洛伦兹力计算题——【江苏高考物理 精】
2025届高考物理一轮复习专题卷: 安培力与洛伦兹力(含解析)

2025届高考物理一轮复习专题卷: 安培力与洛伦兹力一、单选题1.如图所示,一带负电的粒子(不计重力)进入磁场中,图中的磁场方向、速度方向及带电粒子所受的洛伦兹力方向标示正确的是( )A.B.C.D.2.速度选择器是质谱仪的重要组成部分,工作时电场和磁场联合作用,从各种速率的带电粒子中选择出具有一定速率的粒子。
下列结构能成为速度选择器的是( )A. B.C. D.3.图是简化的某种旋转磁极式发电机原理图。
定子是仅匝数n 不同的两线圈,,二者轴线在同一平面内且相互垂直,两线圈到其轴线交点O 的距离相等,且均连接阻值为R 的电阻,转子是中心在O 点的条形磁铁,绕O 点在该平面内匀速转动时,两线圈输出正弦式交变电流。
不计线圈电阻、自感及两线圈间的相互影响,下列说法正确的是( )12n nA.两线圈产生的电动势的有效值相等B.两线圈产生的交变电流频率相等C.两线圈产生的电动势同时达到最大值D.两电阻消耗的电功率相等4.某同学搬运如图所示的磁电式电流表时,发现表针晃动剧烈且不易停止。
按照老师建议,该同学在两接线柱间接一根导线后再次搬运,发现表针晃动明显减弱且能很快停止。
下列说法正确的是( )A.未接导线时,表针晃动过程中表内线圈不产生感应电动势B.未接导线时,表针晃动剧烈是因为表内线圈受到安培力的作用C.接上导线后,表针晃动过程中表内线圈不产生感应电动势D.接上导线后,表针晃动减弱是因为表内线圈受到安培力的作用5.如图所示,为高中物理实验室常用的磁电式电流表的内部结构,基本组成部分是磁体和放在磁体两极之间的线圈,其物理原理就是通电线圈因受安培力而转动。
电流表的两磁极装有极靴,极靴中间还有一个用软铁制成的圆柱。
关于磁电式电流表,下列说法正确的是( )A.铁质圆柱内部磁感应强度为零B.线圈的磁通量始终为零C.线圈转动时,螺旋弹簧变形,反抗线圈转动D.电流不为零,线圈停止转动后不再受到安培力6.如图所示,一段长方体金属导电材料,左右两端面的边长为a 和b 内有带电量为的自由电子,已知该导电材料单位体积内自由电子数为n ;导电材料置于方向垂直于其前表面向里的匀强磁场中,内部磁感应强度为B 。
江苏省2024年高考物理试卷(附答案解析)

江苏省2024年高考物理试卷一、选择题1.在静电场中有a、b两点,试探电荷在两点的静电力F与电荷量q满足如图所示的关系,请问a、b两点的场强大小关系是()A.E a=E b B.E a=2E b C.E a<E b D.E a>E b2.用立体影院的特殊眼镜去观看手机液晶屏幕,左镜片明亮,右镜片暗,现在将手机屏幕旋转90度,会观察到()A.两镜片都变亮B.两镜片都变暗C.两镜片没有任何变化D.左镜片变暗,右镜片变亮3.用粒子轰击氮核从原子核中打出了质子,该实验的核反应方程式是x+714N→11H+614C,粒子x为()A.正电子10e B.中子n01C.氘核21H D.氦核4.喷泉a、b形成如图所示的形状,不计空气阻力,则喷泉a、b的()A.加速度相同B.初速度相同C.最高点的速度相同D.在空中的时间相同5.在原子跃迁中,辐射如图所示的4种光子,其中只有一种光子可使某金属发生光电效应,是哪一种()A.λ1B.λ2C.λ3D.λ46.现有一光线以相同的入射角θ,打在不同浓度NaCl的两杯溶液中,折射光线如图所示(β1<β2),已知折射率随浓度增大而变大。
则()A.甲折射率大B.甲浓度小C.甲速度大D.甲临界角大7.如图所示,水面上有O、A、B三点共线,OA=2AB,某时刻在O点的水面给一个扰动,t1时刻A开始振动,则B振动的时刻为()A.t1B.3t12C.2t1D.5t128.生产陶瓷的工作台匀速转动,台面面上掉有陶屑,陶屑与桌面间的动摩擦因数处处相同(台面够大),则()A.离轴OO'越远的陶屑质量越大B.离轴OO'越近的陶屑质量越大C.只有平台边缘有陶屑D.离轴最远的陶屑距离不超过某一值R9.在水平面上有一个U形滑板A,A的上表面有一个静止的物体B,左侧用轻弹簧连接在滑板A的左侧,右侧用一根细绳连接在滑板A的右侧,开始时弹簧处于拉伸状态,各表面均光滑,剪断细绳后,则()A.弹簧原长时B动量最大B.压缩最短时B动能最大C.系统动量变大D.系统机械能变大10.如图所示,在绝缘的水平面上,有闭合的两个线圈a、b,线圈a处在匀强磁场中,现将线圈a从磁场中匀速拉出,线圈a、b中产生的感应电流方向分别是()A.顺时针,顺时针B.顺时针,逆时针C.逆时针,顺时针D.逆时针,逆时针11.如图所示,细绳穿过竖直的管子拴住一个小球,让小球在A高度处的水平面内做匀速圆周运动,现用力将细绳缓慢下拉,使小球在B高度处的水平面内做匀速圆周运动,不计一切摩擦,则()A.线速度v A>v B B.角速度ωA<ωBC.向心加速度a A<a B D.向心力F A>F B二、非选择题12.某同学在实验室做“测定金属的电阻率”的实验,除被测金属丝外,还有如下实验器材可供选择:A.直流电源:电动势约为3V,内阻可忽略不计;B.电流表A:量程0~100mA,内阻约为5Ω;C.电压表V:量程0~3V,内阻为3kΩ;D.滑动变阻器:最大阻值为100Ω,允许通过的最大电流为0.5A;E.开关、导线等。
