洛伦兹力练习题

合集下载

(完整版)洛伦兹力经典例题

(完整版)洛伦兹力经典例题

洛仑兹力典型例题〔例1〕一个带电粒子,沿垂直于磁场的方向射入一匀强磁场.粒子的一段径迹如图所示,径迹上的每一小段都可近似看成圆弧.由于带电粒子使沿途的空气电离,粒子的能量逐渐减小(带电量不变).从图中情况可以确定[ ]A.粒子从a到b,带正电B.粒子从b到a,带正电C.粒子从a到b,带负电D.粒子从b到a,带负电R=mv/qB,由于q不变,粒子的轨道半径逐渐减小,由此断定粒子从b到a运动.再利用左手定则确定粒子带正电.〔答〕B.〔例2〕在图中虚线所围的区域内,存在电场强度为E的匀强电场和磁感应强度为B的匀强磁场.已知从左方水平射入的电子,穿过这区域时未发生偏转,设重力可忽略不计,则在这区域中的E和B的方向可能是[ ]A.E和B都沿水平方向,并与电子运动的方向相同B.E和B都沿水平方向,并与电子运动的方向相反C.E竖直向上,B垂直纸面向外D.E竖直向上,B垂直纸面向里〔分析〕不计重力时,电子进入该区域后仅受电场力F E和洛仑兹力F B作用.要求电子穿过该区域时不发生偏转电场力和洛仑兹力的合力应等于零或合力方向与电子速度方向在同一条直线上.当E和B都沿水平方向,并与电子运动的方向相同时,洛仑兹力F B等于零,电子仅受与其运动方向相反的电场力F E作用,将作匀减速直线运动通过该区域.当E和B都沿水平方向,并与电子运动的方向相反时,F B=0,电子仅受与其运动方向相同的电场力作用,将作匀加速直线运动通过该区域.当E竖直向上,B垂直纸面向外时,电场力F E竖直向下,洛仑兹力F B动通过该区域.当E竖直向上,B垂直纸面向里时,F E和F B都竖直向下,电子不可能在该区域中作直线运动.〔答〕A、B、C.〔例3〕如图1所示,被U=1000V的电压加速的电子从电子枪中发射出来,沿直线a方向运动,要求击中在α=π/3方向,距枪口d=5cm的目标M,已知磁场垂直于由直线a和M所决定的平面,求磁感强度.〔分析〕电子离开枪口后受洛仑兹力作用做匀速圆周运动,要求击中目标M,必须加上垂直纸面向内的磁场,如图2所示.通过几何方法确定圆心后就可迎刃而解了.〔解〕由图得电子圆轨道半径r=d/2sinα.〔说明〕带电粒子在洛仑兹力作用下做圆周运动时,圆心位置的确定十分重要.本题中通过几何方法找出圆心——PM的垂直平分线与过P点垂直速度方向的直线的交点O,即为圆心.当带电粒子从有界磁场边缘射入和射出时,通过入射点和出射点,作速度方向的垂线,其交点就是圆心.〔例4〕两块长为L、间距为d的平行金属板水平放置,处于方向垂直纸面向外、磁感强度为B的匀强磁场中,质量为m、电量为e的质子从左端正中A处水平射入(如图).为使质子飞离磁场而不打在金属板上,入射速度为____.〔分析〕审清题意可知,质子临界轨迹有两条:沿半径为R的圆弧AB及沿半径为r的圆弧AC.〔解〕根据R2=L2+(R-d/2)2,得〔说明〕若不注意两种可能轨迹,就会出现漏解的错误.〔例5〕三个速度大小不同的同种带电粒子,沿同一方向从图1长方形区域的匀强磁场上边缘射入,当它们从下边缘飞出时对入射方向的偏角分别为90°、60°、30°.则它们在磁场中运动时间之比为[ ]A.1∶1∶1B.1∶2∶3C.3∶2∶1〔分析〕同种粒子以不同速度射入同一匀强磁场中后,做圆运动的周期相同.由出射方向对入射方向的偏角大小可知,速度为v1的粒子在磁场中的为了进一步确定带电粒子飞经磁场时的偏转角与时间的关系,可作一般分析.如图2,设带电粒子在磁场中的轨迹为曲线MN.通过入射点和出射点作速度方向的垂线相交得圆心O.由几何关系知,圆弧MN所对的圆心角等于出射速度方向对入射速度方向的偏角α.粒子通讨磁场的时间因此,同种粒子以不同速度射入磁场,经历的时间与它们的偏角α成正比,即t1∶t2∶t3=90°∶60°∶30°=3∶2∶1.〔答〕C.〔例6〕在xoy平面内有许多电子(质量为m、电量为e),从坐标O不断以相同速率v0沿不同方向射入第一象限,如图1所示.现加一个垂直于xoy平面向内、磁感强度为B的匀强磁场,要求这些电子穿过磁场后都能平行于x轴向x 正方向运动,求符合该条件磁场的最小面积.从O点射入的电子做1/4圆周运动后(圆心在x轴上A点)沿x正方向运动,轨迹上任一点均满足坐标方程(R-x)2 + y2 = R2,①如图2中图线I;而沿与x轴任意角α(90°>α>0°)射入的电子转过一段较短弧,例如OP或OQ等也将沿x正方向运动,于是P点(圆心在A′)、Q 点(圆心在A″)等均满足坐标方程x2 +(R-y)2 = R2.②更应注意的是此方程也恰是半径为R、圆心在y轴上C点的圆Ⅱ上任一点的坐标方程.数学上的相同规律揭示了物理的相关情景.〔解〕显然,所有射向第一象限与x轴成任意角的电子,经过磁场一段圆弧运动,均在与弧Ⅱ的交点处开始向x轴正方向运动,如图中P、Q点等.故该磁场分布的最小范围应是Ⅰ、Ⅱ两圆弧的交集,等效为图3中两弓形面积之和,即〔例7〕如图1所示,一足够长的矩形区域abcd内充满磁感应强度为B、方向垂直纸面向里的匀强磁场.现从矩形区域ad边的中点O处垂直磁场射入一速度方向跟ad边夹角为30°、大小为v0的带电粒子.已知粒子质量为m,电量为q,ad边长为L,重力影响忽略不计.(1)试求粒子能从ab边上射出磁场的v0的大小范围?(2)问粒子在磁场中运动的最长时间是多少?)在这种情况下,粒子从磁场区域的某条边射出,试求射出点在这条边上的范围.〔分析〕设带电粒子在磁场中正好经过cd边(相切),从ab边射出时速度为v1,轨迹如图2所示.有以下关系:据几何关系分析得R1=L.②又设带电粒子在磁场中正好经过.ab边(相切),从ad边射出时速度为V2,则〔解〕因此,带电粒子从ab边射出磁场的v0的大小范围为:v1≥v0≥v2,(2)带电粒子在磁场中的周期带电粒子在磁场中运动轨迹占圆周比值最大的,运动时间最长.据几何间.〔例8〕如图所示,在一矩形区域内存在互相垂直的匀强电场和匀强磁场.电场强度为E、磁感应强度为B,复合场的水平宽度d,竖直方向足够长.现有一束电量为q、质量为m的α粒子,初速度v0各不相同,沿电场方向进入场区,能逸出场区的α粒子的动能增量△E k为[ ]A.q(B+E)d B.qEd/B C.Eqd〔分析〕α粒子重力可以忽略不计.α粒子进入电磁场时,除受电场力外还受到洛仑兹力作用,因此α粒子速度大小变化,速度方向也变化.洛仑兹力对电荷不做功,电场力对电荷做功.运动电荷从左进从右出.根据动能定理W=△E k,即△E K=Eqd,选项C正确.如果运动电荷从左进左出,电场力做功为零,那么选项D正确.〔例9〕如图1所示,在空间存在着水平方向的匀强磁场和竖直方向的匀强电场.电场强度为E,磁感应强度为B.在某点由静止释放一个带电液滴a,它运动到最低点处,恰与一个原来处于静止的液滴b相撞.撞后两液体合为一体,沿水平方向做直线运动.已知液滴a的质量是液滴b的质量的2倍,液滴a所带电量是液滴b所带电量的4倍.求两液滴初始位置的高度差h.(设a、b之间的静电力可以不计.)〔分析〕由带电液滴a的运动轨迹可知它受到一个指向曲率中心的洛仑兹力,由运动方向、洛仑兹力方向和磁场方向可判断出液滴a带负电荷.液滴b静止时,静电力与重力平衡,可知它带正电荷.本题包含三个过程,一个是液滴a由静止释放到运动至b处,其间合外力(静电力和重力)对液滴a做功,使它动能增加.另一个是碰撞过程,液滴a与b相碰,动量守恒.第三个过程是水平方向直线运动,竖直方向合外力为零.〔解〕设a的质量为2m,带电量为-4q,b的质量为m,带电量为q.碰撞:2mv1=3mv2,③碰后:3Eq+3mg=3qv2B.(图2c)④〔例10〕如图所示,在x轴上方是垂直纸面向里的磁感应强度为B的匀强磁场,在x轴下方是方向与y轴正方向相反的场强为E的匀强电场,已知沿x轴方向跟坐标原点相距为l处有一垂直于x轴的屏MN.现有一质量m、带电量为负q 的粒子从坐标原点沿y轴正方向射入磁场.如果想使粒子垂直打在光屏MN上,那么:(l)电荷从坐标原点射入时速度应为多大?(2)电荷从射入磁场到垂直打在屏上要多少时间?〔分析〕粒子在匀强磁场中沿半圆做匀速圆周运动,进入电场后做匀减速直线运动,直到速度为零,然后又做反方向匀加速直线运动.仍以初速率垂直进入磁场,再沿新的半圆做匀速圆周运动,如此周而复始地运动,直至最后在磁场中沿1/4圆周做匀速率运动垂直打在光屏MN上为止.〔解〕(1)如图所示,要使粒子垂直打在光屏MN上,必须n·2R+R=l,(1)(2)粒子运动总时间由在磁场中运动时间t1和在电场中运动时间t2两部分构成.〔例11〕如图所示,以正方形abco为边界的区域内有平行于x轴指向负方向的匀强电场和垂直纸面向外的匀强磁场,正方形边长为L,带电粒子(不计重力)从oc边的中点D以某一初速度平行于y轴的正方向射入场区,恰好沿直线从ab 边射出场区.如果撤去磁场,保留电场,粒子仍以上述初速度从D点射入场区,则从bc边上的P点射出场区.假设P点的纵坐标y=h;如果撤去电场,保留磁场,粒子仍以上述的初速度从D点射入场区,在l有不同取值的情况下,求粒子射出场区时,出射点在场区边界上的分布范围.〔分析〕设电场强度为E,磁感应强度为B,粒子的电量为q,质量为m,初速度为v.当电场和磁场同时存在时,带电粒子所受电场力和磁场力平衡,做直线运动.若撤去磁场,则粒子向右做抛物线运动,从bc边上的p点射出场区.若撤去电场,保留磁场,则粒子做反时针方向圆周运动,从y轴上的某点射出场区.也可能从x轴上某点射出.〔解〕当电场和磁场同时存在时,据题意有qBv=qE ①撤去磁场,电偏转距离为撤去电场,磁偏转距离为①~④式联立求得若要从o点射出,则y=0,R=L/4,由⑤式得h=L/2.〔例12〕两块板长l=1.4m、间距d=0.3m水平放置的平行板,板间加有垂直纸面向里,B=1.25T的匀强磁场和如图1(b)所示的电压.当t=0时,有一质量m=2×10-15kg、电量q=1×10-10C带正电荷的粒子,以速度v0=4×103m/s从两板正中央沿与板面平行的方向射入.不计重力的影响,画出粒子在板间的运动轨迹.〔分析〕板间加上电压时,同时存在的匀强电场场强粒子射入后受到的电场力F E和磁场力F B分别为它们的方向正好相反,互相平衡,所以在两板间加有电压的各段时间内(0-1×10-4s;2-3×10-4s;4-5×10-4s;……),带电粒子依入射方向做匀速直线运动.板间不加电压时,粒子仅受洛仑兹力作用,将做匀速圆周运动.〔解〕粒子在洛仑兹力作用下做匀速圆周运动的半径运动.运动周期它正好等于两板间有电压时的时间间隔,于是粒子射入后在两板间交替地做着匀速直线运动和匀速圆周运动,即加有电压的时间内做匀速直线运动;不加电压的时间内做匀速圆周运动.粒子经过两板间做匀速直线运动的时间它等于粒子绕行三周半所需时间,所以粒子正好可作三个整圆,其运动轨迹如图2所示.。

