n =______. 【答案】4【解析】根据二项式定理求出系数,结合等差数列关系即可得解. 由题:()()2*0121,2nnn x a a x a x a xn N n +=++++∈≥L ,由二项式定理可得:012012,,n n n a C a C a C ===,()*2,n N n ∈≥02a ,1a ,2a 成等差数列,所以10222a a a =+,即10222n n n C C C =+,()1222n n n -=+, 2540n n -+=解得:4n =或1n =(舍去), 所以4n =. 故答案为:4此题考查二项式定理,根据定理求出系数,根据某几项系数成等差数列关系列方程求解. 15.已知非负实数a ,b 满足2a b +≤,则关于x 的方程220x ax b ++=有实根的概率是______. 【答案】512【解析】根据非负实数a ,b 满足2a b +≤,可得有序数对(),a b 表示的区域面积,根据关于x 的方程220x ax b ++=有实根得出限制条件,结合定积分求出面积即可得解. 记区域0,02a b a b ≥≥⎧⎨+≤⎩的面积为12S =,区域20,02a b a b b a ≥≥⎧⎪+≤⎨⎪≤⎩的面积为12312001115112326S x dx x=+⨯⨯=+=⎰, 因此21512S p S ==. 故答案为:512此题考查几何概型,属于面积型,关键在于根据关于x 的方程220x ax b ++=有实根得出限制条件,利用定积分准确计算面积.16.在四面体ABCD 中,已知2AB BD DC CA ====,则此四面体体积的最大值是______.【解析】以平面BCD 作为锥体底面,要使体积最大,平面ABC ⊥平面BCD ,设未知数表示出锥体体积根据函数单调性求体积最值即可.根据该锥体的几何特征,考虑平面ABC 与平面BCD 绕BC 旋转而成的几何体, 其体积等价于考虑平面ABD 与平面ACD 绕AD 旋转而成的几何体, 以平面BCD 作为锥体底面,要使体积最大,平面ABC ⊥平面BCD ,设,04BC x x =<<,取BC 中点E ,连接,AE DE ,有,AE BC DE BC ⊥⊥,244x AE DE ==-根据面面垂直的性质,AE ⊥平面BCD , 所以锥体体积()222311444164464241132A BCD x x x x x x x V -⎛⎫--=-=-+ ⎪⎝⎭=⨯ 考虑函数()()3116,0424f x x x x =-+<< ()()()()21131643432424f x x x x '=-+=+,43x ⎛∈ ⎝⎭,()0f x ¢>,函数单调递增,434x ⎫∈⎪⎪⎝⎭,()0f x ¢<,函数单调递减,所以()3max4314343163163243327f x f ⎛⎛⎛ ==-+⋅= ⎪⎝⎭⎝⎭⎝⎭163. 故答案为:327此题考查求几何体体积,涉及变量问题考虑函数结合单调性处理.三、解答题17.已知正数数列{}n a 的前n 项和n S ,满足()*11n n a a S S n N =+∈.(1)求{}n a 的通项公式; (2)设n nnb a =,求证:122n b b b +++<L . 【答案】(1)()*2nn a n N =∈;(2)证明见解析. 【解析】试题分析:(1)当1n =时,2111a a a =+,又0n a >⇒12a =;当2n ≥时()122n n n n a S S a -=-=--()122n a --⇒12n n a a -=,因此{}n a 是以12a =为首项为公比的等比数列⇒()*2n n a n N =∈;(2)令12231232222n n n nT b b b L L =+++=++++,利用错位相减法求得()12222nn T n ⎛⎫=-+< ⎪⎝⎭.试题解析: (1)当1n =时,2111a a a =+,又0n a >,所以12a =;当2n ≥时,()()112222n n n n n a S S a a --=-=---,所以12n n a a -=,因此{}n a 是以12a =为首项为公比的等比数列,故()*2n n a n N =∈.(2)令12231232222n n n n T b b b L L =+++=++++, 则234111*********n n n n nT +-=+++++L , 两式相减得23111111222222n n n nT +=++++-L ,所以()231111111222222222nn n n n T n -⎛⎫=+++++-=-+< ⎪⎝⎭L 【考点】1、数列的通项公式;2、数列前n 项和;3、错位相减法. 18.如图,已知AB 是半径为2的半球O 的直径,,P D 为球面上的两点且060DAB PAB ∠=∠=,6PD =(1)求证:平面PAB⊥平面DAB;(2)求二面角B AP D--的余弦值.【答案】(1)见解析(2)5【解析】试题分析:(1)P作PH AB⊥于点H,连HD,由勾股定理及三角形全等得PH HD⊥,根据线面垂直的判定定理得PH⊥平面ABD,进而可得结果;(2)以H为原点,,,HB HD HP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,分别求出平面APD与平面的APB一个法向量,根据空间向量夹角余弦公式,可得结果. 试题解析:(1)在PAB∆中,过P作PH AB⊥于点H,连HD.由Rt APB Rt ADB∆≅∆可知DH AB⊥,且3,1PH DH AH===,又222336PH HD PD+=+==,∴PH HD⊥.又AB HD H⋂=,∴PH⊥平面ABD,又PH⊂平面PAB,∴平面PAB⊥平面ABD.(2)由(1)可知,,HB HD HP两两垂直,故以H为原点,,,HB HD HP所在直线分别为x轴,y轴,z轴,如图建立空间直角坐标系,可知()()()()1,0,0,3,0,0,0,3,0,0,0,3A B D P-.