高中物理第三章磁场第5节洛伦兹力的应用练习含解析教科版选修311203132

高中物理第三章磁场第5节洛伦兹力的应用练习含解析教科版选修311203132一、单项选择题1.如图所示,有界匀强磁场边界线SP∥MN,速度不同的同种带电粒子从S点沿SP方向同时射入磁场,其中穿过a点的粒子速度v1与MN垂直,穿过b点的粒子,其速度方向与MN成60°角.设两粒子从S到a、b所需时间分别为t1、t2,则t1∶t2为( )A.1∶3B.4∶3C.1∶1 D.3∶2解析:a粒子的偏向角为90°,b离子的偏向角为60°,即a、b离子做圆周运动的圆心角分别为90°、60°,由t=θ2πT知,t1t2=π2π3=32,D项正确.答案:D2.两个带电粒子以同一速度、同一位置进入匀强磁场,在磁场中它们的运动轨迹如图所示.粒子a 的运动轨迹半径为r 1,粒子b 的运动轨迹半径为r 2,且r 2=2r 1,q 1、q 2分别是粒子a 、b 所带的电荷量,则( )A .a 带负电、b 带正电、q 1m 1∶q 2m 2=2∶1B .a 带负电、b 带正电、q 1m 1∶q 2m 2=1∶2C .a 带正电、b 带负电、q 1m 1∶q 2m 2=2∶1D .a 带正电、b 带负电、q 1m 1∶q 2m 2=1∶1解析:根据磁场方向及两粒子在磁场中的偏转方向可判断出a 、b 分别带正、负电,根据半径之比可计算出q 1m 1∶q 2m 2为2∶1.答案:C3.美国物理学家劳伦斯于1932年发明的回旋加速器,应用带电粒子在磁场中做圆周运动的特点,能使粒子在较小的空间范围内经过电场的多次加速获得较大的能量,使人类在获得较高能量带电粒子方面前进了一步.如图为一种改进后的回旋加速器示意图,其中盒缝间的加速电场场强大小恒定,且被限制在A 、C 板间,如图所示.带电粒子从P 0处以速度v 0沿电场线方向射入加速电场,经加速后再进入D 形盒中的匀强磁场做匀速圆周运动.对于这种改进后的回旋加速器,下列说法正确的是( )A .带电粒子每运动一周被加速两次B .带电粒子每运动一周P 1P 2=P 2P 3C .加速粒子的最大速度与D 形盒的尺寸有关 D .加速电场方向需要做周期性的变化解析:由题图可以看出,带电粒子每运动一周被加速一次,A 错误;由R =mv qB 和Uq =12mv 22-12mv 21可知,带电粒子每运动一周,电场力做功都相同,动能增量都相同,但速度的增量不相同,故粒子做圆周运动的半径增加量不相同,B 错误;由v =qBRm可知,加速粒子的最大速度与D 形盒的半径R 有关,C 正确;由T =2πmBq可知,粒子运动的周期不随v 而变,故D 错误.答案:C4.如图所示,一电子以与磁场方向垂直的速度v 从P 处沿PQ 方向进入长为d 、宽为h 的匀强磁场区域,从N 处离开磁场,若电子质量为m ,带电荷量为e ,磁感应强度为B ,则( )A .电子在磁场中运动的时间t =d vB .电子在磁场中运动的时间t =hvC .洛伦兹力对电子做的功为BevhD .电子在N 处的速度大小也是v解析:洛伦兹力不做功,所以电子在N 处速度大小也为v ,D 正确,C 错误,电子在磁场中的运动时间t =PN ︵v ≠d v ≠hv,A 、B 错误.答案:D5.如图所示是磁流体发电机示意图,两块面积均为S 的相同平行金属板M 、N 相距为L ,板间匀强磁场的磁感应强度为B ,等离子体(即高温下的电离气体,含有大量的正、负离子,且整体显中性)以速度v 不断射入两平行金属极板间,两极板间存在着如图所示的匀强磁场.关于磁流体发电机产生的电动势E 的大小,下列说法不正确的是( ) A .与等离子体所带的电荷量成正比 B .与等离子体速度v 的大小成正比 C .与两板间的距离的大小成正比D .与两板间匀强磁场的磁感应强度的大小成正比解析:当粒子所受洛伦兹力与电场力平衡时,板间电压达到稳定,此时,qvB =q ·U L,则U =BLv .可知A 说法不正确,故正确答案为A.答案:A二、多项选择题6.如图所示,圆形区域内有垂直纸面的匀强磁场,三个质量和电荷量相同的带电粒子a 、b 、c ,以不同的速率对准圆心O 沿着AO 方向射入磁场,其运动轨迹如图.若带电粒子只受磁场力的作用,则下列说法正确的是( ) A .a 粒子动能最大 B .c 粒子速率最大C .a 粒子在磁场中运动时间最长D .它们做圆周运动的周期T a <T b <T c解析:由运动轨迹可知r a <r b <r c ,根据r =mvqB,可知v c >v b >v a ,A 错误,B 正确;根据运动轨迹对应的圆心角及周期公式,可知它们的周期相等,a 粒子在磁场中运动时间最长,C 正确,D 错误. 答案:BC7.如图所示,在一个圆形区域内有垂直纸面向里的匀强磁场.速率不同的一束质子从边缘的M 点沿半径方向射入磁场区域,关于质子在磁场中的运动下列说法正确的是( ) A .运动轨迹越长的,运动时间越长 B .运动轨迹越短的,运动时间越长 C .运动速率大的,运动时间越长 D .