洛伦兹力习题

洛伦兹力习题

随堂达标自测
课时活页训练
基础知识梳理
核心要点突破
第 三 章
7.一个单摆摆球带正电,在水平匀强磁场中振动. 振动平面与磁场垂直,如图所示,图中C点为摆球运 动的最低点,摆球向右运动和向左运动通过C点时, 以下说法中正确的是( )
上 页
A.受到的洛伦兹力相同 磁 场 B.悬线对摆球的拉力相等 C.具有相同的动能 D.具有相同的速度
衡时,小球即将飘离平面.设此时速度为v,则由力的
平衡可知mg=qvB,所以最小速度v= 右. .由左手 定则,可以判断出小球相对磁场的运动方向为水平向
上 页
下 页
课堂互动讲练
随堂达标自测
课时活页训练
基础知识梳理
核心要点突破
例3
第 三 章 磁 场
如图3-5-9所示,空间存在水平向右的电场
上 页
和垂直纸面向外的匀强磁场,一个带正电的小球套在细 杆上,与细杆的动摩擦因数为μ,由静止释放后小球将 向下运动,则(双选) ( )
上 页
下 页
课堂互动讲练
随堂达标自测
课时活页训练
基础知识梳理
核心要点突破
【答案】 【点评】 第 三 章 磁 场
BC 洛伦兹力的突出特点就是与带电小球
上 页
的速度有关,当小球的速度发生变化时,所受的洛伦兹
力也随之发生变化,而受力的变化又会反过来影响运动 状态,表现为力与运动的“互动性”.因此分析时一定 要找出变化规律,分析出最终状态.
上 页
下 页
图3-5-15
课堂互动讲练
随堂达标自测 课时活页训练
基础知识梳理
核心要点突破
第 三 章 磁 场
上 页
下 页
图3-5-15

洛伦兹力综合练习 经典(含答案详解)

洛伦兹力综合练习   经典(含答案详解)

