信号系统期末复习资料
《信号与系统》复习

物理意义:非周期信号可以分解为无数个频率为, 复振幅为[X(j)/2p]d 的虚指数信号ejw t的线性组合。
简述傅氏反变换公式的物理意义?
傅里叶变换性质
F 时移特性 x(t t 0 ) X( j) e jt
0
x(t)
X(j)
展缩特性
1 F x (at) X( j ) a a
(n = 1,2) (n = 1,2)
奇对称周期信号其傅里叶级数只含有正弦项。
周期信号的傅里叶级数 周期信号x(t) 如图 所示,其傅氏级数系数的特点是
偶对称周期信号其傅里叶级数只含有直流项与余弦项 周期信号f(t)如图所示,其直流分量等于_____
周期信号的频谱及特点
Cn是频率的函数,它反映了组成信号各次谐波 的幅度和相位随频率变化的规律,称频谱函数。
《信号与系统》复习
考核方式
平时成绩20% 实验成绩20% 期末成绩60%
题型: 选择题(每题3分,共30分) 填空题(每空2分,共20分) 简答题(每题4分,共20分)
计算题(每题10分,共30分)
第一章:信号与系统分析导论
周期信号平均功率计算 若电路中电阻R=1Ω,流过的电流为周期电流i(t)= 4cos(2πt)+2cos(3πt) A,其平均功率为( ) 系统的数学模型 连续时间系统:系统的输入激励与输出响应都必须为 连续时间信号,其数学模型是微分方程式。 离散时间系统: 系统的输入激励与输出响应都必须 为离散时间信号,其数学模型是差分方程式。
L[ yzs (t )] Yzs ( s) H ( s) L[ x(t )] X ( s)
写出系统函数H (s) 的定义式
简述拉氏变换求解微分方程的过程
信号及系统期末考试试题及答案

信号及系统期末考试试题及答案一、选择题(每题2分,共20分)1. 信号x(t)=3cos(2π(5t+π/4))是一个:A. 周期信号B. 非周期信号C. 随机信号D. 确定性信号2. 系统分析中,若系统对单位阶跃函数的响应为u(t)+2,则该系统为:A. 线性时不变系统B. 线性时变系统C. 非线性时不变系统D. 非线性时变系统3. 下列哪个是连续时间信号的傅里叶变换:A. X(k)B. X(n)C. X(f)D. X(z)4. 信号通过线性时不变系统后,其频谱:A. 仅发生相位变化B. 仅发生幅度变化C. 发生幅度和相位变化D. 不发生变化5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. e^(-st)D. 1/s二、简答题(每题5分,共10分)1. 解释什么是卷积,并给出卷积的数学表达式。
2. 说明傅里叶变换与拉普拉斯变换的区别。
三、计算题(每题15分,共30分)1. 给定连续时间信号x(t)=e^(-t)u(t),求其傅里叶变换X(f)。
2. 给定离散时间信号x[n]=u[n]-u[n-3],求其z变换X(z)。
四、分析题(每题15分,共30分)1. 分析信号x(t)=cos(ωt)+2cos(2ωt)通过理想低通滤波器后输出信号的表达式,其中滤波器的截止频率为ω/2。
2. 讨论线性时不变系统的稳定性,并给出判断系统稳定性的条件。
五、论述题(每题10分,共10分)1. 论述信号的采样定理及其在数字信号处理中的应用。
参考答案一、选择题1. A2. A3. C4. C5. A二、简答题1. 卷积是信号处理中的一种运算,它描述了信号x(t)通过系统h(t)时,输出信号y(t)的计算过程。
数学表达式为:y(t) = (x * h)(t) = ∫x(τ)h(t-τ)dτ。
2. 傅里叶变换用于连续时间信号的频域分析,而拉普拉斯变换则适用于连续时间信号,并且可以处理有初始条件的系统。
三、计算题1. X(f) = 3[δ(f-5) + δ(f+5)]。
信号与系统期末考试复习题及答案(共8套)

信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
信号与系统复习题

信号与系统期末复习题一、填空题1.描述线性非时变连续系统的数学模型是_微分方程______________________________。
2.离散系统的激励与响应都是___离散时间信号_____。
4.请写出“LTI ”的英文全称___线性时不变____。
5.若信号f(t)的FT 存在,则它满足条件是_____________________。
8、周期信号的频谱是离散的,频谱中各谱线的高度,随着谐波次数的增高而逐渐减小,当谐波次数无限增多时,谐波分量的振幅趋向于无穷小,该性质称为__收敛性____ 9、若某信号)(t f 的最高频率为3kHz ,则)3(t f 的奈奎斯特取样频率为 18 kHz 。