设平面APD的法向量为(),,m x y z=r,则·0·0m ADm AP⎧=⎪⎨=⎪⎩u u u rru u u rr,即()()()(,,3,00,,30x y zx y z⎧=⎪⎨=⎪⎩,∴3030xx z⎧+=⎪⎨+=⎪⎩,令3x=1y z==,∴()3,1,1m=-,又平面APB 的法向量()0,1,0n r=, ∴·cos ,m n m n m n 〈〉===r r r r r r, 而二面角B AP D --与,m n 的夹角相等,因此所求的二面角B AP D --的余弦值为【方法点晴】本题主要考查利用面面垂直的判定定理以及空间向量求法向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离. 19.已知函数()sin 1f x x x =-. (1)求曲线()y f x =在点,22f ππ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭处的切线方程; (2)判断()f x 在()0,π内的零点个数,并加以证明.【答案】(1)10x y --=(2)()f x 在()0,π内有且仅有两个零点,证明见解析 【解析】(1)求出导函数,根据在某点处的切线方程即可得解; (2)结合函数的单调性和取值范围依据根的存在性定理讨论零点个数. (1)()'sin cos f x x x x =+,所以切线方程为'222y f f x πππ⎛⎫⎛⎫⎛⎫-=- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即1y x =-,亦即10x y --=.(2)①当0,2x π⎛⎤∈ ⎥⎝⎦时,()'sin cos 0f x x x x =+>,所以()f x 在0,2π⎛⎤⎥⎝⎦上单调递增,且()010f =-<,1022f ππ⎛⎫=-> ⎪⎝⎭,故()f x 在0,2π⎛⎤⎥⎝⎦内有唯一的零点1x .②当,2x ππ⎛⎫∈ ⎪⎝⎭时,令()()'g x f x =,则()'2cos sin 0g x x x x =-<,所以()g x 在,2ππ⎛⎫⎪⎝⎭上单调递减,且102g π⎛⎫=> ⎪⎝⎭,()0g ππ=-<,所以存在,2παπ⎛⎫∈ ⎪⎝⎭,使得()0g α=,所以当,2x πα⎛⎫∈ ⎪⎝⎭时,()()'0f x g x =>,即()f x 在,2πα⎛⎫⎪⎝⎭递增, 当(),x απ∈时,()()'0f x g x =<,即()f x 在(),απ递减. 又()1022f f ππα⎛⎫>=->⎪⎝⎭,()10f π=-<. 故()f x 在(),απ内有唯一的零点2x .综上,()f x 在()0,π内有且仅有两个零点1x ,2x .此题考查导数的综合应用,涉及导数的几何意义,求在某点处的切线,根据导函数讨论函数单调性处理零点个数问题,综合性比较强.20.某厂用鲜牛奶在某台设备上生产A ,B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1 000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1 200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产A ,B 两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W (单位:吨)是一个随机变量,其分布列为该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个随机变量. (I)求Z 的分布列和均值;(II)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率.【答案】(Ⅰ)Z 的分布列见解析,()9708E Z =;(Ⅱ)0.973.【解析】(Ⅰ)设每天,A B 两种产品的生产数量分别为,x y ,相应的获利为z ,则有2 1.5,1.512,{?20,0,? 0.x y W x y x y x y +≤+≤-≥≥≥(1)目标函数为10001200z x y =+.当12W =时,(1)表示的平面区域如图1,三个顶点分别为(0,?0),?(2.4,?4.8),?(6,?0)A B C .将10001200z x y =+变形为,当 2.4,?4.8x y ==时,直线l :在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z z ==⨯+⨯=.当15W =时,(1)表示的平面区域如图2,三个顶点分别为(0,?0),?(3,?6),?(7.5,?0)A B C .将10001200z x y =+变形为,当3,?6x y ==时,直线l :在y 轴上的截距最大,最大获利max 310006120010200Z z ==⨯+⨯=. 当18W =时,(1)表示的平面区域如图3,四个顶点分别为(0,?0),?(3,?6),?(6,?4),?(9,?0)A B C D . 将10001200z x y =+变形为,当6,4x y ==时,直线l :在y 轴上的截距最大,最大获利max 610004120010800Z z ==⨯+⨯=. 故最大获利y 的分布列为y8160 10200 10800 Z0.30.50.2因此,()81600.3102000.5108000.29708.E Z =⨯+⨯+⨯= (Ⅱ)由(Ⅰ)知,一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+=,由二项分布,3天中至少有1天最大获利超过10000元的概率为3311(1)10.30.973.p p =--=-=【考点】线性规划的实际运用,随机变量的独立性,分布列与均值,二项分布.21.已知曲线1C 上任意一点M 到直线l :4y =的距离是它到点()0,1F 距离的2倍;曲线2C 是以原点为顶点,F 为焦点的抛物线. (1)求1C ,2C 的方程;(2)设过点F 的动直线与曲线2C 相交于A ,B 两点,分别以A ,B 为切点引曲线2C 的两条切线1l ,2l ,设1l ,2l 相交于点P .连接PF 的直线交曲线1C 于C ,D 两点. (i )求证:CD AB ⊥; (ii )求AD CB ⋅u u u r u u u r的最小值.