洛伦兹力的方向1.在阴极射线管中电子流方向由左向右,其上方放置一根通有如图366所示电流的直导线,导线与阴极射线管平行,则电子将( )图366A .向上偏转B .向下偏转C .向纸里偏转D .向纸外偏转答案 B解析 由题图可知,直线电流的方向由左向右,根据安培定则,可判定直导线下方的磁场方向为垂直于纸面向里,而电子运动方向由左向右,由左手定则知(电子带负电荷,四指要指向电子运动方向的反方向),电子将向下偏转,故B 选项正确.洛伦兹力的大小图3672.如图367所示,带负电荷的摆球在一匀强磁场中摆动.匀强磁场的方向垂直纸面向里.摆球在A 、B 间摆动过程中,由A 摆到最低点C 时,摆线拉力大小为F 1,摆球加速度大小为a 1;由B 摆到最低点C 时,摆线拉力大小为F 2,摆球加速度大小为a 2,则( )A .F 1>F 2,a 1=a 2B .F 1<F 2,a 1=a 2C .F 1>F 2,a 1>a 2D .F 1<F 2,a 1<a 2答案 B解析 由于洛伦兹力不做功,所以从B 和A 到达C 点的速度大小相等.由a =v 2r 可得a 1=a 2.当由A 运动到C 时,以小球为研究对象,受力分析如图甲所示,F 1+q v B -mg =ma 1.当由B 运动到C 时,受力分析如图乙所示,F 2-q v B -mg =ma 2.由以上两式可得:F 2>F 1,故B 正确.洛伦兹力的综合应用图3683.在两平行金属板间,有如图368所示的互相正交的匀强电场和匀强磁场.α粒子以速度v 0从两板的正中央垂直于电场方向和磁场方向射入时,恰好能沿直线匀速通过.供下列各小题选择的答案有:A .不偏转B .向上偏转C .向下偏转D .向纸内或纸外偏转(1)若质子以速度v 0从两板的正中央垂直于电场方向和磁场方向射入时,质子将________.(2)若电子以速度v 0从两板的正中央垂直于电场方向和磁场方向射入时,电子将________.(3)若质子以大于v 0的速度,沿垂直于电场方向和磁场方向从两板正中央射入,质子将________.(4)若增大匀强磁场的磁感应强度,其他条件不变,电子以速度v 0沿垂直于电场和磁场的方向,从两极正中央射入时,电子将________.答案 (1)A (2)A (3)B (4)C解析 设带电粒子的质量为m ,带电荷量为q ,匀强电场的电场强度为E 、匀强磁场的磁感应强度为B .带电粒子以速度v 0垂直射入互相正交的匀强电场和匀强磁场中时,若粒子带正电荷,则所受电场力方向向下,大小为qE ;所受磁场力方向向上,大小为Bq v 0.沿直线匀速通过时,显然有Bq v 0=qE ,v 0=E B,即沿直线匀速通过时,带电粒子的速度与其质量、电荷量无关.如果粒子带负电荷,电场力方向向上,磁场力方向向下,上述结论仍然成立.所以,(1)(2)两小题应选A.若质子以大于v 0的速度射入两板之间,由于磁场力f =Bq v ,磁场力将大于电场力,质子带正电荷,将向上偏转,第(3)小题应选B.磁场的磁感应强度B 增大时,电子射入的其他条件不变,所受磁场力f =Bq v 0也增大,电子带负电荷,所受磁场力方向向下,将向下偏转,所以第(4)小题应选择C.(时间:60分钟)题组一 对洛伦兹力方向的判定1.在以下几幅图中,对洛伦兹力的方向判断不正确的是( )答案 C2.一束混合粒子流从一发射源射出后,进入如图369所示的磁场,分离为1、2、3三束,则不正确的是()图369A.1带正电B.1带负电C.2不带电D.3带负电答案 B解析根据左手定则,正电荷粒子左偏,即1;不偏转说明不带电,即2;带负电的粒子向右偏,说明是3,因此答案为B.3.在学校操场的上空中停着一个热气球,从它底部脱落一个塑料小部件,下落过程中由于和空气的摩擦而带负电,如果没有风,那么它的着地点会落在气球正下方地面位置的() A.偏东B.偏西C.偏南D.偏北答案 B解析在我们北半球,地磁场在水平方向上的分量方向是水平向北,气球带负电,根据左手定则可得气球受到向西的洛伦兹力,故向西偏转,B正确.4.一个电子穿过某一空间而未发生偏转,则()A.此空间一定不存在磁场B.此空间可能有磁场,方向与电子速度方向平行C.此空间可能有磁场,方向与电子速度方向垂直D.此空间可能有正交的磁场和电场,它们的方向均与电子速度方向垂直答案BD解析由洛伦兹力公式可知:当v的方向与磁感应强度B的方向平行时,运动电荷不受洛伦兹力作用,因此电子未发生偏转,不能说明此空间一定不存在磁场,只能说明此空间可能有磁场,磁场方向与电子速度方向平行,则选项B正确.此空间也可能有正交的磁场和电场,它们的方向均与电子速度方向垂直,导致电子所受合力为零.则选项D正确.题组二洛伦兹力特点及公式5.带电荷量为+q的粒子在匀强磁场中运动,下面说法中正确的是()A.只要速度大小相同,所受洛伦兹力就相同B.如果把+q改为-q,且速度反向、大小不变,则洛伦兹力的大小不变C.洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直D.粒子只受到洛伦兹力的作用,不可能做匀速直线运动答案BD图36106.如图3610所示,一束电子流沿管的轴线进入螺线管,忽略重力,电子在管内的运动应该是()A.当从a端通入电流时,电子做匀加速直线运动B.当从b端通入电流时,电子做匀加速直线运动C.不管从哪端通入电流,电子都做匀速直线运动D.不管从哪端通入电流,电子都做匀速圆周运动答案 C解析电子的速度v∥B、F洛=0、电子做匀速直线运动.7.关于带电粒子在匀强电场和匀强磁场中的运动,下列说法中正确的是()A.带电粒子沿电场线方向射入,静电力对带电粒子做正功,粒子动能一定增加B.带电粒子垂直于电场线方向射入,静电力对带电粒子不做功,粒子动能不变C.带电粒子沿磁感线方向射入,洛伦兹力对带电粒子做正功,粒子动能一定增加D.不管带电粒子怎样射入磁场,洛伦兹力对带电粒子都不做功,粒子动能不变答案 D解析带电粒子在电场中受到的静电力F=qE,只与电场有关,与粒子的运动状态无关,做功的正负由θ角(力与位移方向的夹角)决定.