磁光材料与其原理

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当用正弦波电流输入调制线圈时,则在垂直石榴石单晶
薄膜平面的方向上产生一个正弦变化的交变磁场,由此引起的交
变法拉第旋转角 t 为
t t0 sin t
(10-11)
式中 t 0
是交变法拉第旋转
的幅度,称为调制幅度。
t
由于交变磁场H引起的法拉第旋转使输出光强幅度变化(磁光 调制幅度)为
I0 cos2 t0 I0 cos2 +t0 I0 sin 2 sin 2(t0 10-12)
厚度L,即
=VHL
(10-5)
式中 V——费尔德常数。
在铁磁性或反铁磁介质中,法拉第旋转角正比于磁化强度
M,即
=KML
(10-6)
式中 K——孔特常数。
(2)磁光旋转的测量
10.1.3科顿-莫顿效应
这是一个当外加磁场垂直于光的行进方向时产生 的光偏振面旋转效应,又称磁线振双折射 (1)磁线振双折射
(10-4)
如果 2n / 2n 0, 1, 2,K 代表左旋椭圆偏振光
如果 2n - / 2n 0, 1, 2,K 代表右旋椭圆偏振光
(2)光的双折射和二向色性
10.1.2法拉第效应
(1)磁旋光效应及其非互易性
当线偏振光通过一个处于磁场大小为H的顺磁性或逆磁性
材料后,透射光偏振方向的旋转角θ正比于磁场大小H和材料
10.3 磁光材料的应用
10.3.1 磁旋光材料的应用 10.3.2 磁光材料非互易性的应用 10.3.3 磁光存储材料的应用
10.3.1 磁旋光材料的应用
(1)磁光调制 设由交变电流产生的交变磁场H引起的法拉第旋转角
为 t ,则低频磁光调制器系统的输出光强为
I t I0 cos2 +t = I0 / 2 1 cos 2 t (10-10)
yx的贡献来源于法拉第旋转,输出端TE模的光强IMO正比
于 yx 2
,所以
IMO
mz
2
IMO
cos2
(10-17)
TE 偏振光的强度与磁化强度的变化量有关,当Ms 的取向垂直
于光的传播方向时,IMO 达到最大值。
(2)磁光开关
由式(10-10)、式(10-12)两式可知:
(a)当 t0为定值时,磁光调制幅度随β而变化。
β=45° 时,磁光调制幅度最大。此时由式(10-10)得
I 45o+t =I0 / 21-sin 2t
(10-13)
I 随 t 作正弦变化。
(b)当β=45°时, t 0=45°磁光调制幅度最大。由式(10-13)
Ey E0 y
2
2
Ex E0 x
Ey E0 y
cos
sin2
(10-2)
当 n n 0, 1, 2,K 时,式(10-2)成为:
Ey = -1n E0 y
Ex
E0 x
(10-3)
当 E0x =E0y =A, m / 2m 1, 3, 5,K 时,式(10-2)成
为:
Ex2 Ey2 A2
10.1 磁光效应及其特征
10.1.1光的基本概念
10.1.2法拉第效应 10.1.3科顿-莫顿效应 10.1.4克尔效应 10.1.5塞曼效应
10.1.1光的基本概念
(1)光的偏振 1、自然光 2、线偏振光 3、部分偏振光 4、圆偏振光:左旋圆偏振光,右旋圆偏振光; 5、椭圆偏振光:左旋椭圆偏振光,右旋椭圆偏振 光;
设一单色平面波沿z轴方向传播,根据光的横波性,可将其电
矢量E写成:
Ex
E0 x
cos
2
z
t
Ey
E0 y
cos
2
z
t
(10-1)
Ez 0
式中λ——光波长;
ω——光波的圆频率或角频率;
——两个横向电矢量之间的相位差。
消去式(10-1)中的2 z t,整理得
Ex E0 x
2
3、玻璃磁光调制器
4、薄膜波导磁光调制器
将平均磁化强度表示为静态和动态分量之和,M M s mei,t
并利用Landau-Lifshitz方程可得
im 0Ms H Om H
式中 γ——旋磁比, 2 28GHzgT ;
(10-16)
0 ——真空磁导率。
介电常数张量的非对角分量 yx 决定了TM TE 模的耦合,对
此时,I 是t 的偶函数,输出光强仅与 t 的大小有关,即与
交变磁场H的大小有关,与磁场的方向无关。
当β=0°时,输出光强为:
I t I0 cos2 t I0 / 21 cos2t
输出光强 I 的变化情况与β=90° 时相类似。
(10-15)
1、钇铁石榴石单晶磁光调制器
2、石榴石单晶薄膜磁光调制器
可以看出,当t0 >45° 时,调制波形将产生畸变。
(c)当β≠45°时,I不仅与 有t 关,而且与β的变化也有
关,因此调制波形及其幅度将随起偏器和检偏器相对位置β值
而变化, t 0 <45°也会引起调制波形的畸变。
(d)当β=90° ,即两偏振器处于正交位置时,输出光强为
I 90o+t =I0 cos2 90o+t = I0 / 21-cos2t (10-14)
(10-7)
AOT-5
V 0.0162 0.961022 0.3610-1-4 (10-8)
FR-5
V 0.0781-0.1282-0.51310-3-4
(10-9)
其中V是以“104 min/ Tgcm ”为单位的费尔德常数,λ是以“μ
m”为单位的波长。
10.2.2 磁光存储材料
(1)MnBi多晶材料 (2)非晶态材料 (3)石榴石薄膜
(2)磁线振双折射的测量
10.1.4克尔效应
一束偏振光入射到具有磁矩的介质界面上,反射 后其偏振状态会发生变化,这个效应称为克尔效应。 克尔效应分为三种类型: (1)极向克尔效应 (2)横向克尔效应 (3)纵向克尔效应 克尔效应的测量
10.1.5 塞曼效应
入射单射光经过处于磁场的某些物质后,谱线会 受到磁ቤተ መጻሕፍቲ ባይዱ的影响而分裂成若干条谱线,分裂的各谱线 间隔大小与磁场强度成正比,这一磁光效应称塞曼效 应。
10.2 磁光材料
10.2.1 磁旋光材料
10.2.2 磁光存储材料
10.2.1 磁旋光材料
(1)磁光晶体 1、石榴石单晶 2、尖晶石晶体
(2)磁光薄膜 1、石榴石单晶薄膜 2、合金薄膜
(3)磁光玻璃
三种玻璃材料的费尔德常数可有如下经验公式给出:
AOT-44B
V 0.0276 0.981022 0.4731024
相关文档
最新文档