运动速率小的,运动时间越长解析:根据质子在磁场中的运动情况作出不同速率的质子的运动轨迹如图所示,由图和r =mv qB可知,质子的运动速率v 1>v 2,显然运动轨迹s 1>s 2,θ1<θ2,且质子的运动时间t ∝θ,正确答案为B 、D 项.答案:BD8.1932年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示.这台加速器由两个铜质D 形盒D 1、D 2构成,其间留有空隙,下列说法正确的是( )A .离子由加速器的中心附近进入加速器B .离子由加速器的边缘进入加速器C .离子从磁场中获得能量D .离子从电场中获得能量解析:回旋加速器的两个D 形盒间隙分布有周期性变化的电场,不断地给带电粒子加速使其获得能量;而D 形盒处分布有恒定不变的磁场,具有一定速度的带电粒子在D 形盒内受到磁场的洛伦兹力提供的向心力而做圆周运动;洛伦兹力不做功,故不能使离子获得能量;离子源在回旋加速器的中心附近进入加速器,所以正确选项为A 、D. 答案:AD 9.如图所示,在x 轴上方存在垂直于纸面向里的磁感应强度为B 的匀强磁场,x 轴下方存在垂直于纸面向外的磁感应强度为B2的匀强磁场.一带负电的粒子从原点O 以与x 轴成30°角的速度斜向上射入磁场,且在上方运动半径为R .则( ) A .粒子经偏转一定能回到原点OB .粒子在x 轴上方和下方两磁场中运动的半径之比为1∶2C .粒子完成一次周期性运动的时间为2πm3qBD .粒子第二次射入x 轴上方磁场时,沿x 轴前进3R解析:由r =mv qB可知,粒子在x 轴上方和下方两磁场中运动的半径之比为1∶2,选项B 正确;粒子完成一次周期性运动的时间t =16T 1+16T 2=πm 3qB +2πm 3qB =πmqB,选项C 错误;粒子第二次射入x 轴上方磁场时沿x 轴前进l =R +2R =3R ,则粒子经偏转不能回到原点O ,选项A 错误,D 正确. 答案:BD10.为了测量某化工厂的污水排放量,技术人员在该厂的排污管末端安装了如图所示的流量计,该装置由绝缘材料制成,长、宽、高分别为a 、b 、c ,左右两端开口,在垂直于上、下底面方向加磁感应强度为B 的匀强磁场,在前、后两个内侧固定有金属板作为电板,污水充满管口从左向右流经该装置时,电压表将显示两个电极间的电压U .若用Q 表示污水流量(单位时间内排出的污水体积),下列说法正确的是( )A .若污水中正离子较多,则前表面比后表面电势高B .前表面的电势一定低于后表面的电势,与哪种离子多无关C .污水中离子浓度越高,电压表的示数将越大D .污水流量Q 与U 成正比,与a 、b 无关解析:由左手定则可判断出正离子较多时,正离子受到洛伦兹力使其向后表面偏转聚集而导致后表面电势升高,故A 错误.同理,负离子较多时,负离子向前表面偏转聚集而导致前表面电势降低,故B 正确.设前后表面间最高电压为U ,则qU b=qvB ,所以U =vBb ,所以U 与离子浓度无关,故C 错误.而Q =Sv =vbc ,所以Q =Uc B,故D 正确. 答案:BD 三、非选择题11.如图所示,两平行金属板间距为d ,电势差为U ,板间电场可视为匀强电场;金属板下方有一磁感应强度为B 的匀强磁场.带电荷量为+q 、质量为m 的粒子,由静止开始从正极板出发,经电场加速后射出,并进入磁场做匀速圆周运动,最后打在金属板上.忽略重力的影响,求: (1)粒子在磁场中做匀速圆周运动的半径R ; (2)从开始运动到打在金属板上所用的时间.解析:(1)出电场时,由动能定理得Uq =12mv 2进入磁场后做匀速圆周运动,有qvB =mv 2R联立得R =1B 2Umq.(2)在电场中加速时d =12at 21,其中a =Uqdm在磁场中的偏转时间t 2=T 2=πR v =πmqB联立得t =t 1+t 2=2md 2Uq +πmqB.答案:(1)1B 2Um q (2) 2md 2Uq +πmqB12.回旋加速器是用来加速带电粒子使它获得很大动能的仪器,其核心部分是两个D 形金属盒,两盒分别和一高频交流电源两极相接,以使在盒间的窄缝中形成匀强电场,使粒子每次穿过窄缝时都得到加速,两盒放在磁感应强度为B 的匀强磁场中,磁场方向垂直于盒底面,离子源置于盒的圆心附近,若离子源射出的离子电荷量为q 、质量为m ,离子最大回旋半径为R max ,其运动轨迹如图所示.问: (1)盒内有无电场?(2)离子在盒内做何种运动?(3)所加交流电频率应是多大,离子角速度为多大? (4)离子离开加速器时速度为多大,最大动能为多少?解析:(1)D 形盒由金属导体制成,具有屏蔽外电场作用,盒内无电场. (2)带电粒子在盒内做匀速圆周运动,每次加速之后半径变大.(3)离子在电场中运动时间极短,因此高频交流电频率要等于离子回旋频率.因为T =2πmqB,回旋频率f =1T =qB 2πm ,角速度ω=2πf =qB m.(4)离子最大回旋半径为R max ,由牛顿第二定律得qv max B =mv 2maxR max ,故v max =qBR max m,最大动能E kmax=12mv 2max = q 2B 2R 2max2m. 答案:(1)无 (2)匀速圆周运动 (3)qB 2πm qBm(4)qBR max m q 2B 2R 2max 2m。