对选项A,只有粒子带正电时才成立;垂直射入匀强电场的带电粒子,不管带电性质如何,静电力都会做正功,动能增加.带电粒子在磁场中的受力——洛伦兹力F=q v B sin θ,其大小除与运动状态有关,还与θ角(磁场方向与速度方向之间夹角)有关,带电粒子从平行磁感线方向射入,不受洛伦兹力作用,粒子做匀速直线运动.在其他方向上由于洛伦兹力方向始终与速度方向垂直,故洛伦兹力对带电粒子始终不做功.综上所述,正确选项为D.图36118.显像管原理的示意图如图3611所示,当没有磁场时,电子束将打在荧光屏正中央的O 点,安装在管径上的偏转线圈可以产生磁场,使电子束发生偏转.设垂直纸面向里的磁场方向为正方向,若使高速电子流打在荧光屏上的位置由a点逐渐移动到b点,下列磁场的变化能够使电子发生上述偏转的是()答案 A解析电子偏转到a点时,根据左手定则可知,磁场方向垂直纸面向外,对应的Bt图的图线就在t轴下方;电子偏转到b点时,根据左手定则可知,磁场方向垂直纸面向里,对应的Bt图的图线应在t轴上方,A正确.题组三带电物体在磁场中的运动问题图36129.带电油滴以水平速度v0垂直进入磁场,恰做匀速直线运动,如图3612所示,若油滴质量为m,磁感应强度为B,则下述说法正确的是()A.油滴必带正电荷,电荷量为mgv0BB.油滴必带正电荷,比荷qm=q v0BC.油滴必带负电荷,电荷量为mgv0BD.油滴带什么电荷都可以,只要满足q=mgv0B答案 A解析油滴水平向右匀速运动,其所受洛伦兹力必向上与重力平衡,故带正电,其电荷量q=mg v 0B,A 正确.图361310.如图3613所示,在竖直平面内放一个光滑绝缘的半圆形轨道,水平方向的匀强磁场与半圆形轨道所在的平面垂直.一个带负电荷的小滑块由静止开始从半圆轨道的最高点M 滑下到最右端,则下列说法中正确的是( )A .滑块经过最低点时的速度比磁场不存在时大B .滑块从M 点到最低点的加速度比磁场不存在时小C .滑块经过最低点时对轨道的压力比磁场不存在时小D .滑块从M 点到最低点所用时间与磁场不存在时相等 答案 D解析 由于洛伦兹力不做功,故与磁场不存在时相比,滑块经过最低点时的速度不变,选项A 错误;由a =v 2R,与磁场不存在时相比,滑块经过最低点时的加速度不变,选项B 错误;由左手定则,滑块经最低点时受的洛伦兹力向下,而滑块所受的向心力不变,故滑块经最低点时对轨道的压力比磁场不存在时大,因此选项C 错误;由于洛伦兹力始终与运动方向垂直,在任意一点,滑块经过时的速度均不变,选项D 正确.图361411.如图3614所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为m ,带电荷量为q ,小球可在棒上滑动,现将此棒竖直放入沿水平方向且相互垂直的匀强磁场和匀强电场中,设小球的电荷量不变,小球由静止下滑的过程中( )A .小球加速度一直增加B .小球速度一直增加,直到最后匀速C .棒对小球的弹力一直减小D .小球所受洛伦兹力一直增大,直到最后不变答案 BD解析 小球由静止开始下滑,受到向左的洛伦兹力不断增加.在开始阶段,洛伦兹力小于向右的静电力,棒对小球有向左的弹力,随着洛伦兹力的增加,棒对小球的弹力减小,小球受到的摩擦力减小,所以在竖直方向的重力和摩擦力作用下加速运动的加速度增加.当洛伦兹力等于静电力时,棒对小球没有弹力,摩擦力随之消失,小球受到的合力最大,加速度最大.随着速度继续增加,洛伦兹力大于静电力,棒对小球又产生向右的弹力,随着速度增加,洛伦兹力增加,棒对小球的弹力增加,小球受到的摩擦力增加,于是小球在竖直方向受到的合力减小,加速度减小,小球做加速度减小的加速运动,当加速度减小为零时,小球的速度不再增加,以此时的速度做匀速运动.综上所述,选项B、D正确.图361512.如图3615所示,一个质量为m带正电的带电体电荷量为q,紧贴着水平绝缘板的下表面滑动,滑动方向与垂直纸面的匀强磁场B垂直,则能沿绝缘面滑动的水平速度方向________,大小v应不小于________,若从速度v0开始运动,则它沿绝缘面运动的过程中,克服摩擦力做功为________.答案水平向右,mgqB,12m⎣⎡⎦⎤v20-(mgqB)2图361613.如图3616所示,某空间存在正交的匀强磁场和匀强电场,电场方向水平向右,磁场方向垂直纸面向里,一带电微粒从a点进入场区并刚好能沿ab直线向上运动,下列说法中正确的是()A.微粒一定带负电B.微粒的动能一定减小C.微粒的电势能一定增加D.微粒的机械能一定增加答案AD解析微粒进入场区后沿直线ab运动,则微粒受到的合力或者为零,或者合力方向在ab 直线上( 垂直于运动方向的合力仍为零).若微粒所受合力不为零,则必然做变速运动,由于速度的变化会导致洛伦兹力变化,则微粒在垂直于运动方向上的合力不再为零,微粒就不能沿直线运动,因此微粒所受合力只能为零而做匀速直线运动;若微粒带正电,则受力分析如下图甲所示,合力不可能为零,故微粒一定带负电,受力分析如图乙所示,故A正确,B 错;静电力做正功,微粒电势能减小,机械能增大,故C错,D 正确.图361714.如图3617所示,质量为m =1 kg 、电荷量为q =5×10-2 C 的带正电的小滑块,从半径为R =0.4 m 的光滑绝缘14圆弧轨道上由静止自A 端滑下.整个装置处在方向互相垂直的匀强电场与匀强磁场中.已知E =100 V/m ,方向水平向右;B =1 T ,方向垂直纸面向里.求:(1)滑块到达C 点时的速度;(2)在C 点时滑块所受洛伦兹力.(g =10 m/s 2)答案 (1)2 m/s ,方向水平向左 (2)0.1 N ,方向竖直向下解析 以滑块为研究对象,自轨道上A 点滑到C 点的过程中,受重力mg ,方向竖直向下;静电力qE ,方向水平向右;洛伦兹力F 洛=q v B ,方向始终垂直于速度方向.(1)滑块从A 到C 过程中洛伦兹力不做功,由动能定理得mgR -qER =12m v 2C得v C = 2(mg -qE )R m=2 m/s.方向水平向左. (2)根据洛伦兹力公式得:F =q v C B =5×10-2×2×1 N =0.1 N ,方向竖直向下.。