【答案】(1)1C 的方程为22134x y +=,2C 的方程为24x y =(2)(i )证明见解析(ii )7【解析】(1)根据几何特征列方程即可求解曲线方程;(2)联立直线与曲线方程,结合韦达定理处理,(i )证明斜率之积为-1,(ii )化简代数式根据基本不等式求解最值.(1)设(),M x y ,则由题意有4y =-,化简得:22134x y +=. 故1C 的方程为22134x y +=,()0,1F 为抛物线的焦点,设其方程22x py =,1,22pp == 易知2C 的方程为24x y =.(2)(i )由题意可设AB 的方程为1y kx =+,代入24x y =得2440x kx --=,设()11,A x y ,()22,B x y ,则121244x x k x x +=⎧⎨=-⎩,由214y x =有1'2y x =,所以1l ,2l 的方程分别为2111124y x x x =-,2221124y x x x =-.故1212,24x x x x P +⎛⎫⎪⎝⎭, 即()2,1P k -,1PF k k=-,从而CD AB ⊥. (ii )可设CD 的方程为11y x k =-+,代入22134x y +=得()22224384120ky k y k +-+-=,设()33,C x y ,()44,D x y ,则2342234284341243k y y k k y y k ⎧+=⎪⎪+⎨-⎪=⎪+⎩, 所以()()AD CB AF FD CF FB ⋅=++u u u r u u u r u u u r u u u r u u u r u u u r AF CF FD CF F FB F D A FB +=⋅+⋅⋅⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u rAF FB FD CF =+u u u r u u u r u u u r u u u r ()()123411114422y y y y =+++-⋅-()()()()1234122444kx kx y y =+++--()()21212343412444k x x k x x y y y y =++++-++()()22291139414344k k t k t +⎛⎫=++=++ ⎪+⎝⎭(其中2433t k =+≥). 设()()934t t f t t =+≥,则()2229491044'f t t t t-=-=>,故()f t 在[)3,+∞单调递增, 因此139133374444t A B t D C ⎛⎫=++≥++= ⎪⎭⋅⎝=u u u r u u u r , 当且仅当3t =即0k =等号成立. 故AD CB ⋅u u u r u u u r的最小值为7.此题考查求曲线轨迹方程,直线与曲线的综合问题,将几何关系转化成代数关系,利用韦达定理处理与根有关的问题.22.在平面直角坐标系xOy 中,曲线C 的参数方程为2222111t x t t y t ⎧=⎪⎪+⎨-⎪=⎪+⎩(t 为参数).在极坐标系(与平面直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半sin 34πθ⎛⎫-= ⎪⎝⎭.(1)求曲线C 的普通方程及直线l 的直角坐标方程;(2)设P 是曲线C 上的任意一点,求点P 到直线l 的距离的最大值.【答案】(1)曲线C 的普通方程为221x y +=;直线l 的直角坐标方程为30x y -+=(2)12+ 【解析】(1)根据参数方程与普通方程的转化关系,极坐标方程与直角坐标方程的转化关系求解;(2)结合圆的参数方程设点的坐标和点到直线距离公式求解最值.(1)因为222222221111t t x y t t ⎛⎫-⎛⎫+=+= ⎪ ⎪++⎝⎭⎝⎭,所以曲线C 的普通方程为221x y +=.sin 34πθ⎛⎫-= ⎪⎝⎭展开得sin cos 3ρθρθ-=,即3y x -=,因此直线l 的直角坐标方程为30x y -+=.(2)设()cos ,sin P θθ,则点P 到直线l 的距离为d ==1≤. 等号成立当且仅当sin 14πθ⎛⎫-=- ⎪⎝⎭,即()724k k Z πθπ=+∈,即P ⎝⎭. 因此点P 到直线l1+. 此题考查坐标系与参数方程相关知识,涉及极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化,利用参数方程解决点到直线距离问题. 23.(1)设a ,b ,c 均为正数,且1a b c ++=,证明:1119a b c++≥; (2)解关于x 不等式:2323x x x x <-<. 【答案】(1)证明见解析;(2)1,03⎛⎫- ⎪⎝⎭【解析】(1)根据柯西不等式处理()2111a b c a b c ⎛⎫++++≥ ⎪⎝⎭即可得证; (2)根据不等式形式分析出0x <,再去绝对值解不等式. (1)a ,b ,c 均为正数,由柯西不等式有()2111a b c a b c ⎛⎫++++≥ ⎪⎝⎭9=, 所以有1119a b c++≥. (另解()111111a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭332229b a c a c b a b a c b c ⎛⎫⎛⎫⎛⎫=++++++≥+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭)(2)由2323x x x x <-<有x x <可知0x <.因此原不等式等价于2323x x x x <-<-,即21231x x >->-.即22123231x x x x ⎧>-⎪⎨->-⎪⎩,2221032031x x x x -+>--<⎧⎪⎨⎪⎩, 23210x x -+>恒成立,只需解23210x x --<且0x <解之得103x -<<. 因此原不等式的解集为1,03⎛⎫- ⎪⎝⎭.此题考查不等式的证明和解不等式,考查对柯西不等式的应用,也可对乘积拆开用基本不等式求解,解含绝对值不等式,先结合题意分析绝对值内部符号,避免分类讨论.。