10、某系统的频率特性为23)(3)(2+++=ωωωωj j j j H ,则其冲激响应为h(t)= )()3(2t e e tt ε--- 。
11、=*)(3)(2n n n n εε )()23(11n n n ε++- 。
12、已知1)(2-=z z z F ,则f(n)= )(])1(1[21n nε-- 。
13、某LTI 连续系统的输入信号为)()(2t e t f t ε-=,其冲激响应)()(t t h ε=,则该系统的零状态响应为)(n y zs 为)(]1[212t e t ε-- 。
14.(4分)()()u t u t *= t u (t )[][]u n u n *= (n +1)u [n +1]=(n +1) u [n ]15.(4分)已知信号f (t )= Sa (100t )* Sa (200t ),其最高频率分量为f m = 50/π Hz ,奈奎斯特取样率f s = 100/π Hz 16.(4分)已知F )()]([ωj F t f =,则F 3[()]j tf t e = [(3)]F j ω-F()(2)n f t t n δ∞=-∞⎡⎤-⎢⎥⎣⎦∑= 1[()]2n F j n ωπ∞=-∞-∑17.(2分)设某因果离散系统的系统函数为az zz H +=)(,要使系统稳定,则a 应满足 | a | < 118.(2分)已知某系统的频率响应为3()4j H j e ωω-=,则该系统的单位阶跃响应为 4 u (t -3)19.(3分)已知某系统的系统函数为2()1H s s =+,激励信号为()3cos 2x t t =,则该系统的稳态响应为()2(arctan 2)y t t =- 20.(3分)已知)2)(21()(--=z z z z X ,收敛域为221<<z ,其逆变换为 21()[]2[1]32n n u n u n ⎡⎤-+--⎢⎥⎣⎦二、选择题1.连续信号)(t f 与)(0t t -δ的卷积,即=-*)()(0t t t f δ(a) )(t f (b) )(0t t f - (c) )(t δ (d) )(0t t -δ 2.连续信号)(t f 与)(0t t -δ的乘积,即=-)()(0t t t f δ(a) )()(0t t f δ (b) )(0t t f - (c) )(t δ (d) )()(00t t t f -δ 3.线性时不变系统的数学模型是(a) 线性微分方程 (b) 微分方程 (c) 线性常系数微分方程 (d) 常系数微分方程4.若收敛坐标落于原点,S 平面有半平面为收敛区,则(a) 该信号是有始有终信号 (b) 该信号是按指数规律增长的信号 (c) 该信号是按指数规律衰减的信号(d) 该信号的幅度既不增长也不衰减而等于稳定值,或随时间n t t ,成比例增长的信号 5.若对连续时间信号进行频域分析,则需对该信号进行 (a) LT (b) FT (c) Z 变换 (d) 希尔伯特变换 6.无失真传输的条件是(a) 幅频特性等于常数 (b) 相位特性是一通过原点的直线 (c) 幅频特性等于常数,相位特性是一通过原点的直线(d) 幅频特性是一通过原点的直线,相位特性等于常数 7.描述离散时间系统的数学模型是(a) 差分方程 (b) 代数方程 (c) 微分方程 (d) 状态方程 8.若Z 变换的收敛域是 1||x R z > 则该序列是(a) 左边序列 (b)右边序列 (c)双边序列 (d) 有限长序列 9.若以信号流图建立连续时间系统的状态方程,则应选(a) 微分器的输出作为状态变量 (b) 延时单元的输出作为状态变量 (c) 输出节点作为状态变量 (d)积分器的输出作为状态变量 10.若离散时间系统是稳定因果的,则它的系统函数的极点 (a) 全部落于单位圆外 (b) 全部落于单位圆上 (c) 全部落于单位圆内 (d) 上述三种情况都不对11、某LTI 系统的微分方程为)()(2)(t f t y t y =+',在f(t)作用下其零状态响应为t e -+1,则当输入为)()(2t f t f '+时,其零状态响应为: (a) t e -+2 (b) t e --2 (c) t e -+32 (d)1 12、某3阶系统的系统函数为ks s s ks s H ++++=32)(23,则k 取何值时系统稳定。
期末复习资料(信号与系统)

《信号与系统》期末复习材料一、考核目标和范围通过考核使学生了解和掌握信号与系统的基本原理、概念和方法,运用数学分析的方法解决一些简单问题,使学生在分析问题和解决问题的能力上有所提高,为学生进一步学习后续课程打下坚实的基础。