洛伦兹力练习题

洛伦兹力练习题

解见下页
解:(1)对第一个运动过程,受力如图: 依据动能定理和在P点的受力情况可知:
qE (2)对整个运动过程,依据动能定理可知: mg
qvB
小结:由上面的例子可以看出,处理带电质点在三场中运动的 问题,首先应该对质点进行受力分析,依据力和运动的关系确 定运动的形式.若质点做匀变速运动,往往既可以用牛顿运动 定律和运动学公式求解,也可以用能量关系求解.若质点做非 匀变速运动,往往需要用能量关系求解.应用能量关系求解时 ,要特别注意各力做功的特点以及重力、电场力做功分别与重 力势能和电势能变化的关系.
例4、如图所示,在互相垂直的水平方向的匀强电场( E已知)和匀强磁场(B已知)中,有一固定的竖直绝缘 杆,杆上套一个质量为m、电量为q的小球,它们之间的 摩擦因数为μ,现由静止释放小球,试分析小球运动的 加速度和速度的变化情况,并求出最大速度vm。
(mg>μqE) f qE qvB N mg 当qvB=qE时, N=0 , f=0 a=g 最大 qE
14、如图所示,虚线间空间存在由匀强电场E和匀强磁 场B组成的正交或平行的电场和磁场,有一个带正电小 球(电量为+q,质量为m)从正交或平行的电磁混合场 上方的某一高度自由落下,那么,带电小球可能沿直线 通过下列的哪个电磁复合场( )
12.地面附近空间中存在着水平方向的匀强电场和匀 强磁场,已知磁场方向垂直于纸面向里,一个带电油 滴沿着一条与竖直方向成α角的直线MN运动.如图, 由此可判断 AC ( ) A.如果油滴带正电,它是从M点运动到N点 B.如果油滴带正电,它是从N点运动到M点 C.如果水平电场方向向左,油滴是从M点运动到N点 D.如果水平电场方向向右,油滴是从M点运动到N点
答: (1)U=mv02 d2/qL2 (2) B= mv0d / qL2 方向垂直纸面向里

13洛伦兹力同步练习(Word版含解析)

13洛伦兹力同步练习(Word版含解析)

粤教版(2019)选择性必修二 1.3 洛伦兹力一、单选题1.如图所示,MN 是磁感应强度为B 的匀强磁场的边界。

一质量为m 、电荷量为q 的粒子在纸面内从O 点射入磁场。

若粒子速度为v 0,最远能落在边界上的A 点。

下列说法正确的有( )A .若粒子落在A 点的右侧,其速度一定大于v 0B .若粒子落在A 点的左侧,其速度一定小于v 0C .若粒子落在A 点左、右两侧d 的范围内,其速度可能小于02qBdv mD .若粒子落在A 点左、右两侧d 的范围内,其速度不可能大于v 0+2qBdm2.下列说法正确的是( )A .带电粒子在磁场中仅受洛伦兹力时速度可能变大B .观看3D 电影的眼镜用到了光的偏振C .机械波的周期由介质决定D .匀速圆周运动的动量不变3.如图所示,正六边形区域内存在垂直纸面向里的匀强磁场。

一带正电粒子以速度1v 从a 点沿ad 方向射入磁场,从b 点离开磁场;若该粒子以速度2v 从a 点沿ae 方向射入磁场,则从d 点离开磁场。

不计粒子重力,12v v 的值为( )ABCD4.如图所示,有界匀强磁场边界线S P ∥MN ,速率不同的同种带电粒子从S 点沿SP 方向同时射入磁场,粒子的带电量相同,其中穿过a 点的粒子速度v 1与MN 垂直;穿过b 点的粒子速度v 2与MN 成60°角,设两粒子从S 到a 、b 所需时间分别为t 1和t 2,则t 1∥t 2为(重力不计)( )A .1∥3B .4∥3C .1∥1D .3∥25.如图所示,在03x a ≤≤的区域内存在与xOy 平面垂直的匀强磁场,磁感应强度大小为B .在0=t 时刻,从原点O 发射一束等速率的相同的带电粒子,速度方向与y 轴正方向的夹角分布在090︒~范围内。