2020届雅礼中学高三第3次月考试卷答案(理科数学)

2020届雅礼中学高三第3次月考试卷答案(理科数学)

#'!&解析'!"由柯西不等式有
! " . - !"1&1'"
" "
1&"
1'"
$
槡" "1槡& "1槡' "
#
0+%
槡"
槡&
槡'
所以有 " "
1&"
1'"
$+!

%分! " !另解 Nhomakorabea "
1
" &
1
" '
0
!"1&1'"
" "
1
" &
#% 递增%
当)+ !%"时%01!)"07!)"-$%即0!)"在 !%"递减!
! " 又0!"*0
#
0 # !"*$%0!"0!"-$!
故0!)"在 !%"内有唯一的零点)#! 综上%0!)"在!$%"内有且仅有两个零点)"%)#! "#分 #$!&解析'!"设每天%%# 两种产品的生产数量分别为)%(%相应的获利为6%则有
)"1)#%)")# #(
%
即 4!#<%!""!<4$
0!
" <
%从而,-.%#!

2020届雅礼中学高三第3次月考试卷(理科数学)含答案

2020届雅礼中学高三第3次月考试卷(理科数学)含答案

"
其中正确的式子的序号是
"
"
+,
-,
/,
0,
班!级!
学!校!
理科数学试题!雅礼版"!第! 页!共"页"
! " %!函数*!#")
# !'1#
*!
7(8#
的图象大致形状

&!一个多面体的三视图如图所示$其中正视图是正方形$侧视图是等腰三角 形$则该几何体的表面积为
+,!&"
-,6"
/,!$"
密!!封!!线!!内!!不!!要!!答!!题
" "
选项中$只有一个选项是符合题目要求的!
" "
!!若复数"满足!!'("")!*(!其中(是虚数单位"$则 !'" )
" "
+,槡#
-,槡.
/,#
0,槡%
" #!下列命题中$真命题是
"
"
+,##$$$1#$ %$
" "
-,$'%)$的充要条件是$)%)$
0,""
9!在边长为#的正)+,- 中$设,+*-)#,+*.$-+*+).-+*/$则++*.*,+*/)
+,*#
-,*!
/,*#.
0,*" .
"!在)+,- 中$角 +$,$- 所对的边长分别为$$%$'$若 -)!#$:$7(8-)

2020年湖南省雅礼中学高三1-6次月考 理科数学、文科数学(含答案)

2020年湖南省雅礼中学高三1-6次月考 理科数学、文科数学(含答案)

预计去年消费金额在!$$!'$$(内的消费者今年都将会申请办理普通 会员$消费金额在 !!'$$$1#$$(内的消费 者都将会 申 请办 理银 卡会 员$消费金额在!1#$$$2"$$(内 的 消 费 者 都 将 会 申 请 办 理 金 卡 会 员! 消费者在申请办理会员时$需一次性缴清相应等级的消费金额! 该健身机构在今年 底 将 针 对 这 些 消 费 者 举 办 消 费 返 利 活 动$现 有 如 下两种预设方案# 方案!#按分层抽样 从 普 通 会 员$银 卡 会 员$金 卡 会 员 中 总 共 抽 取 #& 位-幸运之星.给予奖励#普通会员中的-幸运之星.每人奖励&$$元1 银卡会员中的-幸运之星.每人奖励'$$元1金卡会员 中的 -幸 运之 星.每人奖励"$$元! 方案##每位会员均可参加摸奖游戏$游戏规则如下#从一个装有1个 白球%#个红球!球只有颜色不同"的箱子中$有放回地摸三次球$每次 只能摸一个球!若摸到红球的总数为#$则可获得#$$元奖励金1若摸 到红球的总数为1$则可获得1$$元奖励金1其他情况不给予奖励!规 定每位普通会员均可参加!次摸奖游戏1每位银卡会员均可参加#次 摸奖游戏1每位金卡会员均可参加1次摸奖游戏!每次摸奖的结果相 互独立"! 以方案#的奖励金 的 数 学 期 望 为 依 据$请 你 预 测 哪 一 种 方 案 投 资 较 少0 并说明理由!
时&()!%"*$&当%)
槡##&#
时&()!%"-$&所以(!%",(
槡# #
1#槡#&则'#槡#&故选 /!
+!/!$解析%设轴截面的中心角为#&由条件可知-

2020年湖南省雅礼中学高三第2次月考 理科数学、文科数学(含答案)

2020年湖南省雅礼中学高三第2次月考 理科数学、文科数学(含答案)
理科数学试题!雅礼版"!第!& 页!共"页"
#!!!本小题满分!#分" 已知函数)!#"'&!#(!"15!#(!")##)&#!&)$"是减函数! !!"试确定&的值+ !#"已 知 数 列 '&*($&* '15*!*((!!"$9* '&!&#&0 --&* !*+, "$求 证# 15*!*(#"9*)$!)*#!
!!"若甲解开密 码 锁 所 需 时 间 的 中 位 数 为 46$求 &&' 的 值$并 分 别 求 出 甲&乙在!分钟内解开密码锁的频率+
!#"若以解开密码锁所需时间位于各区间的频率代替解开密码锁所需时 间位于该区间的概率$并 且 丙 在 ! 分 钟 内 解 开 密 码 锁 的 概 率 为 $!%$ 各人是否解开密码锁相互独立! 按乙丙甲的先后顺序和按丙乙甲的先后顺序哪一种可使派出人员 数目的数学期望更小% 试猜想#该团队以怎样的先后顺序派出人员$可使所需派出的人员 数目 8 的数学期望达到最小$不需要说明理由!
炎德英才大联考雅礼中学#$#$届高三月考试卷!二"
数学!理科"参考答案
一#选择题$本大题共"#个小题%每小题%分%共&$分!在每小题给出的四个选项中%只有一个选项是符合题目 要求的! 题!号 " # ' ( % & ) * + "$ "" "#
答!案 , , - . , / . / - . , ,