课程考核的命题严格限定在教材第1—8章内,对第9、10章不做要求。
二、考核方式三、复习资源和复习方法(1)教材《信号与系统》第2版,陈后金,胡健,薛健编著,清华大学出版社,北方交通大学出版社,2003年。
结合教材习题解答参考书(陈后金,胡健,薛健,钱满义,《信号与系统学习指导与习题精解》,清华大学出版社,北京交通大学出版社,2005)进行课后习题的练习、复习。
(2)离线作业。
两次离线作业题目要熟练掌握。
(3)复习方法:掌握信号与系统的时域、变换域分析方法,理解各种变换(傅里叶变换、拉普拉斯变换、Z变换)的基本内容、性质与应用。
特别要建立信号与系统的频域分析的概念以及系统函数的概念。
结合习题进行反复练习。
四、期末复习重难点第1章信号与系统分析导论1. 掌握信号的定义及分类。
2. 掌握系统的描述、分类及特性。
3. 重点掌握确定信号及线性非时变系统的特性。
第2章信号的时域分析1.掌握典型连续信号与离散信号的定义、特性及其相互关系。
2.掌握连续信号与离散信号的基本运算。
3.掌握信号的分解,重点掌握任意连续信号分解为冲激信号的线性组合,任意离散信号分解为单位脉冲序列的线性组合。
第3章系统的时域分析1.掌握线性非时变连续时间系统时域描述。
2.掌握用卷积法计算连续时间系统的零状态响应3.掌握离散时间系统的时域描述。
4.掌握用卷积法计算离散时间系统的零状态响应。
第4章周期信号的频域分析1.掌握连续周期信号的频域分析方法。
2.掌握离散周期信号的频域分析方法。
第5章非周期信号的频域分析1.掌握常见连续时间信号的频谱,以及Fourier变换的基本性质及物理含义。
2.掌握连续非周期信号的频域分析。
3.掌握离散非周期信号的频域分析。
信号与系统期末考试复习资料

第一章绪论1、选择题1.1、f(5—2t)是如下运算的结果 CA、f(-2t)右移5B、f(-2t)左移5C、f(-2t)右移D、f(-2t)左移1.2、f(t0-a t)是如下运算的结果 C .A、f(—a t)右移t0;B、f(—a t)左移t0;C、f(—a t)右移;D、f(—a t)左移1。
3、已知系统的激励e(t)与响应r(t)的关系为:则该系统为 B 。
A、线性时不变系统;B、线性时变系统;C、非线性时不变系统;D、非线性时变系统1.4、已知系统的激励e(t)与响应r(t)的关系为: 则该系统为 C 。
A、线性时不变系统B、线性时变系统C、非线性时不变系统D、非线性时变系统1。
5、已知系统的激励e(t)与响应r(t)的关系为:则该系统为B 。
A、线性时不变系统B、线性时变系统C、非线性时不变系统D、非线性时变系统1。
6、已知系统的激励e(t)与响应r(t)的关系为:则该系统为 BA、线性时不变系统B、线性时变系统C、非线性时不变系统D、非线性时变系统1.7。
信号的周期为 C 。
A、B、C、D、1。
8、信号的周期为: B 。
A、B、C、D、1.9、等于 B 。
A。
0 B.-1 C.2 D。
-21。
10、若是己录制声音的磁带,则下列表述错误的是:BA. 表示将此磁带倒转播放产生的信号B。
表示将此磁带放音速度降低一半播放C. 表示将此磁带延迟时间播放D. 表示将磁带的音量放大一倍播放1.11。
AA.B。
C. D。
1。
12.信号的周期为 B . A B C D1.13.如果a〉0,b>0,则f(b—a t)是如下运算的结果 C 。
A f(-a t)右移bB f(-a t)左移bC f(—a t)右移b/aD f(-a t)左移b/a1.14.线性时不变系统的响应,下列说法错误的是 C 。
A 零状态响应是线性时不变的B 零输入响应是线性时不变的C全响应是线性时不变的 D 强迫响应是线性时不变的2、填空题与判断题2。
信号与系统期末复习ppt课件
PPT学习交流
11
例2.2-1 已知系统的传输算子H(p)= 2p/(p+3)(p+4) , 初始条件yzi(0)=1, yzi(0)2 , 试求系统的零输入
解响应。H(p)(p32)p(p4)
特征根λ1=-3, λ2=-4 零输入响应形式为
yzi(t)=C1e-3t+C2e-4t t>0 将特征根及初始条件y(0)=1, y′(0)=2代入
8
离散系统 (5) (P256,例5.2-1(1),5.2-2(1))
1) y(n)=T[x(n)]=ax(n)+b; 是非线性系统、时不变系统。
2) y(n)= ax(n)+b x(n-1)+c (6) (P257,例5.2-2(2))
1)y(n)=T[x(n)]=nx(n)。 是线性、时变系统
2)y(n)=n3x(n)
PPT学习交流
9
第二章 时域解法
重点
1)求系统的全响应的时域解法 2)卷积及其运算