其中,沿y 轴正方向发射的粒子在t t =0时刻刚好从磁场右边界上()3P a 点离开磁场,不计粒子重力,下列说法正确的是( )A .粒子在磁场中做圆周运动的半径为3aB .粒子的发射速度大小为04at π C .带电粒子的荷质比为43Bt πD .带电粒子在磁场中运动的最长时间为02t6.如图所示,半径为r 的半圆abca 内部无磁场,在半圆外部(含半圆)有垂直于半圆平面的匀强磁场(未画出),磁感应强度大小为B 。

洛伦兹力的经典例题

洛伦兹力的经典例题

洛伦兹力的经典例题一、单边界磁场1.如图所示,x 轴上方有垂直纸面向里的匀强磁场.有两个质量相同,电荷量也相同的带正、负电的离子(不计重力),以相同速度从O 点射入磁场中,射入方向与x 轴均夹θ角.则正、负离子在磁场中( )A.运动时间相同B.运动轨道半径相同C.重新回到x 轴时速度大小和方向均相同D.重新回到x 轴时距O 点的距离相同2. 如图直线MN 上方有磁感应强度为B 的匀强磁场。

正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少?【类型题1】如图3-6-12所示,在平面直角坐标系xOy 的第一象限内,有垂直纸面向里的匀强磁场,磁感应强度为B=2T .一对电子和正电子从O 点沿纸面以相同的速度v 射入磁场中,速度方向与磁场边界0x 轴成30°,求:电子和正电子在磁场中运动的时间为多少?(正电子与电子质量为m = 9.1×10-31kg ,正电子电量为1.6×l0-19C ,电子电量为-1.6×10-19C)3. 如图所示,在x 轴上方存在着垂直于纸面向里、磁感应强度为B 的匀强磁场,一个不计重力的带电粒子从坐标原点O 处以速度v 进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x 轴正方向成120°角,若粒子穿过y 轴正半轴后在磁场中到x 轴的最大距离为a,则该粒子的荷质比和所带电荷的正负是( )A .aB 23v ,正电荷 B .aB 2v ,正电荷 C .aB 23v ,负电荷 D .aB 2v ,负电荷M4.如图3-6-9所示,一个带负电的粒子以速度v由坐标原点射入充满x正半轴的磁场中,速度方向与x轴、y轴均成45°角.已知该粒子电量为-q,质量为m,则该粒子通过x轴和y轴的坐标分别是多少?二、双边界磁场(一)平行边界5. 三个速度大小不同的同种带电粒子,沿同一方向从如图所示的长方形区域的匀强磁场上边缘射入强磁场,当它们从下边缘飞出时对入射方向的偏角分别为90°、60°、30°,则它们在磁场中的运动时间之比()A.1∶1∶1B.1∶2∶3C.3∶2∶1D.1∶2∶3【速度垂直边界】6.如图所示,比荷(荷质比)为e / m的电子从左侧垂直于界面、垂直于磁场射入宽度为d、磁感受应强度为B的匀强磁场区域,要从右侧面穿出这个磁场区域,电子的速度应满足的条件是。

洛伦兹力经典例题(有解析)

洛伦兹力经典例题(有解析)