2020-2021学年湖南省雅礼中学高三(下)第二次月考数学试卷(理科) Word版含解析

2020-2021学年湖南省雅礼中学高三(下)第二次月考数学试卷(理科) Word版含解析

2022-2021学年湖南省雅礼中学高三(下)其次次月考数学试卷(理科)一.选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.把答案填在答题卡中对应题号的框框内.)1.已知集合A={﹣2,﹣1,0,1,2,3},集合,则A∩B等于()A.{﹣2,﹣1,0,1} B.{﹣1,0,1} C.{﹣1,0,1,2} D.{﹣1,0,1,2,3}2.若A、B均是非空集合,则A∩B≠∅是A⊆B的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件3.(中诱导公式、基本公式)已知,且,则tan(2π﹣α)的值为()A.B.C.D.4.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的左视图面积为()A.2B.C.2D.45.已知向量满足:,与的夹角为,则=()A.2 B.4 C.2D.86.设x,y 满足约束条件,则目标函数z=的最小值为()A.2 B.1 C.D.﹣27.设f(x)定义如下面数表,{x n}满足x0=5,且对任意自然数n均有x n+1=f(x n),则x2022的值为()x 1 234 5f(x)4 135 2A.4 B.1 C.3 D.28.如图,长沙河西先导区某广场要划定一矩形区域ABCD,并在该区域内开拓出三块外形大小相同的矩形绿化区,这三块绿化区四周和绿化区之间设有1米宽的走道.已知三块绿化区的总面积为800平方米,则该矩形区域ABCD占地面积的最小值为()平方米.A.900 B.920 C.948 D.9689.已知函数,若存在x1<x2,使得f(x1)=f(x2),则x1•f(x2)的取值范围为()A.B.C.D.10.设定义在R上的偶函数f(x)满足f(x+2)=f(x),f′(x)是f(x)的导函数,当x∈[0,1]时,0≤f(x)≤1;当x∈(0,2)且x≠1时,x(x﹣1)f′(x)<0.则方程f(x)=lg|x|根的个数为()A.12 B.1 6 C.18 D.20二.填空题:本大题共1小题,考生作答5小题,每小题5分,共25分,把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第11、12、13题中任选两题作答,假如全做,则按前两题给分)【几何证明选讲】11.如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E,已知⊙O的半径为3,PA=2,则OE=.【极坐标系与参数方程选讲】12.已知曲线C的参数方程为(θ为参数),直线l的极坐标方程为,它们的交点在平面直角坐标系中的坐标为.【不等式选讲】1011•天津)已知集合A={x∈R||x+3|+|x﹣4|≤9},B=,则集合A∩B=.(二)必做题(14~16题)14.设(其中e为自然对数的底数),则的值为.15.动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是.16.已知数列{a n}的前n项和S n=(﹣1)n •n,若对任意正整数n,(a n+1﹣p)(a n﹣p )<0恒成立,则实数P 的取值范围是.三.解答题:本大题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤.17.设函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)当时,求函数f(x)的最大值和最小值.18.设数列{a n}的前n项和为S n,已知对任意正整数n,都有S n+2=2a n成立.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求证:T n<3.19.如图所示,在平面四边形ABCD中,,与的夹角为,与的夹角为.(1)求△CDE的面积S;(2)求.20.已知函数f(x )=lnx﹣ax+﹣1(a∈R)(1)当a=﹣1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)当a≤时,争辩f(x)的单调性.21.若数列{a n}(n∈N*)满足:①a n≥0;②a n﹣2a n+1+a n+2≥0;③a1+a2+…+a n≤1,则称数列{a n}为“和谐”数列.(1)已知数列{a n},(n∈N*),推断{a n}是否为“和谐”数列,说明理由;(2)若数列{a n}为“和谐”数列,证明:.(n∈N*)22.已知函数f(x)=(1)当x>0时,证明:f(x)>;(2)当x>﹣1且x≠0时,不等式f(x)<恒成立,求实数k的值.2022-2021学年湖南省雅礼中学高三(下)其次次月考数学试卷(理科)参考答案与试题解析一.选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.把答案填在答题卡中对应题号的框框内.)1.已知集合A={﹣2,﹣1,0,1,2,3},集合,则A∩B等于()A.{﹣2,﹣1,0,1} B.{﹣1,0,1} C.{﹣1,0,1,2} D.{﹣1,0,1,2,3}考点:交集及其运算.专题:集合.分析:依据集合的基本运算进行求解即可.解答:解:∵A={﹣2,﹣1,0,1,2,3},集合,∴A∩B={﹣1,0,1},故选:B点评:本题主要考查集合的基本运算,比较基础.2.若A、B均是非空集合,则A∩B≠∅是A⊆B的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件考点:必要条件、充分条件与充要条件的推断.专题:规律型.分析:推断出“A∩B≠∅”成立推不出“A⊆B”反之,若“A⊆B”成立,则能推出A∩B≠∅”确定成立,利用充要条件的有关定义得到结论.解答:解:若“A∩B≠∅”成立推不出“A⊆B”反之,若“A⊆B”成立,则有A∩B=A≠∅,所以A∩B≠∅”确定成立,所以A∩B≠∅是A⊆B的必要不充分条件,故选B.点评:本题考查推断一个条件是另一个的什么条件,应当先化简各个条件,若条件是数集的形式,常转化为推断集合间的包含关系.3.(中诱导公式、基本公式)已知,且,则tan(2π﹣α)的值为()A.B.C.D.考点:同角三角函数基本关系的运用.专题:计算题.分析:先依据诱导公式化简已知条件,得到sinα的值,然后由α的范围,利用同角三角函数间的基本关系求出cosα的值,把所求的式子利用诱导公式化简后,再依据同角三角函数间的基本关系把切化弦后,将sinα和cosα的值代入即可求出值.解答:解:由,又,得,则.故选B点评:此题考查同学机敏运用诱导公式及同角三角函数间的基本关系化简求值,是一道中档题.同学在求cosα的值时应留意α的范围.4.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的左视图面积为()A.2B.C.2D.4考点:简洁空间图形的三视图.专题:计算题;空间位置关系与距离.分析:三棱柱的左视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中做出底边上的高的长度,得到结果.解答:解:由题意知三棱柱的左视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中,底边上的高是,∴侧视图的面积是2故选:A.点评:本题考查简洁的空间图形三视图,考查三视图的面积的计算,考查通过原图观看三视图的大小,比较基础.5.已知向量满足:,与的夹角为,则=()A.2 B.4 C.2D.8考点:平面对量数量积的运算.。

2020年湖南省长沙市雅礼中学高三下学期5月高考适应性考试数学(理)试题解析

2020年湖南省长沙市雅礼中学高三下学期5月高考适应性考试数学(理)试题解析


62
A. ( 3, 1)
B. ( 4, 1)
C. ( 3,0)
D. ( 4,0)
答案: A
先根据函数奇偶性求得 f x , f x ,利用导数判断函数单调性, 利用函数单调性求解
不等式即可 . 解:
因为函数 f ( x) 是奇函数,
所以函数 f '( x) 是偶函数 .
f ( x)
f '( x)
ln(1
62
ax 1 1 x 1 2 a 1