PPT学习交流
10
一、 时域解法
1)用算子法解零输入响应yzi;
2)用卷积解零状态响应yzs ;
注意:1) 微分方程的算子表示法; 2) 单位冲激响应h(t) 3) 卷积的积分表示式及计算;
(1) f1(t)co 2t)s 5 c ( o 4 t)s((1-3(1))
(2) f2(t)[1c0o3ts)(2 ] (1-3(2))
PPT学习交流
5
二、系统及其性质
1、线性系统:
1)可分解性
2)零输入线性
3)零状态线性
2、时不变系统:
f( t) y ( t) f( t t0 ) y ( t t0 )
信号与系统
信号与系统期末复习资料(仅供参考)1、什么叫做LTIS ,它有什么特点?LTIS 是线性是不变系统,具有线性(齐次性、叠加性),时不变性,微分性,积分性。
1、傅氏变换、拉氏变换、Z 变换三者的关系是什么?拉氏变换是傅氏变换的升级版,Z 变换是离散的拉氏变换。
2、什么叫DTF 、FFT ,两者关系是什么?DTF 表示离散的傅里叶变换,FFT 表示快速傅里叶变换,FFT 是DTF 的一种快速变换。
3、消息、信号、信息三者关系? 4、时域抽样定理5、离散时间系统稳定性6、连续时间系统稳定性8、信号基本运算9、连续时间信号、离散时间信号、数字信号的图像判定 10、卷积(图像法)(),(),()()()f t h t g t f t h t =⊗例:已知求11、1、一线性时不变系统,在相同的初始条件下,若当激励为时,其全响应为,当激励为时,其全响应,求:(1)初始条件不变,当激励为时的全响应,为大于零的常数。
(2)初始条件增大一倍,当激励为时的全响应。
解:根据线性系统的性质则解得则小结:对于线性时不变系统,其全响应包括零状态响应和零输入响应,即,如果输入改变为原来的倍,对应的零状态响应变为原来的倍,即为。
如零状态改变为原来的倍,对应的零输入响应变为原来的倍,即为。
系统的响应变为。
12、画频谱图(可能已知单边画双边)已知周期电压()()()()22cos 45sin 245cos 360u t t t t =++-+++,试画出其单边、双边幅度谱和相位谱。
解:()()()()22cos 45sin 245cos 360u t t t t =++-+++()()()22cos 45cos 2135cos 360t t t =++++++所以令01ω=,即有 01121332,2,45,1,135,1,60,A A A A ϕϕϕ=======因此单边幅度谱和相位谱如下:根据单双边谱之间的关系得:3124513560001122331112,,0.5,0.5222j j j j j j F A F Ae e F A e e F A e e ϕϕϕ±±±±±±±±±========由此的双边谱如下:ω 0ω02ω03ω 2 1A n ω0ω 02ω03ω 3ππn ϕπ/4ωω3ω20.5nF2ωω-02ω-03ω-113、已知系统的微分方程为 ()()()()()323y t y t y t f t f t ''''++=+,求在下列两种情况下系统的全响应。
信号与系统期末考试复习资料
第一章绪论1、选择题、f (5-2t )是如下运算的结果 CA 、 f (-2t )右移5B 、 f (-2t )左移5C 、 f (-2t )右移25 D 、 f (-2t )左移25、f (t 0-a t )是如下运算的结果 C 。
A 、f (-a t )右移t 0;B 、f (-a t )左移t 0 ;C 、f (-a t )右移a t 0;D 、f (-a t )左移at0 、已知 系统的激励e(t)与响应r(t)的关系为:)()()(t u t e t r = 则该系统为 B 。
A 、线性时不变系统;B 、线性时变系统;C 、非线性时不变系统;D 、非线性时变系统 、已知 系统的激励e(t)与响应r(t)的关系为:)()(2t e t r = 则该系统为 C 。
A 、线性时不变系统B 、线性时变系统C 、非线性时不变系统D 、非线性时变系统 、已知 系统的激励e(t)与响应r(t)的关系为:)1()(t e t r -= 则该系统为 B 。
A 、线性时不变系统B 、线性时变系统C 、非线性时不变系统D 、非线性时变系统、已知 系统的激励e(t)与响应r(t)的关系为:)2()(t e t r = 则该系统为 B A 、线性时不变系统 B 、线性时变系统 C 、非线性时不变系统 D 、非线性时变系统 .信号)34cos(3)(π+=t t x 的周期为 C 。
A 、π2 B 、π C 、2π D 、π2、信号)30cos()10cos(2)(t t t f -=的周期为: B 。