洛仑兹力典型例题〔例1〕一个带电粒子,沿垂直于磁场的方向射入一匀强磁场.粒子的一段径迹如图所示,径迹上的每一小段都可近似看成圆弧.由于带电粒子使沿途的空气电离,粒子的能量逐渐减小(带电量不变).从图中情况可以确定[ ]A.粒子从a到b,带正电B.粒子从b到a,带正电C.粒子从a到b,带负电D.粒子从b到a,带负电R=mv/qB,由于q不变,粒子的轨道半径逐渐减小,由此断定粒子从b到a运动.再利用左手定则确定粒子带正电.〔答〕B.〔例2〕在图中虚线所围的区域内,存在电场强度为E的匀强电场和磁感应强度为B的匀强磁场.已知从左方水平射入的电子,穿过这区域时未发生偏转,设重力可忽略不计,则在这区域中的E和B的方向可能是[ ]A.E和B都沿水平方向,并与电子运动的方向相同B.E和B都沿水平方向,并与电子运动的方向相反C.E竖直向上,B垂直纸面向外D.E竖直向上,B垂直纸面向里〔分析〕不计重力时,电子进入该区域后仅受电场力F E和洛仑兹力F B作用.要求电子穿过该区域时不发生偏转电场力和洛仑兹力的合力应等于零或合力方向与电子速度方向在同一条直线上.当E和B都沿水平方向,并与电子运动的方向相同时,洛仑兹力F B等于零,电子仅受与其运动方向相反的电场力F E作用,将作匀减速直线运动通过该区域.当E和B都沿水平方向,并与电子运动的方向相反时,F B=0,电子仅受与其运动方向相同的电场力作用,将作匀加速直线运动通过该区域.当E竖直向上,B垂直纸面向外时,电场力F E竖直向下,洛仑兹力F B动通过该区域.当E竖直向上,B垂直纸面向里时,F E和F B都竖直向下,电子不可能在该区域中作直线运动.〔答〕A、B、C.〔例3〕如图1所示,被U=1000V的电压加速的电子从电子枪中发射出来,沿直线a方向运动,要求击中在α=π/3方向,距枪口d=5cm的目标M,已知磁场垂直于由直线a和M所决定的平面,求磁感强度.〔分析〕电子离开枪口后受洛仑兹力作用做匀速圆周运动,要求击中目标M,必须加上垂直纸面向内的磁场,如图2所示.通过几何方法确定圆心后就可迎刃而解了.〔解〕由图得电子圆轨道半径r=d/2sinα.〔说明〕带电粒子在洛仑兹力作用下做圆周运动时,圆心位置的确定十分重要.本题中通过几何方法找出圆心——PM的垂直平分线与过P点垂直速度方向的直线的交点O,即为圆心.当带电粒子从有界磁场边缘射入和射出时,通过入射点和出射点,作速度方向的垂线,其交点就是圆心.〔例4〕两块长为L、间距为d的平行金属板水平放置,处于方向垂直纸面向外、磁感强度为B的匀强磁场中,质量为m、电量为e的质子从左端正中A处水平射入(如图).为使质子飞离磁场而不打在金属板上,入射速度为____.〔分析〕审清题意可知,质子临界轨迹有两条:沿半径为R的圆弧AB及沿半径为r的圆弧AC.〔解〕根据R2=L2+(R-d/2)2,得〔说明〕若不注意两种可能轨迹,就会出现漏解的错误.〔例5〕三个速度大小不同的同种带电粒子,沿同一方向从图1长方形区域的匀强磁场上边缘射入,当它们从下边缘飞出时对入射方向的偏角分别为90°、60°、30°.则它们在磁场中运动时间之比为[ ]A.1∶1∶1B.1∶2∶3C.3∶2∶1〔分析〕同种粒子以不同速度射入同一匀强磁场中后,做圆运动的周期相同.由出射方向对入射方向的偏角大小可知,速度为v1的粒子在磁场中的为了进一步确定带电粒子飞经磁场时的偏转角与时间的关系,可作一般分析.如图2,设带电粒子在磁场中的轨迹为曲线MN.通过入射点和出射点作速度方向的垂线相交得圆心O.由几何关系知,圆弧MN所对的圆心角等于出射速度方向对入射速度方向的偏角α.粒子通讨磁场的时间因此,同种粒子以不同速度射入磁场,经历的时间与它们的偏角α成正比,即t1∶t2∶t3=90°∶60°∶30°=3∶2∶1.〔答〕C.〔例6〕在xoy平面内有许多电子(质量为m、电量为e),从坐标O不断以相同速率v0沿不同方向射入第一象限,如图1所示.现加一个垂直于xoy平面向内、磁感强度为B的匀强磁场,要求这些电子穿过磁场后都能平行于x轴向x 正方向运动,求符合该条件磁场的最小面积.从O点射入的电子做1/4圆周运动后(圆心在x轴上A点)沿x正方向运动,轨迹上任一点均满足坐标方程(R-x)2 + y2 = R2,①如图2中图线I;而沿与x轴任意角α(90°>α>0°)射入的电子转过一段较短弧,例如OP或OQ等也将沿x正方向运动,于是P点(圆心在A′)、Q 点(圆心在A″)等均满足坐标方程x2 +(R-y)2 = R2.②更应注意的是此方程也恰是半径为R、圆心在y轴上C点的圆Ⅱ上任一点的坐标方程.数学上的相同规律揭示了物理的相关情景.〔解〕显然,所有射向第一象限与x轴成任意角的电子,经过磁场一段圆弧运动,均在与弧Ⅱ的交点处开始向x轴正方向运动,如图中P、Q点等.故该磁场分布的最小范围应是Ⅰ、Ⅱ两圆弧的交集,等效为图3中两弓形面积之和,即〔例7〕如图1所示,一足够长的矩形区域abcd内充满磁感应强度为B、方向垂直纸面向里的匀强磁场.现从矩形区域ad边的中点O处垂直磁场射入一速度方向跟ad边夹角为30°、大小为v0的带电粒子.已知粒子质量为m,电量为q,ad边长为L,重力影响忽略不计.(1)试求粒子能从ab边上射出磁场的v0的大小范围?(2)问粒子在磁场中运动的最长时间是多少?)在这种情况下,粒子从磁场区域的某条边射出,试求射出点在这条边上的范围.〔分析〕设带电粒子在磁场中正好经过cd边(相切),从ab边射出时速度为v1,轨迹如图2所示.有以下关系:据几何关系分析得R1=L.②又设带电粒子在磁场中正好经过.ab边(相切),从ad边射出时速度为V2,则〔解〕因此,带电粒子从ab边射出磁场的v0的大小范围为:v1≥v0≥v2,(2)带电粒子在磁场中的周期带电粒子在磁场中运动轨迹占圆周比值最大的,运动时间最长.据几何间.〔例8〕如图所示,在一矩形区域内存在互相垂直的匀强电场和匀强磁场.电场强度为E、磁感应强度为B,复合场的水平宽度d,竖直方向足够长.现有一束电量为q、质量为m的α粒子,初速度v0各不相同,沿电场方向进入场区,能逸出场区的α粒子的动能增量△E k为[ ]A.q(B+E)d B.qEd/B C.Eqd〔分析〕α粒子重力可以忽略不计.α粒子进入电磁场时,除受电场力外还受到洛仑兹力作用,因此α粒子速度大小变化,速度方向也变化.洛仑兹力对电荷不做功,电场力对电荷做功.运动电荷从左进从右出.根据动能定理W=△E k,即△E K=Eqd,选项C正确.如果运动电荷从左进左出,电场力做功为零,那么选项D正确.〔例9〕如图1所示,在空间存在着水平方向的匀强磁场和竖直方向的匀强电场.电场强度为E,磁感应强度为B.在某点由静止释放一个带电液滴a,它运动到最低点处,恰与一个原来处于静止的液滴b相撞.撞后两液体合为一体,沿水平方向做直线运动.已知液滴a的质量是液滴b的质量的2倍,液滴a所带电量是液滴b所带电量的4倍.求两液滴初始位置的高度差h.(设a、b之间的静电力可以不计.)〔分析〕由带电液滴a的运动轨迹可知它受到一个指向曲率中心的洛仑兹力,由运动方向、洛仑兹力方向和磁场方向可判断出液滴a带负电荷.液滴b静止时,静电力与重力平衡,可知它带正电荷.本题包含三个过程,一个是液滴a由静止释放到运动至b处,其间合外力(静电力和重力)对液滴a做功,使它动能增加.另一个是碰撞过程,液滴a与b相碰,动量守恒.第三个过程是水平方向直线运动,竖直方向合外力为零.〔解〕设a的质量为2m,带电量为-4q,b的质量为m,带电量为q.碰撞:2mv1=3mv2,③碰后:3Eq+3mg=3qv2B.(图2c)④〔例10〕如图所示,在x轴上方是垂直纸面向里的磁感应强度为B的匀强磁场,在x轴下方是方向与y轴正方向相反的场强为E的匀强电场,已知沿x轴方向跟坐标原点相距为l处有一垂直于x轴的屏MN.现有一质量m、带电量为负q 的粒子从坐标原点沿y轴正方向射入磁场.如果想使粒子垂直打在光屏MN上,那么:(l)电荷从坐标原点射入时速度应为多大?(2)电荷从射入磁场到垂直打在屏上要多少时间?〔分析〕粒子在匀强磁场中沿半圆做匀速圆周运动,进入电场后做匀减速直线运动,直到速度为零,然后又做反方向匀加速直线运动.仍以初速率垂直进入磁场,再沿新的半圆做匀速圆周运动,如此周而复始地运动,直至最后在磁场中沿1/4圆周做匀速率运动垂直打在光屏MN上为止.〔解〕(1)如图所示,要使粒子垂直打在光屏MN上,必须n·2R+R=l,(1)(2)粒子运动总时间由在磁场中运动时间t1和在电场中运动时间t2两部分构成.〔例11〕如图所示,以正方形abco为边界的区域内有平行于x轴指向负方向的匀强电场和垂直纸面向外的匀强磁场,正方形边长为L,带电粒子(不计重力)从oc边的中点D以某一初速度平行于y轴的正方向射入场区,恰好沿直线从ab 边射出场区.如果撤去磁场,保留电场,粒子仍以上述初速度从D点射入场区,则从bc边上的P点射出场区.假设P点的纵坐标y=h;如果撤去电场,保留磁场,粒子仍以上述的初速度从D点射入场区,在l有不同取值的情况下,求粒子射出场区时,出射点在场区边界上的分布范围.〔分析〕设电场强度为E,磁感应强度为B,粒子的电量为q,质量为m,初速度为v.当电场和磁场同时存在时,带电粒子所受电场力和磁场力平衡,做直线运动.若撤去磁场,则粒子向右做抛物线运动,从bc边上的p点射出场区.若撤去电场,保留磁场,则粒子做反时针方向圆周运动,从y轴上的某点射出场区.也可能从x轴上某点射出.〔解〕当电场和磁场同时存在时,据题意有qBv=qE ①撤去磁场,电偏转距离为撤去电场,磁偏转距离为①~④式联立求得若要从o点射出,则y=0,R=L/4,由⑤式得h=L/2.〔例12〕两块板长l=1.4m、间距d=0.3m水平放置的平行板,板间加有垂直纸面向里,B=1.25T的匀强磁场和如图1(b)所示的电压.当t=0时,有一质量m=2×10-15kg、电量q=1×10-10C带正电荷的粒子,以速度v0=4×103m/s从两板正中央沿与板面平行的方向射入.不计重力的影响,画出粒子在板间的运动轨迹.〔分析〕板间加上电压时,同时存在的匀强电场场强粒子射入后受到的电场力F E和磁场力F B分别为它们的方向正好相反,互相平衡,所以在两板间加有电压的各段时间内(0-1×10-4s;2-3×10-4s;4-5×10-4s;……),带电粒子依入射方向做匀速直线运动.板间不加电压时,粒子仅受洛仑兹力作用,将做匀速圆周运动.〔解〕粒子在洛仑兹力作用下做匀速圆周运动的半径运动.运动周期它正好等于两板间有电压时的时间间隔,于是粒子射入后在两板间交替地做着匀速直线运动和匀速圆周运动,即加有电压的时间内做匀速直线运动;不加电压的时间内做匀速圆周运动.粒子经过两板间做匀速直线运动的时间它等于粒子绕行三周半所需时间,所以粒子正好可作三个整圆,其运动轨迹如图2所示.。