word版2021年高考江苏卷物理试题全解全析

2021年普通高等学校统一招生考试理科综合(江苏卷)物理试题解析一、单项选择题:本题共5小题,每小题3分,共计15分。
每小题只有一个....选项符合题意。
1.如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中。
在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B 。
在此过程中,线圈中产生的感应电动势为A .22Ba t∆ B .22nBa t ∆ C .2nBa t ∆ D .22nBa t ∆ 1.【答案】B【考点】法拉第电磁感应定律【解析】当磁场增强时线圈中产生感生电动势:212B B E n n S n a t t t ∆ϕ∆∆∆∆,B 项正确 (2021年 江苏卷)2.已知地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为A .3. 5 km/ sB .5. 0 km/ sC .17. 7 km/ sD .35. 2 km/ s2.【答案】A 【考点】第一宇宙速度 万有引力 牛顿第二定律 【解析】 航天器在星球表面飞行的速度即其第一宇宙速度22GMmmv R R 解得GM v R所以R v M v M R 火火地地地火117.9/ 3.5/55v v km s km s 火地 A 项正确(2021年 江苏卷)3.远距离输电的原理图如图所示,升压变压器原、副线圈的匝数分别为n 1、n 2,电压分别为U 1、U 2,电流分别为I 1、I 2,输电线上的电阻为R 。
变压器为理想变压器,则下列关系式中正确的是 A .1122I n I n = B .22U I R= C .2112I U I R = D .1122I U I U =3.【答案】D【考点】远程输电 变压器 【解析】根据变压器的变压原理1221I n I n ,A 项错误;2R U I R ,因为R U U >,B 项错误;11U I 为电路输入的总功率,22R I 为电线上损耗的功率,2112U R I I >,C 项错误,D 项正确。
洛伦兹力练习题

解见下页
解:(1)对第一个运动过程,受力如图: 依据动能定理和在P点的受力情况可知:
qE (2)对整个运动过程,依据动能定理可知: mg
qvB
小结:由上面的例子可以看出,处理带电质点在三场中运动的 问题,首先应该对质点进行受力分析,依据力和运动的关系确 定运动的形式.若质点做匀变速运动,往往既可以用牛顿运动 定律和运动学公式求解,也可以用能量关系求解.若质点做非 匀变速运动,往往需要用能量关系求解.应用能量关系求解时 ,要特别注意各力做功的特点以及重力、电场力做功分别与重 力势能和电势能变化的关系.
例4、如图所示,在互相垂直的水平方向的匀强电场( E已知)和匀强磁场(B已知)中,有一固定的竖直绝缘 杆,杆上套一个质量为m、电量为q的小球,它们之间的 摩擦因数为μ,现由静止释放小球,试分析小球运动的 加速度和速度的变化情况,并求出最大速度vm。
(mg>μqE) f qE qvB N mg 当qvB=qE时, N=0 , f=0 a=g 最大 qE
14、如图所示,虚线间空间存在由匀强电场E和匀强磁 场B组成的正交或平行的电场和磁场,有一个带正电小 球(电量为+q,质量为m)从正交或平行的电磁混合场 上方的某一高度自由落下,那么,带电小球可能沿直线 通过下列的哪个电磁复合场( )
12.地面附近空间中存在着水平方向的匀强电场和匀 强磁场,已知磁场方向垂直于纸面向里,一个带电油 滴沿着一条与竖直方向成α角的直线MN运动.如图, 由此可判断 AC ( ) A.如果油滴带正电,它是从M点运动到N点 B.如果油滴带正电,它是从N点运动到M点 C.如果水平电场方向向左,油滴是从M点运动到N点 D.如果水平电场方向向右,油滴是从M点运动到N点
答: (1)U=mv02 d2/qL2 (2) B= mv0d / qL2 方向垂直纸面向里
2022年江苏高考物理试卷真题及答案详解(精校版)

江苏省2022年普通高中学业水平选择性考试物理注意事项:考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共6页,满分为100分,考试时间为75分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前,请务必将自己的姓名,准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案。
作答非选择题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,必须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
一、单项选择题:共10题,每题4分,共40分,每题只有一个选项最符合题意。
1.高铁车厢里的水平桌面上放置一本书,书与桌面间的动摩擦因数为0.4,最大静摩擦力等于滑动摩擦力,取重力加速度210m /s g =。