A 、15π B 、5π C 、π D 、10π、dt t t )2(2cos 33+⎰-δπ等于 B 。
、 若)(t x 是己录制声音的磁带,则下列表述错误的是: BA. )(t x -表示将此磁带倒转播放产生的信号B. )2(t x 表示将此磁带放音速度降低一半播放C. )(0t t x -表示将此磁带延迟0t 时间播放D. )(2t x 表示将磁带的音量放大一倍播放 .=⋅)]([cos t u t dtdA A .)()(sin t t u t δ+⋅- B. t sin - C. )(t δ D.t cos.信号t t t x o 2cos 4)304cos(3)(++=的周期为 B 。
数字信号处理期末重点复习资料答案
1、对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字信号。
2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。
3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。
4、)()(5241n R x n R x ==,只有当循环卷积长度L ≥8 时,二者的循环卷积等于线性卷积。
5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是 ()n h n ∞=-∞<∞∑6、用来计算N =16点DFT ,直接计算需要(N 2)16*16=256_次复乘法,采用基2FFT算法,需要__(N/2 )×log 2N =8×4=32 次复乘法。
7、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型_和 并联型_四种。
8、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中并联型的运算速度最高。
9、数字信号处理的三种基本运算是:延时、乘法、加法10、两个有限长序列 和 长度分别是 和 ,在做线性卷积后结果长度是__N 1+N 2-1_。
11、N=2M 点基2FFT ,共有 M 列蝶形,每列有N/2 个蝶形。
12、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对13、数字信号处理的三种基本运算是: 延时、乘法、加法14、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。
16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。
17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。
18、单位脉冲响应分别为 和 的两线性系统相串联,其等效系统函数时域及频域表达式分别是h(n)=h1(n)*h2(n),=H1(ej ω)×H2(ej ω)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
周期信号 ~x(t) 的频谱 Cn
Cn Cn e jn
傅里叶级数的基本性质 卷积性质:
若 ~x1(t)和~x2 (t) 均是周期为 T0 的周期信号,且
~x1(t) C1n , ~x2 (t) C2n
则有 ~x1(t) * ~x2 (t) T0C1n C2n
吉伯斯现象产生原因: 时间信号存在跳变破坏了信号的收敛性,使得在间断点傅
奇异信号具有微积分关系:
δ'(t) dδ(t) dt
t
δ(t) δ'( )d
δ(t) du(t) dt
u(t) dr(t) dt
t
u(t) δ( )d
t
r(t) u( )d
线性相加
x(t) t[u(t) u(t T )]
x(t) sin(0t)[u(t) u(t T )]
里叶级数出现非一致收敛。
时域卷积特性
若x1(t) F X1( j)
x2 (t) F X 2 ( j)
则x1(t) x2 (t) F X1( j) X 2 ( j)
[例 9] 求如图所示信号的频谱
解:
x(t) p2 (t) * p2 (t)
x(t) 2
p2 (t) F 2Sa ()
由x1(t) x2 (t) F X1( j) X 2 ( j) 2
x( ) h(t )d
=
3u(
)
2e 3(t
)u(t
)d
= 0t 3 2e 3(t )d
0 2(1 e3t ) = 0
t 0 t0
t 0 t0
= 2(1 e3t )u(t)
卷积的定义:
y(t) x(t) h(t) x( )h(t )d