洛伦兹力练习题

洛伦兹力练习题

洛伦兹力练习题
1.在以下几幅图中,对洛伦兹力的方向判断不.
正确的是( )
2.一个长螺线管中通有交变电流,把一个带电粒子沿管轴线射入管中,不计重力,粒子将在管中( )
A .做圆周运动
B .沿轴线来回运动
C .做匀加速直线运动
D .做匀速直线运动
3.如图5-5-15所示,在真空中,水平导线中有恒定电流I 通过,导
线的正下方有一质子初速度方向与电流方向相同,则质子可能的运动
情况是( )
A .沿路径a 运动
B .沿路径b 运动
C .沿路径c 运动
D .沿路径d 运动
4. 如图—5所示,在y <0的区域内 存在匀强磁场,磁场方向垂直于xy 平面并指向纸面外,磁感应强度为B.一带正电的粒子以速度υ0从O 点射入磁场,入射方向在xy 平面内,与x 轴正向的夹角为θ.若粒子射出磁场的位置
与O 点的距离为l ,求该粒子的电量和质量之比
m q 。

图—5
5.一个质量为m 电荷量为q 的带电粒子从x 轴上的P (a ,0)点以速度v ,沿与x 正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y 轴射出第一象限。

求匀强磁场的
磁感应强度B 和射出点的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

洛伦兹力练习题1
1.下列说法正确的是
A.运动电荷在磁感应强度不为零的地方,一定受到洛伦兹力的作用
B.运动电荷在某处不受洛伦兹力的作用,则该处的磁感应强度一定为零C.洛伦兹力既不能改变带电粒子的动能,也不能改变带电粒子的速度D.洛伦兹力对带电粒子不做功
2.关于安培力和洛伦兹力,下列说法中正确的是
A.带电粒子一定会受到洛伦兹力作用
B.洛伦兹力F方向一定既垂直与磁场B的方向,又垂直与带电粒子的运动速度V方向
C.通电导线一定会受到安培力作用
D.洛伦兹力对运动电荷一定不做功,安培力对通电导线也一定不做功3.如图所示,表面粗糙的斜面固定于地面上,并处于方向垂直纸面向外、磁感应强度为B的匀强磁场中,质量为m、带电量为+Q的小滑块从斜面顶端由静止下滑。

在滑块下滑的过程中,下列判断正确的是
A.滑块受到的摩擦力不变
B.滑块到地面时的动能与B的大小无关
C.滑块受到的洛伦兹力方向垂直斜面指向斜面
D.不管B多大,滑块可能静止于斜面上
4.如图所示,质量为m,带电荷量为-q的微粒
以速度v与水平方向成45°角进入匀强电场和匀强磁场,磁场方向垂直纸面向里。

如果微粒做匀速直线运动,则下列说法正确的是
A.微粒受电场力、洛伦兹力、重力三个力作用
B.微粒受电场力、洛伦兹力两个力作用
C.匀强电场的电场强度E=
D.匀强磁场的磁感应强度B=
5.如图3-12所示,质量m=1.0×10-4 kg的小球放在绝
缘的水平面上,小球带电荷量q=2.0×10-4 C,小球与
水平面间的动摩擦因数μ=0.2,外加水平向右的匀强电
场E=5 V/m,垂直纸面向外的匀强磁场B=2 T,小
球从静止开始运动.问:
(1)小球具有最大加速度的值为多少?
(2)小球的最大速度为多少?(g取10 m/s2)。

相关文档
最新文档