若书不滑动,则高铁的最大加速度不超过()A .22.0m /sB .24.0m /sC .26.0m /sD .28.0m /s 2.如图所示,电路中灯泡均正常发光,阻值分别为12ΩR =,23ΩR =,32ΩR =,44ΩR =,电源电动势12VE =,内阻不计,四个灯泡中消耗功率最大的是()A .1RB .2RC .3RD .4R 3.如图所示,两根固定的通电长直导线a 、b 相互垂直,a 平行于纸面,电流方向向右,b垂直于纸面,电流方向向里,则导线a 所受安培力方向()A .平行于纸面向上B .平行于纸面向下C .左半部分垂直纸面向外,右半部分垂直纸面向里D .左半部分垂直纸面向里,右半部分垂直纸面向外4.上海光源通过电子-光子散射使光子能量增加,光子能量增加后()A .频率减小B .波长减小C .动量减小D .速度减小5.如图所示,半径为r 的圆形区域内有垂直于纸面的匀强磁场,磁感应强度B 随时间t 的变化关系为0B B kt =+,0B 、k 为常量,则图中半径为R 的单匝圆形线圈中产生的感应电动势大小为()A .2kr πB .2kR πC .20B r πD .20B R π6.自主学习活动中,同学们对密闭容器中的氢气性质进行讨论,下列说法中正确的是()A .体积增大时,氢气分子的密集程度保持不变B .压强增大是因为氢气分子之间斥力增大C .因为氢气分子很小,所以氢气在任何情况下均可看成理想气体D .温度变化时,氢气分子速率分布中各速率区间的分子数占总分子数的百分比会变化7.如图所示,一定质量的理想气体分别经历a b →和a c →两个过程,其中a b →为等温过程,状态b 、c 的体积相同,则()A .状态a 的内能大于状态bB .状态a 的温度高于状态cC .a c →过程中气体吸收热量D .a c →过程中外界对气体做正功8.某滑雪赛道如图所示,滑雪运动员从静止开始沿斜面下滑,经圆弧滑道起跳。
洛伦兹力高考题

③
Bed
m答(1案 cos ) Bed
m(1 cos )
规律总结 1.解决此类问题的关键是:找准临界点. 2.找临界点的方法是: 以题目中的“恰好”“最大”“最高”“至少”等词 语为突破口,借助半径R和速度v(或磁场B)之间的约 束关系进行动态运动轨迹分析,确定轨迹圆和边界的关 系,找出临界点,然后利用数学方法求解极值,常用结论 如下: (1)刚好穿出磁场边界的条件是带电粒子在磁场中运 动的轨迹与边界相切. (2)当速度v一定时,弧长(或弦长)越长,圆周角越 大,则带电粒子在有界磁场中运动的时间越长. (3)当速率v变化时,圆周角大的,运动时间越长.
(1) 3mv02 2q
(2) 2mv0 qB
(3) (3 3 2π)m 3qB
【例3】如图所示,在一个圆形区域内,两个方向相反且都垂直 于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形区域Ⅰ、 Ⅱ中,直径A2A4与A1A3 的夹角为60°。一质量为m、带电荷量 为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成30°角 的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心O进 入Ⅱ区,最后再从A4处射出磁场。已知该粒子从射入到射出磁场 所用的时间为t,求Ⅰ区和Ⅱ区中磁感应强度的大小B1和B2(忽略 粒子重力)。
答案:(1) qBd sin (2) qB2d sin3 cos
m
m
【例2】 (2008·天津·23)在平面直角坐标xOy中,第Ⅰ象限存 在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外 的匀强磁场,磁感应强度为B。一质量为m、电荷量为q的带正 电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经 x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴 上的P点垂直于y轴射出磁场,如图所示。不计粒子重力,求 (1)M、N两点间的电势差UMN。 (2)粒子在磁场中运动的轨道半径r。 (3)粒子从M点运动到P点的总时间t。
洛伦兹力经典例题(有解析)

洛仑兹力典型例题〔例1〕一个带电粒子,沿垂直于磁场的方向射入一匀强磁场.粒子的一段径迹如图所示,径迹上的每一小段都可近似看成圆弧.由于带电粒子使沿途的空气电离,粒子的能量逐渐减小(带电量不变).从图中情况可以确定[ ]A.粒子从a到b,带正电B.粒子从b到a,带正电C.粒子从a到b,带负电D.粒子从b到a,带负电R=mv/qB,由于q不变,粒子的轨道半径逐渐减小,由此断定粒子从b到a运动.再利用左手定则确定粒子带正电.〔答〕B.〔例2〕在图中虚线所围的区域内,存在电场强度为E的匀强电场和磁感应强度为B的匀强磁场.已知从左方水平射入的电子,穿过这区域时未发生偏转,设重力可忽略不计,则在这区域中的E和B的方向可能是[ ]A.E和B都沿水平方向,并与电子运动的方向相同B.E和B都沿水平方向,并与电子运动的方向相反C.E竖直向上,B垂直纸面向外D.E竖直向上,B垂直纸面向里〔分析〕不计重力时,电子进入该区域后仅受电场力F E和洛仑兹力F B作用.