2

a0
x
x
11 对 x [ , ] 恒成立,,
2 a0
62
x
3a 1


4a0
所以 a 的取值范围是 ( 3, 1) .
故选: A. 点评: 本题考查利用函数单调性求解不等式,
根据方程组法求函数解析式, 利用导数判断函数
单调性,属压轴题 .
二、填空题
13.在区间 [ 6,2] 内任意取一个数 x0 ,则 x0 恰好为非负数的概率是 ________. 1
a 5, 时,显然 y f x 与 y 4 x 有一个交点 C ,故满足题意 .
综上所述,要满足题意,只需 a (0,1) U [5, ) .
故选: A.
点评:
本题考查由函数零点的个数求参数范围,属中档题
.
11.已知抛物线 C : x2 4 y 的焦点为 F ,过点 F 的直线 l 交抛物线 C 于 A , B 两点,
U [5,
)
5
D.
6 (
,5]
5
分段求解函数零点,数形结合,分类讨论即可求得结果
.
解:
作出 y x2 x 和 y 5 x , y 4 x 的图像如下所示:

2020届雅礼中学高三第1次月考试卷-理科数学答案

2020届雅礼中学高三第1次月考试卷-理科数学答案

1
!& 1! 槡"&= 槡"(
槡""&&!
2二面角49:#" 的大小余弦为! 槡""&&! !"#分" "+!$解析%!""设随机抽取的#人中&去年的消费金额超过&$$$元的消费者有 = 人&
则 = 的可能值为($&"&#*& !"分" 20!=,""1+0!=1""00!=1#",1.."*#".#"&0..#"#&#1%"%(0%%%1"%+%! !%分" 或者0!=,""1"!0!=1$"1"!..#"#*#1%"%+! !%分" !#"方案"-按分层抽样从普通会员&银卡会员&金卡会员中总共抽取#'位(幸运之星*&则(幸运之星*中的普 通会员&银卡会员&金卡会员的人数分别为-
.!
+ , + , *!/!$解析%因为(%$)
" #
&#
&使得#%#$!%$0"*$成立是假命题&所以+%)
" #
&#
&#%#!%0",$恒
+ , 成立是真命题&即+%)
" #
&#
&'#%0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