系统完全响应 = 零输入响应+零状态响应
y[k] yzi [k] yzs [k]
系统的连接方式有:并联、级联、反馈三种。
第四章 周期信号应满足狄里赫利(Dirichlet 条件),即:
(1) 在一个周期内绝对可积,即满足
T0 / 2 ~x (t) dt T0 / 2
(2) 在一个周期内只有有限个有限的不连续点; (3) 在一个周期内只有有限个极大值和极小值。
H ( j) 3( j) 4 3( j) 4 ( j)2 3( j) 2 ( j 1)( j 2)
故系统的零状态响应 yzs (t)的频谱函数 Yzs (jw)为
Yzs
(
j)
X
(
j)H
(
j)
(
j
3( j) 4 1)( j 2)(
j
3)
无失真传输系统应满足两个条件: (1) 系统的幅度响应|H(jw)|在整个频率范围内应为常数 K,即系统的
例 3 ~x (t
解:
)
3
cos
(0t
4)
求 Cn 。
~x (t) 3cos(0t 4)
3 1 e j(0t4) ej(0t4) 2
3 e j4e j0t 3 e j4e j0t
2
2
根据指数形式傅里叶级数的定义可得:
C1
3 2
e j4 ,
C1
3 2
ej4 ,
Cn 0, n 1
x(t)
T
x' (t )
1
t
0
T
t
0
T
(T)
(2) x(t) sin(0t)[u(t) u(t T )] x'(t) 0 cos(0t)[u(t) u(t T )] sin(0t)[ (t) (t T )]
0 cos(0t)[u(t) u(t T )]
x(t) 1
0 1
T t
x' (t) 0
0 0
t T
(1) x1[k] = cos(kp/6) W0 /2p = 1/12, 由于 1/12 是不可约的有理数, 故离散序列的周期 N=12。
连续信号分解为冲激信号的线性组合 离散序列分解为脉冲序列的线性组合
第三章 连续 LTI 系统用 n 阶常系数线性微分方程描述 离散 LTI 系统用 n 阶常系数线性差分方程描述
单位冲激信号作用于初始状态为零的系统上的响应——>冲激响应
[例 5] 已知某 LTI 系统的动态方程式为
y'(t) + 3y(t) = 2x(t)
系统的冲激响应 h(t) = 2e-3t u(t), x(t) = 3u(t), 试求系统的零状态响应
yzs(t)。
解:
yzs (t) x(t) h(t)
(1) x(t) t[u(t) u(t T )]
(2) x(t) sin(0t)[u(t) u(t T )]
解: (1) x(t) t[u(t) u(t T )]
x'(t) u(t) u(t T ) t[ (t) (t T )] u(t) u(t T) T (t T)
0
t 2
X ( j) 4Sa 2 ()
P174 例 4-20
时域的离散化导致其频谱的周期化 X(t)在时域的离散化导致对应的频谱函数 X(jw)的周期变化 X( ej )在频域的离散化导致对应时域系列 x[k]的周期变化
第五章 冲激响应 h(t)的傅里叶变换得 H(jw)
H(jw)一般可以表示为幅度与相位的形式
4. 信号的相加
第二章
[例 2] 写出图示信号的时域描述式
(1) y(t) x1 (t) x2 (tห้องสมุดไป่ตู้ xn (t) (2)
x(t)
x(t)
1
1
t
t
1 0
1
1 0
1
2
1
解:
(1) x(t) r(t 1) r(t) r(t 1) r(t 2)
(2) x(t) u(t 1) 2r(t) 2r(t 1)
带宽为无穷大; (2) 系统的相位响应 (w)在整个频率范围内应与 成正
第六章
拉普拉斯正变换
X (s) x(t)estdt
拉普拉斯反变换
x(t) 1 jX (s)estds 2πj j
x1(t) 0.5
t 0
0.5
x2(t) 0.5
0
t
x1(t)+x2(t) 1
t 0
5. 信号的相乘
y(t) x1(t) x2 (t) xn (t)
x1(t) 1
t
1 0
1
x2(t) 1
2
0
t 2
y(t)=x1(t) x2(t) 1
t
1 0
1
[例 3] 画出下列信号及其一阶导数的波形,其中 T 为常数,w0= 2p/T。
H ( j) | H ( j) | e j()
幅度响应
相位响应
[例 4] 已知描述某 LTI 系统的微分方程为
y"(t) + 3y'(t) + 2y(t) = 3x'(t)+4x(t),
系统的输入激励为 x(t) = e-3t u(t),求系统的零状态响应 yzs (t)。
解: 由于输入激励 x(t)的频谱函数为 系统的频率响应由微分方程可得 X ( j) 1 j 3