要求电子穿过该区域时不发生偏转电场力和洛仑兹力的合力应等于零或合力方向与电子速度方向在同一条直线上.当E和B都沿水平方向,并与电子运动的方向相同时,洛仑兹力F B等于零,电子仅受与其运动方向相反的电场力F E作用,将作匀减速直线运动通过该区域.当E和B都沿水平方向,并与电子运动的方向相反时,F B=0,电子仅受与其运动方向相同的电场力作用,将作匀加速直线运动通过该区域.当E竖直向上,B垂直纸面向外时,电场力F E竖直向下,洛仑兹力F B动通过该区域.当E竖直向上,B垂直纸面向里时,F E和F B都竖直向下,电子不可能在该区域中作直线运动.〔答〕A、B、C.〔例3〕如图1所示,被U=1000V的电压加速的电子从电子枪中发射出来,沿直线a方向运动,要求击中在α=π/3方向,距枪口d=5cm的目标M,已知磁场垂直于由直线a和M所决定的平面,求磁感强度.〔分析〕电子离开枪口后受洛仑兹力作用做匀速圆周运动,要求击中目标M,必须加上垂直纸面向内的磁场,如图2所示.通过几何方法确定圆心后就可迎刃而解了.〔解〕由图得电子圆轨道半径r=d/2sinα.〔说明〕带电粒子在洛仑兹力作用下做圆周运动时,圆心位置的确定十分重要.本题中通过几何方法找出圆心——PM的垂直平分线与过P点垂直速度方向的直线的交点O,即为圆心.当带电粒子从有界磁场边缘射入和射出时,通过入射点和出射点,作速度方向的垂线,其交点就是圆心.〔例4〕两块长为L、间距为d的平行金属板水平放置,处于方向垂直纸面向外、磁感强度为B的匀强磁场中,质量为m、电量为e的质子从左端正中A处水平射入(如图).为使质子飞离磁场而不打在金属板上,入射速度为____.〔分析〕审清题意可知,质子临界轨迹有两条:沿半径为R的圆弧AB及沿半径为r的圆弧AC.〔解〕根据R2=L2+(R-d/2)2,得〔说明〕若不注意两种可能轨迹,就会出现漏解的错误.〔例5〕三个速度大小不同的同种带电粒子,沿同一方向从图1长方形区域的匀强磁场上边缘射入,当它们从下边缘飞出时对入射方向的偏角分别为90°、60°、30°.则它们在磁场中运动时间之比为[ ]A.1∶1∶1B.1∶2∶3C.3∶2∶1〔分析〕同种粒子以不同速度射入同一匀强磁场中后,做圆运动的周期相同.由出射方向对入射方向的偏角大小可知,速度为v1的粒子在磁场中的为了进一步确定带电粒子飞经磁场时的偏转角与时间的关系,可作一般分析.如图2,设带电粒子在磁场中的轨迹为曲线MN.通过入射点和出射点作速度方向的垂线相交得圆心O.由几何关系知,圆弧MN所对的圆心角等于出射速度方向对入射速度方向的偏角α.粒子通讨磁场的时间因此,同种粒子以不同速度射入磁场,经历的时间与它们的偏角α成正比,即t1∶t2∶t3=90°∶60°∶30°=3∶2∶1.〔答〕C.〔例6〕在xoy平面内有许多电子(质量为m、电量为e),从坐标O不断以相同速率v0沿不同方向射入第一象限,如图1所示.现加一个垂直于xoy平面向内、磁感强度为B的匀强磁场,要求这些电子穿过磁场后都能平行于x轴向x 正方向运动,求符合该条件磁场的最小面积.从O点射入的电子做1/4圆周运动后(圆心在x轴上A点)沿x正方向运动,轨迹上任一点均满足坐标方程(R-x)2 + y2 = R2,①如图2中图线I;而沿与x轴任意角α(90°>α>0°)射入的电子转过一段较短弧,例如OP或OQ等也将沿x正方向运动,于是P点(圆心在A′)、Q 点(圆心在A″)等均满足坐标方程x2 +(R-y)2 = R2.②更应注意的是此方程也恰是半径为R、圆心在y轴上C点的圆Ⅱ上任一点的坐标方程.数学上的相同规律揭示了物理的相关情景.〔解〕显然,所有射向第一象限与x轴成任意角的电子,经过磁场一段圆弧运动,均在与弧Ⅱ的交点处开始向x轴正方向运动,如图中P、Q点等.故该磁场分布的最小范围应是Ⅰ、Ⅱ两圆弧的交集,等效为图3中两弓形面积之和,即〔例7〕如图1所示,一足够长的矩形区域abcd内充满磁感应强度为B、方向垂直纸面向里的匀强磁场.现从矩形区域ad边的中点O处垂直磁场射入一速度方向跟ad边夹角为30°、大小为v0的带电粒子.已知粒子质量为m,电量为q,ad边长为L,重力影响忽略不计.(1)试求粒子能从ab边上射出磁场的v0的大小范围?(2)问粒子在磁场中运动的最长时间是多少?)在这种情况下,粒子从磁场区域的某条边射出,试求射出点在这条边上的范围.〔分析〕设带电粒子在磁场中正好经过cd边(相切),从ab边射出时速度为v1,轨迹如图2所示.有以下关系:据几何关系分析得R1=L.②又设带电粒子在磁场中正好经过.ab边(相切),从ad边射出时速度为V2,则〔解〕因此,带电粒子从ab边射出磁场的v0的大小范围为:v1≥v0≥v2,(2)带电粒子在磁场中的周期带电粒子在磁场中运动轨迹占圆周比值最大的,运动时间最长.据几何间.〔例8〕如图所示,在一矩形区域内存在互相垂直的匀强电场和匀强磁场.电场强度为E、磁感应强度为B,复合场的水平宽度d,竖直方向足够长.现有一束电量为q、质量为m的α粒子,初速度v0各不相同,沿电场方向进入场区,能逸出场区的α粒子的动能增量△E k为[ ]A.q(B+E)d B.qEd/B C.Eqd〔分析〕α粒子重力可以忽略不计.