雅礼中学2020届高三月考试卷(五)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟.满分150分.第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1. 复数z 满足()214z i i +=,则复数z 的共轭复数z =( ) A. 2B. -2C. 2i -D. 2i2. 已知命题p :x R ∀∈,2230x x -+≥;命题q :若22a b <,则a b <,下列命题为假命题的是( ) A. p q ∨B. ()p q ∨⌝C. p q ⌝∨D. ()p q ⌝∨⌝3. 已知3na x x ⎛⎫+ ⎪⎝⎭的展开式中各项的二项式系数之和为32,且各项系数和为243,则展开式中2x 的系数为( )A. 20B. 30C. 40D. 504. 中国古代数学著作《算法统宗》中记载了这样的一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”,其大意为:有一个人走了378里路,第一天健步行走,从第二天起其因脚痛每天走的路程为前一天的一半,走了6天后到达了目的地,问此人第三天走的路程里数为( ) A. 192 B. 48 C. 24 D. 885. ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若sin A ,sin B ,sin C 成等比数列,且2c a =,则sin B 的值为( )A.34B.C. 1D.6. 执行如图的程序框图,若输出的6n =,则输入整数p 的最大值是( )A. 15B. 16C. 31D. 327. 已知变量x ,y 具有线性相关关系,它们之间的一组数据如下表所示,若y 关于x 的线性回归方程为$1.31y x =-,则m 的值为( )8. 已知椭圆C :()222210x y a b a b+=>>的左焦点为F ,直线y =与C 相交于A ,B 两点,且AF BF ⊥,则C 的离心率为( )A.12 B.1C. 12D.19. 如图,在ABC ∆中,AD AB ⊥,3DC BD =u u u r u u u r ,2AD =u u u r,则AC AD ⋅u u u r u u u r 的值为( )A. 3B. 8C. 12D. 1610. 通过大数据分析,每天从岳阳来长沙的旅客人数为随机变量X ,且()23000,50X N :.则一天中从岳阳来长沙的旅客人数不超过3100的概率为( )(参考数据:若()2,X N μσ:,有()0.6826P X μσμσ-<≤+=,()220.9544P X μσμσ-<≤+=,()330.9974P X μσμσ-<≤+=)A. 0.0456B. 0.6826C. 0.9987D. 0.9772l1. 在水平地面上的不同两点处栽有两根笔直的电线杆,假设它们都垂直于地面,则在水平地面上视它们上端仰角相等的点P 的轨迹可能是( ) ①直线 ②圆 ③椭圆 ④抛物线 A. ①② B. ①③ C. ①②③ D. ②④12. 已知(){}0P f αα==,(){}0Q g ββ==,若存在P α∈,Q β∈,使得n αβ-<,则称函数()f x与()g x 互为“n 距零点函数”.若()()2020log 1f x x =-与()2xg x x ae =-(e 为自然对数的底数)互为“1距零点函数”,则实数a 的取值范围为( ) A. 214,e e ⎛⎤⎥⎝⎦B. 214,e e ⎛⎤⎥⎝⎦ C. 242,e e ⎡⎫⎪⎢⎣⎭D. 3242,e e ⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分. 13.31x dx -⎰的值为______.14. 已知函数cos y x =与()sin 202y x πϕϕ⎛⎫=+<<⎪⎝⎭,它们的图象有一个横坐标为6π的交点,则ϕ的值是______.15. 一个圆上有8个点,每两点连一条线段.若其中任意三条线段在圆内不共点,则所有线段在圆内的交点个数为______(用数字回答). 16. 已知,,0,2παβγ⎛⎫∈ ⎪⎝⎭,且222cos cos cos 2αβγ++=,则cos cos cos sin sin sin αβγαβγ++++的最小值为______.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知圆柱1OO 底面半径为1,高为π,ABCD 是圆柱的一个轴截面,动点M 从点B 出发沿着圆柱的侧面到达点D ,其距离最短时在侧面留下的曲线Γ如图所示.将轴截面ABCD 绕着轴1OO 逆时针旋转()0θθπ<<后,边11B C 与曲线Γ相交于点P .(1)求曲线Γ的长度; (2)当2πθ=时,求点1C 到平面APB 的距离.18. 已知数列{}n a 的前n 项和为n S ,11a =,0n a >,2211n n n S a S λ++=-,其中λ为常数.(1)证明:12n n S S λ+=+;(2)是否存在实数λ,使得数列{}n a 为等比数列,若存在,求出λ;若不存在,说明理由.19. 如图,过抛物线()220y px p =>上一点()1,2P ,作两条直线分别交抛物线于()11,A x y ,()22,B x y ,当PA 与PB 的斜率存在且倾斜角互补时:(1)求12y y +的值;(2)若直线AB 在y 轴上的截距[]1,3b ∈-时,求ABP ∆面积ABP S ∆的最大值.20. 为响应“文化强国建设”号召,并增加学生们对古典文学的学习兴趣,雅礼中学计划建设一个古典文学熏陶室.为了解学生阅读需求,随机抽取200名学生做统计调查.统计显示,男生喜欢阅读古典文学的有64人,不喜欢的有56人;女生喜欢阅读古典文学的有36人,不喜欢的有44人.(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?(2)为引导学生积极参与阅读古典文学书籍,语文教研组计划牵头举办雅礼教育集团古典文学阅读交流会.经过综合考虑与对比,语文教研组已经从这200人中筛选出了5名男生代表和4名女生代表,其中有3名男生代表和2名女生代表喜欢古典文学.现从这9名代表中任选3名男生代表和2名女生代表参加交流会,记ξ为参加交流会的5人中喜欢古典文学的人数,求ξ的分布列及数学期望E ξ.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:21. 已知函数()ln 1f x x x ax =++,a R ∈.(1)当0x >时,若()0f x ≥恒成立,求a 的取值范围; (2)当*n N ∈时,证明:22231ln 2ln ln 2421n n nn n n +<++⋅⋅⋅+<++. 请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22. 选修4-4:坐标系与参数方程已知直线l 的参数方程为13x t y t =-+⎧⎨=-⎩,曲线C 的参数方程为1cos 2tan x y ϕϕ⎧=⎪⎨⎪=⎩. (1)求曲线C 的右顶点到直线l 的距离;(2)若点P 的坐标为()1,1,设直线l 与曲线C 交于A ,B 两点,求PA PB ⋅的值. 23. 选修4-5:不等式选讲(1)已知a ,b ,c 都是正实数,证明:2b a c a b c b++≥+; (2)已知a ,b ,c ,x ,y ,z 都是正实数,且满足不等式组:222222496a b c x y z ax by cz ⎧++=⎪++=⎨⎪++=⎩,求a b c x y z ++++的值.雅礼中学2020届高三月考试卷(五)数学(理科)参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1-5:ACCBB 6-10:CADDD 11-12:AB 11. A 设电线杆的下端分别为1M ,2M .且高度分别为a ,b .以1M ,2M 的中点为原点,1M ,2M 所在直线为x 轴建系,由仰角的正切相等知21a PM b PM =,则当a b =时,点P 的轨迹为1M ,2M 的垂直平分线,当a b ≠时,点P 的轨迹为圆.故选A.12. B 易知函数()f x 只有一个零点2,故{}2P =,由题意知21β-<,即13β<<.由题意知,函数()g x 在()1,3内存在零点,由()20xg x x ae =-=,得2xx ae =,所以2x x a e=.记()()()21,3x e h x x x =∈,则()()()222'2x x xx x x xe e x h x e e --==,()1,3x ∈.所以当()1,2x ∈时,()'0h x >,函数()h x 单调递增;当()2,3x ∈时,()'0h x <,函数()h x 单调递减;所以()()242h x h e ≤=,而()11h e =,()3391h e e=>,()()2142h x h e e <≤=,所以实数a 的取值范围为214,e e ⎛⎤⎥⎝⎦.故选B. 二、填空题:本大题共4小题,每小题5分,共20分. 13.52 14. 3π15. 7016.15. 70 在圆上任取4个点,组成一个凸四边形,该四边形的两条对角线在圆内恰有一个交点,故交点个数为4870C =.16.由题意知222sin sin sin 1αβγ++=,由基本不等式或柯西不等式知sin sin αβγ+≤=,同理sin sin βγα+≤=,sin sin γαβ+≤=,相加即得cos cos cos sin sin sin αβγαβγ++++三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤. 17.(1)Γ在侧面展开图中为BD 的长,其中AB AD π==,∴Γ; (2)当2πθ=时,建立如图所示的空间直角坐标系,则有()0,1,0A -、()0,1,0B 、1,0,2P π⎛⎫- ⎪⎝⎭、()11,0,C π-,()0,2,0AB ⇒=u u u r 、1,1,2AP π⎛⎫=- ⎪⎝⎭u u u r 、()11,0,OC π=-u u u ur .设平面ABP 的法向量为(),,n x y z =r ,则2002y x y z π=⎧⎪⎨-++=⎪⎩, 取2z =,得(),0,2n π=r,所以点1C 到平面PAB的距离为1OC n d n ⋅==u u u u r r r18.(1)∵11n n n a S S ++=-,2211n n n S a S λ++=-,∴()2211n n n n S S S S λ++=--,∴()1120n n n S S S λ++--=,∵0n a >,∴10n S +>.∴120n n S S λ+--=,所以12n n S S λ+=+.(2)当2n ≥时,∵12n n S S λ+=+,12n n S S λ-=+,相减得:()122n n a a n +≥=, ∴{}n a 从第二项起成等比数列,∵212S S λ=+,即2112a a a λ+=+,∴210a λ=+>得1λ>-,∴()21,112,2n n n a n λ-=⎧=⎨+≥⎩, 若{}n a 是等比数列,则2132a a a =,∴()()2211λλ+=+,∴1λ=.19.(1)由抛物线()220y px p =>过点()1,2P ,得2p =,设直线PA 的斜率为PA k ,直线PB 的斜率为PB k , 由PA ,PB 倾斜角互补可知PA PB k k =-,即12122211y y x x --=---,由2114y x =,2224y x =,代入得124y y +=-.(2)设直线AB 的斜率为AB k ,由2114y x =,2224y x =,得()211221124AB y y k x x x x y y -==≠-+,由(1)124y y +=-,将其代入上式得1241AB k y y ==-+.因此设直线AB 的方程为y x b =-+,由24y x y x b⎧=⎨=-+⎩,消去y 得()22240x b x b -++=,由()222440b b ∆=+->,得1b >-,这时1224x x b +=+,212x x b =,AB ==,又点P 到直线AB的距离为d =,所以1122ABP S AB d ∆=⋅⋅=⋅=令()()()[]()2131,3f x x x x =+-∈-,则由()231030'xf x x =-+=,得13x =或3x =,当11,3x ⎛⎫∈- ⎪⎝⎭时,()'0f x >,所以()f x 单调递增,当1,33x ⎛⎫∈ ⎪⎝⎭时,()'0f x <,所以()f x 单调递减,故()f x 的最大值为1256327f ⎛⎫=⎪⎝⎭,故ABP ∆面积ABPS ∆的最大值为9=.所以2K 的观测值()()()()()2n ad bc k a b c d a c b d -=++++()2200644456364120801001003⨯⨯-⨯==⨯⨯⨯,因为2K 的观测值41.3233k =>,由所给临界值表可知,在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关;(2)设参加交流会的5人中喜欢古典文学的男生代表m 人,女生代表n 人,则m n ξ=+,根据已知条件可得1,2,3,4,5ξ=,()()2222325413111,020C C C P P C m C n ξ=====⋅=;()()()21,12,0P P m n P m n ξ====+==1212123223223232545412310C C C C C C C C C C C =⋅+⋅=;()()()()31,22,13,0P P m n P m n P m n ξ====+==+==12210321123232232222323232545454715C C C C C C C C C C C C C C C C =⋅+⋅+⋅=;()()()42,23,1P P m n P m n ξ====+==210321132232223232545416C C C C C C C C C C C =⋅+⋅=;()()0322323234153,260C C C P P C m C n ξ=====⋅=, 所以ξ的分布列是:所以123452010156605E ξ=⨯+⨯+⨯+⨯+⨯=. 21.(1)由()0f x ≥,得()ln 100x x ax x ++≥>. 整理,得1ln a x x -≤+恒成立,即min 1ln a x x ⎛⎫-≤+ ⎪⎝⎭.令()1ln F x x x=+. 则()22'111x x x F x x-=-=.∴函数()F x 在()0,1上单调递减,在()1,+∞上单调递增. ∴函数()1ln F x x x=+的最小值为()11F =. ∴1a -≤,即1a ≥-.∴a 的取值范围是[)1,-+∞. (2)∵24n n +为数列()()112n n ⎧⎫⎪⎪⎨⎬++⎪⎪⎩⎭的前n 项和,1n n +为数列()11n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的前n 项和.∴只需证明()()()2111ln 121n n n n n n +<<+++即可.由(1),当1a =-时,有ln 10x x x -+≥,即1ln x x x≥-. 令11n x n +=>,即得11ln 111n n n n n +>-=++. ∴()()2211111ln 11212n n n n n n n +⎛⎫>>=- ⎪+++++⎝⎭. 现证明()211ln1n n n n +<+,即<==()* 现证明()2ln 11x x x x <->. 构造函数()()12ln 1G x x x x x=--≥,则()2221221'10x x x x G xx -+=+-=≥. ∴函数()G x 在[)1,+∞上是增函数,即()()10G x G ≥=. ∴当1x >时,有()0G x >,即12ln x x x<-成立.令x =()*式成立. 综上,得()()()2111ln 121n n n n n n +<<+++. 对数列()()112n n ⎧⎫⎪⎪⎨⎬++⎪⎪⎩⎭,21ln n n +⎧⎫⎨⎬⎩⎭,()11n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭分别求前n 项和,得22231ln 2ln ln 2421n n nn n n +<++⋅⋅⋅+<++. 22.(1)直线l 的普通方程为20x y +-=,曲线C 的普通方程为2214y x -=,故d =;(2)将直线l的标准参数方程改为11x y ⎧=⎪⎪⎨⎪=+⎪⎩,并代入2214y x -=得2320t --=, 设其两根为1t ,2t ,故1223PA PB t t ⋅==. 23.(1)由三元基本不等式知1b a c b a b c a b c b a b c b+++=++-++12≥=, 当且仅当b a b c a b c b+==+时取等号. (2)由三元柯西不等式知()()()2222222a b c x y z ax by cz ++++≥++, 结合方程组知上述不等式取等号,故可设a b c k x y z===,即a kx =,b ky =,c kz =,所以 ()2222222a b c k x y z ++=++,即249k =,得23k =,从而23a b c k x y z ++==++.。

相关文档
最新文档