α粒子进入电磁场时,除受电场力外还受到洛仑兹力作用,因此α粒子速度大小变化,速度方向也变化.洛仑兹力对电荷不做功,电场力对电荷做功.运动电荷从左进从右出.根据动能定理W=△E k,即△E K=Eqd,选项C正确.如果运动电荷从左进左出,电场力做功为零,那么选项D正确.〔例9〕如图1所示,在空间存在着水平方向的匀强磁场和竖直方向的匀强电场.电场强度为E,磁感应强度为B.在某点由静止释放一个带电液滴a,它运动到最低点处,恰与一个原来处于静止的液滴b相撞.撞后两液体合为一体,沿水平方向做直线运动.已知液滴a的质量是液滴b的质量的2倍,液滴a所带电量是液滴b所带电量的4倍.求两液滴初始位置的高度差h.(设a、b之间的静电力可以不计.)〔分析〕由带电液滴a的运动轨迹可知它受到一个指向曲率中心的洛仑兹力,由运动方向、洛仑兹力方向和磁场方向可判断出液滴a带负电荷.液滴b静止时,静电力与重力平衡,可知它带正电荷.本题包含三个过程,一个是液滴a由静止释放到运动至b处,其间合外力(静电力和重力)对液滴a做功,使它动能增加.另一个是碰撞过程,液滴a与b相碰,动量守恒.第三个过程是水平方向直线运动,竖直方向合外力为零.〔解〕设a的质量为2m,带电量为-4q,b的质量为m,带电量为q.碰撞:2mv1=3mv2,③碰后:3Eq+3mg=3qv2B.(图2c)④〔例10〕如图所示,在x轴上方是垂直纸面向里的磁感应强度为B的匀强磁场,在x轴下方是方向与y轴正方向相反的场强为E的匀强电场,已知沿x轴方向跟坐标原点相距为l处有一垂直于x轴的屏MN.现有一质量m、带电量为负q 的粒子从坐标原点沿y轴正方向射入磁场.如果想使粒子垂直打在光屏MN上,那么:(l)电荷从坐标原点射入时速度应为多大?(2)电荷从射入磁场到垂直打在屏上要多少时间?〔分析〕粒子在匀强磁场中沿半圆做匀速圆周运动,进入电场后做匀减速直线运动,直到速度为零,然后又做反方向匀加速直线运动.仍以初速率垂直进入磁场,再沿新的半圆做匀速圆周运动,如此周而复始地运动,直至最后在磁场中沿1/4圆周做匀速率运动垂直打在光屏MN上为止.〔解〕(1)如图所示,要使粒子垂直打在光屏MN上,必须n·2R+R=l,(1)(2)粒子运动总时间由在磁场中运动时间t1和在电场中运动时间t2两部分构成.〔例11〕如图所示,以正方形abco为边界的区域内有平行于x轴指向负方向的匀强电场和垂直纸面向外的匀强磁场,正方形边长为L,带电粒子(不计重力)从oc边的中点D以某一初速度平行于y轴的正方向射入场区,恰好沿直线从ab 边射出场区.如果撤去磁场,保留电场,粒子仍以上述初速度从D点射入场区,则从bc边上的P点射出场区.假设P点的纵坐标y=h;如果撤去电场,保留磁场,粒子仍以上述的初速度从D点射入场区,在l有不同取值的情况下,求粒子射出场区时,出射点在场区边界上的分布范围.〔分析〕设电场强度为E,磁感应强度为B,粒子的电量为q,质量为m,初速度为v.当电场和磁场同时存在时,带电粒子所受电场力和磁场力平衡,做直线运动.若撤去磁场,则粒子向右做抛物线运动,从bc边上的p点射出场区.若撤去电场,保留磁场,则粒子做反时针方向圆周运动,从y轴上的某点射出场区.也可能从x轴上某点射出.〔解〕当电场和磁场同时存在时,据题意有qBv=qE ①撤去磁场,电偏转距离为撤去电场,磁偏转距离为①~④式联立求得若要从o点射出,则y=0,R=L/4,由⑤式得h=L/2.〔例12〕两块板长l=1.4m、间距d=0.3m水平放置的平行板,板间加有垂直纸面向里,B=1.25T的匀强磁场和如图1(b)所示的电压.当t=0时,有一质量m=2×10-15kg、电量q=1×10-10C带正电荷的粒子,以速度v0=4×103m/s从两板正中央沿与板面平行的方向射入.不计重力的影响,画出粒子在板间的运动轨迹.〔分析〕板间加上电压时,同时存在的匀强电场场强粒子射入后受到的电场力F E和磁场力F B分别为它们的方向正好相反,互相平衡,所以在两板间加有电压的各段时间内(0-1×10-4s;2-3×10-4s;4-5×10-4s;……),带电粒子依入射方向做匀速直线运动.板间不加电压时,粒子仅受洛仑兹力作用,将做匀速圆周运动.〔解〕粒子在洛仑兹力作用下做匀速圆周运动的半径运动.运动周期它正好等于两板间有电压时的时间间隔,于是粒子射入后在两板间交替地做着匀速直线运动和匀速圆周运动,即加有电压的时间内做匀速直线运动;不加电压的时间内做匀速圆周运动.粒子经过两板间做匀速直线运动的时间它等于粒子绕行三周半所需时间,所以粒子正好可作三个整圆,其运动轨迹如图2所示.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
mv Bq
0.4
2m ,
(1 分)
由 tan vy 1,得入射方向为与水平方向成 45°角
v0
由 几 何 关 系 得 , 此 时 交 点 位 于 OO′ 正 上 方
r2
2 2
r2
d 2
0.4
2 0.3m处。
(1 分)
所 以 交 点 范 围 宽 度 为 CD 0.4 0.4 2 0.3 0.1 0.4 2m
*(3)若 n 趋向无穷大,则偏离电场的带电粒子在磁场 中运动的时间 t 为多少?
15.(1)(4 分)设速度偏向角为 ,则 tan vy ,
v0
显然当 vy 最大时, 最大。 当粒子恰好从极板右边缘出射时,
速度偏向角最大。
(1 分)
竖 直 方 程 : y d 1 at2 , a Uq ;
2分
⑵如图,设粒子从 A 点进入磁场,将其 从 N 点到 A 点的运动分别沿着电场线 和垂直电场线方向分解,粒子在这两
y
h
v
l
A
v
个方向上通过的距离分别为 h 和 l,在 N
45° v
A 点的沿这两个方向的速度大小均为
h MO
v
沿电场线方向有: h 1 qE t2 vt
E
2m
2
2分
B
2v
x
垂直于电场线方向有:l=vt
1分
由几何关系有:l+h=2d
1分
以上各式联立得: E 3mv2 4qd
2分
*⑶粒子从 M 点沿电场线方向向前运动的距离为 s
由 v2=2as
得: s
v2 2 qE
2d 3
d
m
1分
说明粒子不能打到绝缘板上就要返回,运动过程如图
y
从 P 点进入磁场时的速率为 v′,由 v2 v2 2ad E
N
0.4m ,
(1 分)
此时交点 D 位于 OO′正下方 0.4m 处。
(1 分)
当 U 400V 时,交点位置最高(如图中 C 点):
由 vy
at
Uq L dm v0
2 105 m/s
,
(1 分)
得v
v02
v2 yΒιβλιοθήκη 2v0 2 2 105 m/s ,
(1 分)
由
Bqv
mv2 r2
,得 r2
解得: v 10 v 2
1分
B
v s
O
粒子在电场中往返运动的时间为:
t1
v a
v
4
M
2
10
d
P
1
3v
分
x
粒子在磁场做圆周运动的半径 R mv 10mv R′ 45°v′
qB 2qB
因为 R(1cos45) L ,所以粒子不会从磁场右边界射出. 1
分
粒子在磁场中做圆周运动的周期 T 2m
于纸面向里,磁感应强度大小为 B。在 M( 2 d 、0) 2
处有一个质量为 m、电荷量为 q 的粒子,以某一初速度
沿场强方向运动。当它打到绝缘板上 N 点时,粒子沿 y
轴方向的速度不变,x 轴方向速度大小不变、方向反向,
一段时间后,以 2v 的速度垂直于 y 轴进入磁场,恰好不
从磁场右边界飞出。粒子的重力不计。
cos
(1 分)
时
间
(1 分)
t s s v v0
代入数据解得:
t 2106 s
(1 分)
【评分参考】:第(3)问中:①若直接写 t s 2106s ,得 2
v0
分;②如果学生用微元过程证明,并得出总时间为定值,也
可得过程分 2~3 分,结果对再给 2 分
15.(16 分)如图所示,在竖直平面内建立 Oxy 直角坐标系, 在 x= 2d 处有垂直于 x 轴足够大的弹性绝缘挡板,y 轴 左侧和挡板之间存在一匀强电场,电场与 x 轴负方向夹 角 =45°,y 轴右侧有一个有界匀强磁场,磁场方向垂直
⑴求磁场的宽度 L;
⑵求匀强电场的场强大小 E;
⑶若另一个同样的粒子以速度 v 从 M 点沿场强方向运动,
经时间
t
第一次从磁场边界上EP
y
点出来,求时间
t。
B
N
v
挡板
MO
x
15.⑴根据洛伦兹力提供向心力有:
2
2vqB m 2v ,解得: R 2mv
R
qB
2分
粒 子 刚 好 不 离 开 磁 场 的 条 件 为 : L=R , 即 L 2mv qB
22
dm
(1 分)
水平方程: (1 分)
x L v0t
解 得 : U 400V
(1 分)
(2)(7 分)由几何关系知,逐渐增大 Uba,速度偏向角变大, 磁偏转半径变大,与 PQ 交点逐渐上移。
当 U 0 时,交点位置最低(如图中 D 点):
由 Bqv0
mv02 r1
得 r1
mv 0 Bq
求:(1)带电小球从管底到离开 管口时所用的时间;
(2)带电小球从管底到离开管口的过程中,玻璃管对 小球做的功:
(3)带电小球从刚离开管口到离开磁场所用的时间。
15. (16 分)如图所示,两水平放置的平行金属板 a、b,板长 L =0.2 m,板间距 d=0.2 m.两金属板间加可调控的电压 U, 且保证 a 板带负电,b 板带正电,忽略电场的边缘效应.在 金属板右侧有一磁场区域,其左右总宽度 s=0.4 m,上下 范围足够大,磁场边界 MN 和 PQ 均与金属板垂直,磁场 区域被等宽地划分为 n(正整数)个竖直区间,磁感应强 度大小均为 B=5×10-3T,方向从左向右为垂直纸面向外、 向内、向外…….在极板左端有一粒子源,不断地向右沿 着与两板等距的水平线 OO′发射比荷 q =1×108 C/kg、初
m
速度为 v0=2×105 m/s 的带正电粒子。忽略粒子重力以及 它们之间的相互作用.
(1)当取 U 何值时,带电粒子射出电场时的速度偏向角 最大;
(2)若 n=1,即只有一个磁场区间,其方向垂直纸面向 外,则当电压由 0 连续增大到 U 过程中带电粒子射出磁场 时与边界 PQ 相交的区域的宽度;
(1 分)
*(3)(5 分)考虑粒子以一般情况入射到磁场,速度为 v,
偏向角为 ,当 n 趋于无穷大时,运动轨迹趋于一条沿入射
速度方向的直线(渐近线)。
(1 分)
又因为速度大小不变,因此磁场中运动可以等效视为匀速直
线运动。
(1 分)
轨 迹 长 度 为 s s , 运 动 速 率 为 v v0
cos
Q
qB
在磁场中运动的时间为: