药物化学第二章中枢神经系统药物
《药物化学》——中枢神经系统药物(知识点梳理与总结、思维导图)(供本科期末考和349药学综合考研)

4,中枢神经系统药物一,镇静催眠药分类苯二氮䓬类氯氮卓,地西泮,奥沙西泮,三唑仑非苯二氮䓬类咪唑并吡啶类唑吡坦,阿吡坦,吡咯酮类扎来普隆巴比妥类苯巴比妥苯二氮䓬类药物构效关系重点药物地西泮性质水解开环:内酰胺和烯胺结构,酸碱或受热1,2位或4,5位水解开环,在7位或1,2位有强吸电子基团【硝基,三唑环等】,4,5水解后环合特别容易与生物碱反应,加碘化秘钾⇨橙红色沉淀B环七元亚胺内酰胺环构象决定其与受体亲和力作用机制:与γ-氨基丁酸GABAa受体结合,氯离子通道开放内流,中枢抑制代谢:肝脏内N-甲基,C-3位上羟基化,产物仍有活性。
还有苯环酚羟基化,氮氧化合物还原,1,2位开环等应用:安定,镇静,催眠,肌肉松弛,抗惊厥,治疗神经官能症合成:以3-苯-5-氯嗯呢为原料酒石酸唑吡坦性质:口服吸收快,肝脏首过,代谢物无活性作用机制:选择性与苯二氮卓ω1受体亚型结合应用:较强镇静催眠作用,对呼吸系统无抑制,少耐受和依赖性合成二,抗癫痫药物分类酰脲类巴比妥类(丙二酰脲类)苯巴比妥,异戊巴比妥乙内酰脲类苯妥英钠,乙苯妥英噁唑烷酮类三甲双酮丁二酰亚胺类乙琥胺二苯并氮杂䓬类卡马西平,奥卡西平GABA类似物普洛加胺脂肪羧酸与其他丙戊酸钠,丙戊酰胺,拉莫三嗪,托吡酯巴比妥类药物构效关系R或R1为H则无活性,应有2-5碳链取代,或有一个为苯环取代,R,R1总碳数4-8最好,超过10亲脂性过强,易导致惊厥R或R1直链烃或芳烃,不易氧化,长效 ‖ 支链烃或不饱和烃取代,短效R2为甲基取代起效快,如果两个都氮都被甲基取代则惊厥2位碳上氧原子以电子等排体S取代,解离度与脂溶性增大,起效快,但短效重点药物异戊巴比妥性质母核巴比妥酸在溶液中存在三酮式互变异构:单内酰亚胺型,双内酰亚胺型,三内酰亚胺型(各种构型相互转化)烯醇型弱酸性,苯巴比妥pKa7.4,可制成钠盐,生理条件下未解离型多,易通过血脑屏障水解:互变异构体中,双内酰亚胺结构更易水解,生成酰脲与硝酸银作用生成银盐沉淀,沉淀溶于过量氨试液与吡啶和硫酸铜溶液作用生成蓝色络合物作用机制:中枢GABA受体应用:癫痫大发作及局限性发作,抗惊厥,麻醉前给药,少用于镇静催眠合成苯妥英钠味苦,微引湿性,空气中缓慢吸收二氧化碳生成苯妥英环状酰脲结构,与碱加热分解最终产生氨气水溶液中加入二氯化汞⇨白色沉淀,在氨试液中不溶【区别于巴比妥类】代谢:肝代谢,药酶诱导剂,苯环对位羟基化生成无活性产物,碱化尿液排出快应用:癫痫大发作和局限性发作首选【需进行TDM】卡马西平性质:水中几乎不溶,干燥与室温下稳定,潮湿环境保存药效下降,光照下表面白色变成黄色,需避光代谢:肝脏代谢,主要代谢为10,11-环氧化卡马西平,仍有活性应用:癫痫大发作和综合性局灶发作,失神发作无效合成普洛加胺【卤加比】性质:易水解,酸或碱下室温可水解⇨取代的二苯甲酮+γ-氨基丁酰胺作用机制:拟GABA药,γ-氨基丁酰胺的前药三,抗精神病药分类吩噻嗪类氯丙嗪,奋乃静,三氟拉嗪,硫利哒嗪噻吨类氯普噻吨,氟哌噻吨丁酰苯类氟哌啶醇,苯哌利多氟阿尼酮二苯并二氮䓬类及其衍生物氯氮平,洛沙平,阿莫沙平苯甲酰胺衍生物类舒必利,硫必利吩噻嗪类药物构效关系氟哌啶醇构效关系重点药物盐酸氯丙嗪性质微臭,味极苦,引湿性,极易溶于水,酸性母核易氧化,空气中放置变红棕色,光及重金属催化氧化(制剂中加抗氧剂)光解生成自由基与体内一些蛋白质作用,发生过敏反应(光化毒过敏反应,皮肤红疹)水溶液加硝酸或其他氧化剂⇨生成自由基或醌式结构显红色(吩噻嗪类鉴别)与三氯化铁反应⇨稳定红色作用机制:作用于多巴胺受体,三点适应假说,立体专属性B>C>A ‖ 侧链倾斜于有氯取代的苯环方向,与多巴胺优势构象部分重合,有利于与多巴胺受体作用,失去氯原子无抗精神病作用代谢:主要为氧化,苯环羟基化,侧链去N-甲基产物为活性代谢物,N-氧化,硫原子氧化,侧链氧化失活应用:精神分裂症,躁狂症,大剂量用于镇吐,强化麻醉,人工冬眠(ADR:口干,腹部不适,乏力,嗜睡,便秘等,光过敏反应需避免日晒)合成:以领氯苯甲酸,间氯苯胺为原料氟哌啶醇性质光照射颜色加深氟哌啶醇与乳糖中杂质5-羟甲基-2-糠醛发生加成反应,影响片剂稳定性,应避免处方中有乳糖代谢:肝代谢,首过作用,以氧化性N-脱烷基,酮基还原为主应用:作用强而持久,用于各种急慢性精神分裂症和躁狂症,也可镇吐(有锥体外系副作用和致畸作用)性质:淡黄色结晶性粉末,水中几乎不溶代谢:口服吸收好,肝首过,代谢以N-去甲基和N-氧化为主作用机制:非典型抗精神病药代表,阻断多巴胺受体,抑制多巴胺与D1,D2结合,拮抗5-HT2应用:对精神分裂症的阳性或阴性症状效果好,适用于难治性精神分裂症,锥体外系反应与迟发性运动障碍副作用轻(ADR:粒细胞缺乏症,主要由肝微粒体,中性粒细胞,骨髓细胞中产生的硫醚代谢物—S—导致)四,抗抑郁药分类单胺氧化酶抑制剂吗氯贝胺,托洛沙酮去甲肾上腺素重摄取抑制剂【三环类抗抑郁药TCAs】二苯并氮杂䓬类丙咪嗪二苯并氧氮杂䓬类氯氮平(阿莫沙平)二苯并环庚二烯类阿米替林,普罗替林5-HT重摄取抑制剂氟西汀,舍曲林,西酞普兰三环类去甲肾上腺素重摄取抑制剂的构效关系重点药物作用机制:特异性可逆性抑制MAO-A,提高脑内NE,多巴胺和5-HT水平,产生抗抑郁作用应用:内源性抑郁症,轻度慢性抑郁症,精神性或反应性抑郁症长期治疗,提高情绪改善抑郁症状盐酸丙咪嗪性质:遇光渐变色,加硝酸显深蓝色代谢:肝脏代谢生成活性代谢物地昔帕明(去甲丙米秦),进一步氧化代谢生成2-羟基代谢物失活作用机制:抑制神经末梢对NE和5-HT的再摄取,减少其代谢,促进神经传递应用:内源性抑郁症,反应性抑郁症,更年期抑郁症盐酸氟西汀性质:S异构体活性强代谢:口服吸收好,半衰期长,肝脏代谢生成活性代谢物N-去甲基代谢物去甲氟西汀,半衰期更长作用机制:强烈抑制5-HT再吸收合成五,镇痛药分类吗啡及其衍生物天然生物碱吗啡吗啡半合成药物可待因,羟考酮,二氢埃托啡,纳洛酮合成镇痛药吗啡喃类【吗啡去除E环(呋喃环),B/C顺式,C/D反式与吗啡立体结构相同,】左啡诺,布托啡诺苯丙吗喃类【进一步简化吗啡喃的结构,打开C环,仅保留A、B、D环与C环裂开后的小烃基残基】喷他佐辛哌啶类【仅保留吗啡A环和D环】哌替啶,芬太尼,舒芬太尼氨基酮类【仅保留吗啡A环,高度柔性开链吗啡类似物】美沙酮吗啡类药物构效关系6-羟基被烃基化、酯化、氧化成酮或去除,活性及成瘾性均增加双键可被还原,活性和成瘾性均增加N为镇痛活性的关键,可被不同取代基取代,可从激动剂转为拮抗剂去N-甲基,镇痛作用和成瘾性均⇩N-氧化物或季胺盐均无镇痛作用N-甲基改为苯乙基,镇痛作用为吗啡的6倍N-甲基改为烯丙基,保留较弱的镇痛作用,有较强的拮抗吗啡中枢抑制作用,作为吗啡中毒解药镇痛药共同结构特征分子中具有一个平坦的芳环结构有一个叔氮原子碱性中心,能在生理pH下大部分电离为阳离子,碱性中心和平坦结构在同一平面含有哌啶或类似哌啶的空间结构,而哌啶或类似哌啶的烃基部分应凸出于芳环构成的平面的上当重点药物吗啡结构:五个环稠合而成,含有部分氢化的菲环,五个手性碳原子5R.6S.9R.13S.14R,天然左旋,B/C顺式,C/D反式,C/E顺式,立体结构呈T形性质白色有丝光的针状结晶或结晶性粉末,遇光易变质,水溶,两性分子呈酸碱两性,天然存在为左旋体有镇痛作用,右旋体无效从植物罂粟浆果浓缩物即阿片中提取精制得,可能带有可待因、蒂巴因、罂粟酸,以及储存中产生的伪吗啡,N-氧化吗啡,应做特殊杂质限量检查还原性:光照下空气氧化⇨伪吗啡(双吗啡)+N-氧化吗啡【伪吗啡毒性大,应避光密闭保存】 ‖ 酸性下稳定,中性及碱性下易氧化,溶液配制pH3-5最佳,可充氮气和加入抗氧剂酸性中加热可脱水重排⇨阿扑吗啡(邻苯二酚结构,极易氧化,多巴胺受体激动剂,兴奋中枢呕吐中心,催吐剂),再加稀硝酸氧化⇨邻苯二醌显红色(鉴别)颜色反应用于鉴别吗啡盐酸盐水溶液+三氯化铁试液⇨蓝色吗啡盐酸盐水溶液+甲醛硫酸⇨蓝紫色(Marquis反应)吗啡盐酸盐水溶液+钼硫酸⇨紫色,随后变蓝色,最后变绿色(Forhde反应)吗啡盐酸盐水溶液+铁氰化钾+三氯化铁⇨蓝色代谢:肝首过显著,常皮下注射,3,6位羟基与葡糖醛酸结合作用机制:作用与阿片µ受体,镇痛、镇咳、镇静应用:抑制剧烈疼痛,麻醉前给药(ADR:便秘等)变构:3,6位改造3位羟基烷基化,镇痛与成瘾性降低⇨可待因(中度镇痛,中枢麻醉性镇咳药)3,6位两个羟基乙酰化,镇痛麻醉成瘾性均增强⇨海洛因(作为毒品禁用)6位氧化,7,8位还原7,8位双键氢化还原,6位醇羟基氧化成酮⇨氢吗啡酮(镇痛强于吗啡)氢吗啡酮14位引入羟基⇨羟吗啡酮(镇痛强,副作用大)氢吗啡酮,羟吗啡酮3位羟基甲基化⇨氢可酮,羟考酮(阵痛弱于吗啡)17位结构改造N-甲基用其他烷基,链烯烃或芳烃基取代⇨苯乙基吗啡(镇痛作用弱)N-氧化物或季胺盐无镇痛活性N-甲基换成烯丙基或环丙甲基⇨纳洛酮、纳曲酮(作用逆转,阿片受体拮抗剂)6,14桥和7位取代基改造C-6与C-14间引入桥连乙烯基⇨埃托啡(镇痛极强,副作用大) ‖ 埃托啡桥乙烯基氢化⇨二氢埃托啡(副作用减小)二氢埃托啡中N-甲基换成烯丙基或环丙甲基,⇨二丙诺啡(专一性拮抗作用)盐酸哌替啶【度冷丁】性质水和乙醇中易溶,易吸潮,遇光易变质,有酯结构pH4时最稳定乙醇溶液中+三硝基苯酚⇨苦味酸,黄色结晶性沉淀代谢:水解⇨去甲哌替啶(镇痛活性为哌替啶一半,惊厥作用大)+去甲哌替啶酸作用机制:阿片µ受体激动剂,镇痛成瘾性弱于吗啡应用:口服好,起效快,作用时间短,多用于分娩时镇痛,对新生儿呼吸抑制小盐酸美沙酮性质味苦,水溶,镇痛左旋体>右旋体羰基位阻大,活跃活性显著降低,不能生成缩氨脲或腙,不能被钠汞齐或异丙醇铝还原水溶液遇生物碱实力生成沉淀:+苦味酸⇨沉淀 ‖ +甲基橙⇨黄色的盐沉淀,再加入过量氢氧化钠析出游离碱游离碱有机溶液30℃储存,形成美沙酮N-氧化物水溶液光照部分分解,溶液棕色,pH改变,旋光率降低代谢:N-氧化,N-去甲基化,苯环羟化,羰基氧化还原等作用机制:激动阿片µ受体,镇痛强于吗啡,哌替啶,左旋强于右旋应用:成瘾性先,用于海洛因戒毒治疗的脱瘾疗法(显著镇咳,毒性大,安全度小)六,神经退行性疾病治疗药物分类抗帕金森病PD药拟多巴胺药左旋多巴外周脱羧酶抑制剂卡比多巴,苄丝肼多巴胺受体激动剂溴隐亭,培高利特,罗匹尼罗多巴胺加强剂及其他司来吉林,恩他卡朋,苯海索,金刚烷胺抗阿尔海默病AD药乙酰胆碱酯酶抑制剂多奈哌齐,加兰他敏其他占诺美林,美金刚多奈哌齐构效关系重点药物左旋多巴性质:邻苯二酚(儿茶酚)结构,空气中易氧化变色,水溶液久置变黄、红紫,直致黑色,常加L-半胱氨酸盐酸盐做抗氧剂以上内容整理于 幕布文档代谢:肝内氧化代谢,95%以上被外周组织脱羧酶转化为DA 而不能透过血脑屏障应用:常与外周脱羧酶抑制剂合用治疗帕金森病(ADR :外周不良反应多,恶心呕吐、食欲减退等胃肠道反应,激动、焦虑、躁狂等精神行为异常,直立性低血压,开关现象)罗匹尼罗性质:白色或淡黄色粉末代谢:N-脱丙基化代谢物仍有激动作用,亲和力D3>D2 ‖ 羟化物活性小,羧酸代谢物失活应用:治疗帕金森无麦角衍生物致肺纤维化作用,不良反应与外周DA 活性有关盐酸多奈哌齐结构:哌啶衍生物作用机制:叔胺类乙酰胆碱酯酶抑制剂,抑制脑内AChE ,而对外周作用轻应用:治疗老年痴呆,轻中度AD 患者改善(ADR :恶心呕吐腹泻,继续治疗中会消失)。
药物化学抑制中枢神经系统的药物

苯二氮卓受体拮抗剂
用于苯二氮卓类过量或中毒,及麻醉解除
氟马西尼 Flumazenil 单独使用无活性
4).苯二氮卓类药物的体内代谢
5).苯二氮卓类药物的理化通性
空气中稳定,酸、碱中受热水解
6).苯二氮卓类药物的代表药物
5
Chemical name of Diazepam
3H- or 1H-1,4-Benzodiazepine
pKa
未解离百分率
作用
巴比妥酸
4.12
0.052
无效
5-苯基巴比妥酸
3.75
0.022
无效
苯巴比妥
7.29
43.70
长效
异戊巴比妥
7.9
75.97
中效
戊巴比妥
8.0
79.92
短效
海索比妥
8.40
90.91
超短效
1,3-二乙基-5-乙基-5-苯基巴比妥酸
-
100
无效
5位上需有两个亲脂性取代基,且取代基的碳原子总数为4 ~ 10,最好7 ~ 8
2).苯二氮卓类药物的构效关系
是活性必需结构
01
1位N上可以引入甲基、二乙胺乙基、环丙甲基等基团
02
2位羰基氧以硫取代,或变为甲胺基,活性下降
03
B环(1)
2).苯二氮卓类药物的构效关系
3位引入羟基使毒性下降
5位苯环专属性很高,代以其他基团则活性降低
4, 5位双键饱和,活性下降
1, 2位或4, 5位拼合杂环可提高活性
6).苯二氮卓类药物的代表药物
Diazepam的合成路线
01
苯二氮卓类药物 Benzodiazepines
药物化学中枢神经镇痛药

2、四点结合的受体模型
A 亲脂部位 B 负离子部位 C 凹槽 D 亲脂部位(适合芳环的平坦区)
D
A
C
埃托啡 PEO
B
三点结合的受体图象
受体 平坦的结构
202X
单击此处添加副标题内容
第二章 中枢神经镇痛药
汇报日期
药 物 化 学
镇痛药
对痛觉中枢有选择性抑制作用,使疼痛减轻或消除的药物
不影响意识
不干扰神经冲动的传导
不影响触觉及听觉等
麻醉性镇痛药
本部分所述的镇痛药是作用在中枢神经系统的阿片受体上(第三脑室及导水管周围的灰质),作用强,对锐痛、钝痛均有效,由于有麻醉副作用,称麻醉性镇痛药(narcotic analgesics)。有别于后面所述的通过影响前列腺素的生物合成而起镇痛作用的解热性镇痛药(antipyretic analgesics)。 麻醉作用及成瘾性 联合国国际麻醉药品管理局列为管制药物 毒品(吗啡、可卡因、大麻)
是研究阿片受体的工具药物,可用于吗啡类中毒后的解救,解除呼吸抑制并使血压上升。
二、合成镇痛药
分类
哌啶类 哌替啶,芬太尼
氨基酮类(开链) 美沙酮,右丙氧芬
吗啡烃类 布托啡诺
苯吗喃类 喷他佐辛
其他 布桂嗪,曲马多ຫໍສະໝຸດ 开链 苯基吡啶 吗啡烃 吗啡喃
三点结合的受体图象
Models of the Opiod Receptor
-
a. 阴离子受点
b. 适合芳环的平坦区
c. 凹槽
①具有一个碱性中心。此碱性中心在生理pH下部分解离后带有正电荷,与受体表面的阴离子受点缔合。 ②具有一个平面的芳环结构与受体的平坦区,通过范德华力相互作用。 ③烃基链部分(吗啡结构中C15/C16)凸出于平面,正好与受体的凹槽相适应
药物化学重点

第二章中枢神经系统药物••异戊巴比妥的用途:中枢镇静催眠药。
•异戊巴比妥的体内代谢:主要发生在5位、氧化。
•比拟同类药物:得出结论1、5-位取代基的不同,构成不同的巴比妥类药物。
2、巴比妥类药物的作用强弱和起效快慢与药物的理化性质有关。
--解离度对之的影响:Pka越大,药物的未解离率越大,分子态药物越多,药物越易进入中枢,起效快。
--脂水分配系数对之的影响:P越大,药物越易进入中枢,起效快。
3、巴比妥类药物的作用时间长短,与药物的体内代谢速度有关。
•5位取代基构造为饱和烷烃或芳烃-长效药物•5位取代基构造为有支链烷烃---中效药物•5位取代基构造为不饱和烷烃---短效药物•巴比妥类药物的5位取代基必须为双取代•名词解释:构效关系、前药•地西泮的构造归属、用途。
•地西泮构造特征:1、母体为苯并-(1,4)-二氮卓2、1,2位为酰胺键3、4,5位为亚胺键•地西泮的理化性质:1、1,2位酰胺水解为不可逆反响〔酸性条件下水解〕2、4,5位亚胺水解为可逆反响〔酸性条件水解,中性和碱性条件下缩合〕•口服地西泮,4,5位造成的开环不影响生物利用度,为什么?•口服地西泮,1,2位水解造成的开环是该类药物不稳定,作用时间短的原因。
•地西泮的构造改造,主要是增加1,2位的稳定性。
方法主要有在7位引入吸电子基团和在1,2位引入环•其它的镇静催眠药:三唑仑〔苯并二氮卓类〕,唑吡坦•通过体内代谢发现的药物:奥沙西泮、替马西泮、劳拉西泮第四节抗抑郁药•1、抑郁症的生化病因为:脑内5-HT、NA的浓度降低。
•2、抗抑郁药按照作用机制分类:•(1)NA(去甲肾上腺素)重摄取抑制剂•(2)5-HT重摄取抑制剂•(3)单胺氧化酶抑制剂•3、丙咪嗪的结构归属,用途•4、氟西汀的化学结构、作用机制、用途第五节:镇痛药•1、吗啡的结构特征•2、吗啡的理化性质:酸碱两性,有还原性(氧化产物:伪吗啡(毒性)、N-氧化吗啡),在酸性条件下较稳定•3、吗啡的作用机制:阿片受体激动剂•4、阿片受体的分类及活性•5、镇痛药的研究方向•6、吗啡的结构修饰产物:可待因•7、吗啡的结构改造产物:(1)保留A、D环,哌替啶,阿片μ受体激动剂(2)保留A环、D环开环,美沙酮,阿片受体激动剂(3)保留A、B、D环,喷他佐辛,阿片k受体激动剂•8、镇痛药的共同结构特征•8、阿片受体拮抗剂:纳洛啡第三章外周神经系统药物第三章外周神经系统药物1、作用于外周神经系统的药物的分类:〔1〕作用于传入神经系统的药物:局麻药〔2〕作用于传出神经系统的药物:影响传出神经系统的递质、受体【拟〔抗〕胆碱药、拟肾上腺素药、H1受体拮抗剂】2、拟胆碱药:是一类具有与乙酰胆碱相似作用的药物按作用机制分:胆碱受体冲动剂、乙酰胆碱酯酶抑制剂用途:用于治疗胆碱能神经兴奋性低下引起的病理状态3、胆碱受体分为:M 受体和N 受体,M受体又称为〔〕受体;N受体又称为〔〕受体。
第二章 中枢神经系统药物

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
第二章中枢神经系统药物一、单项选择题1.在胃中水解主要为4,5位开环,到肠道又闭环成原药的是()A.马普替林B.丁螺环酮C.硝西泮D.氯普噻吨E.丙咪嗪2.地西泮的化学结构中所含的母核是()A.二苯并氮杂䓬环B.氮杂䓬环C.1,5苯二氮䓬环D.1,3苯二氮䓬环E.1,4苯二氮䓬环3.唑吡坦的结构中,基本母核为()A.苯并咪唑B.咪唑并嘧啶C.咪唑并吡啶D.嘧啶并吡啶E.嘧啶并吡嗪4.苯巴比妥与硝酸钾和浓硫酸反应,再经硫化铵处理而显红棕色,是因为分子中具有()A.酰亚胺基B.乙基C.苯基D.羰基E.嘧啶环5.巴比妥类药物有水解性,是因为具有()A.酯结构B.酰脲结构C.醚结构D.氨基甲酸酯结构E.酰肼结构6.巴比妥类钠盐水溶液与空气中的哪种气体接触发生沉淀()A.氧气B.氮气C.氨气D.一氧化碳E.二氧化碳7.戊巴比妥不具有下列哪种性质()A.呈弱酸性B.溶于水C.与硝酸银试液生成的一银盐溶于氨溶液D.钠盐易水解E.与吡啶-硫酸铜试液呈紫色8.苯巴比妥和苯妥英不溶于下列哪种溶液()A.氢氧化钠B.氢氧化铵C.碳酸氢钠D.碳酸钠E.氢氧化钾9.水合氯醛不具有下列哪种理化性质()A.溶于水B.朋刺激性特臭C.有潮解性D.具有羰基试剂的生般反应E.与氢氧化钠溶液共热分解成氯仿和甲酸钠10.苯妥英属于()A.巴比妥类B.噁唑酮类C.乙内酰脲类D.丁二酰亚胺类E.嘧啶二酮类11.下列哪种试剂不能用于鉴定苯妥英钠()A.吡啶-硫酸酮试液B.硝酸银试液C.甲醛-硫酸溶液D.硝酸汞试液E.亚硝酸钠试液12.卡马西平属于()A.硫杂蒽类B.二苯并氮杂䓬类C.苯并氮杂䓬类1.“噢,居然有土龙肉,给我一块!”2.老人们都笑了,自巨石上起身。
药物化学总结

第二章中枢神经系统药1、在胃中水解主要为4,5位开环,到肠道又闭环成原药的是:A、氯丙嗪;B、苯巴比妥;C、硝西泮;D、氟哌啶醇;E、舒必利;2、地西泮的化学结构中所含的母核是:A、二苯并氮杂卓环;B、巴比妥酸;C、吩噻嗪环;D、1,3-苯二氮卓环;E、1,4-苯二氮杂卓环;•5、巴比妥类药物有水解性,是因为具有:A、酯结构;B、酰脲结构;C、醚结构;D氨基甲酸酯结构;E、酰肼结构;•6、巴比妥类钠盐水溶液与空气中哪种气体接触发生沉淀:A、氧气;B、氮气;C、氨气;D、一氧化碳;E、二氧化碳;•戊巴比妥不具备下列哪种性质:A、呈弱酸性;B、溶于水;C、与硝酸银试液生成的一银盐溶于氨试液;D、钠盐易水解;E、与吡啶-硫酸铜试液呈紫色;•下列哪种试剂不用于鉴定苯巴比妥钠:A、吡啶-硫酸铜试液;B、硝酸银试液;C、甲醛-硫酸试液;D、硝酸汞试液;E、亚硝酸钠试液;•奋乃静和盐酸氯丙嗪在贮存中易变色是因为吩噻嗪环易被:A、水解;B、氧化;C、还原;D、脱胺基;E、开环;•盐酸氯丙嗪注射液在日光作用下引起变质,其pH值往往:A、降低;B、升高;C、不变;D、先升高后降低;E、先降低后升高;•巴比妥类药物在体内的未解离率如下,显效最快的是:A、苯巴比妥未解离率44%;B、己锁巴比妥未解离率90%;C、异戊巴比妥未解离率76%;D、丙烯巴比妥未解离率66%;E、环己巴比妥未解离率56%;•下面哪条不是苯巴比妥的性质:A、具有互变异构现象,呈酸性B、难溶于水但可溶于氢氧化钠或碳酸钠溶液中C、与吡啶硫酸铜试液作用生成绿色D、在适当碱性条件下,与硝酸银试液反应生成白色沉淀,振摇沉淀即溶解,继续滴加硝酸银试液反应生成不溶性的白色沉淀E、与吡啶硫酸铜试液反应生成紫色配合物•B型选择题:〔16~20〕A、产生惊厥作用;B、长效型催眠药;C、产生催眠作用较慢;D、用作静脉注射麻醉药;E、中、短效型催眠药;•16、巴比妥类药物5位用烯烃或支链烷烃取代();•17、巴比妥类药物pKa值较小的();•18、巴比妥类药物5位取代基碳原子总数超过10();•19、巴比妥类药物5位用苯环或饱和烃基取代();•20、巴比妥类药物2位氧原子被硫原子取代();• 属于苯并二氮卓类药物的有:A 、氟哌啶醇;B 、奥沙西泮;C 、地西泮;D 、氯氮卓;E 、舒必利; • 巴比妥类药物的性质有:A 、酮式和烯醇式的互变异构;B 、与吡啶-硫酸铜试液反应显紫色;C 、具有镇痛作用;D 、具有抗癫痫作用;E 、不溶于碳酸氢钠溶液; • 影响巴比妥类药物镇静催眠作用强弱、起效快慢和时间长短的因素: A 、pKa ; B 、脂水分配系数; C 、5位取代基的种类;D 、1位氮上是否有甲基取代;E 、2位氧是否被硫取代;• 对光敏感易氧化变色的药物是:A 、地西泮;B 、苯巴比妥;C 、盐酸利多卡因;D 、盐酸氯丙嗪;E 、卡马西平; • 问答题:镇静催眠药分几大类,每类列举一个代表药物。
第二章 中枢-镇痛药

SAR of Morphine and its derivatives
R2 can be replaced by various alkyl.
R2
As consequence a agonist may
turn to a antagonist.
N
The double bond is reduced, the
俗称:度冷丁,Dolantin, meperidine
② 体内代谢
Oral administration(口服)
◦ 50% of the drug escapes first-pass metabolism to enter circulation
药物经胃肠道给药,在尚未吸 收进入血循环之前,在肠粘膜 和肝脏被代谢,而使进入血循 环的原形药量减少的现象,称
2、吗啡的结构 structure
N
HO
O
OH
1)chemical name
17-甲基-4, 5-环氧-7, 8-二脱氢 吗啡喃 -3, 6-二醇
(5α,6α)-7,8-didehydro-4,5-epoxy17-methylmorphinan-3,6-diol
NH 吗啡喃
2)结构特点
缓解分娩疼痛(Lessening the severing of labor pains in obstetric).
Hale Waihona Puke 3)哌替啶结构修饰得到的同类药物
① 哌啶环N上以较大的基团取代, 镇痛作用增强
匹米诺定
阿尼利定
② 哌啶环4-位的哌啶甲酸乙酯修饰 成其异构体哌啶醇丙酸酯,同时 在哌啶环3-位引入甲基,镇痛作 用增强。神经毒性,已停用。
HO
药物化学复习重点

第二章中枢神经系统药物1 、镇静催眠药分类巴比妥类:异戊巴比妥。
苯二氮卓类:地西泮。
新型:酒石酸唑吡坦。
2 、巴比妥类理化性质①酸性②水解性③与金属离子反应:与铜盐作用,紫色络合物,含硫的巴比妥反应后显绿色。
硝酸银试液作用一价银盐可溶,二价银盐白色沉淀3 、巴比妥药物的构效关系:巴比妥酸无镇静催眠作用,当5 位的两个氢被取代后才呈现活性。
5位基团取代成不同的巴比妥类药物:①、作用强弱和快慢---- 药物的理化性质②、作用时间长短----药物的体内代谢速度苯二氮卓类结构对比4 、地西泮理化性质①水解性:酰胺结构,1 --- 2 间水解,烯胺结构,4 -5 间水解可逆性水解。
②与生物碱试剂显色,③具有叔胺的结构5 、抗癫痫药化学结构环内酰脲类:苯妥英钠。
二苯并氮卓类:卡马西平。
其它类:卤加比、6 、苯妥英钠理化性质①碱性②水解③鉴别反应:吡啶硫酸铜溶液作用生成蓝色络盐7 、卡马西平理化性质:稳定性,片剂在潮湿环境中保存时,药效降至原来的1/3 可能是由于生成二水合物使片剂硬化,导致溶解和吸收差所致,长时间光照,固体表面由白变橙黄8 、抗精神失常药①、吩噻嗪类盐酸氯丙嗪②噻吨类(硫杂蒽类)氯普噻吨③丁酰苯类氟哌啶醇④二苯丁基哌啶类五氟利多、匹莫齐特⑤二苯并氮杂卓类和二苯并氧氮卓类氯氮平⑥其它类9 、盐酸氯丙嗪理化性质①酸性②还原性③鉴别反应10 、噻吨类抗精神病药几何异构体:侧链与母核②位取代基同边者为Z 型(c i s-isomer ),反之为E 型(trans-isomer ),活性一般cis > trans11 、氟哌啶醇氟哌啶醇理化性质:①105 ℃干燥时,降解,产物可能是脱水产物。
②片剂处方中如有乳糖,可与乳糖中的杂质5- 羟甲基- 2 - 糠醛加成。
③遇强氧化剂加热,生成氟化氢12 、氯氮平非经典的抗精神病药物抗抑郁药按作用机制:①去甲肾上腺素重摄取抑制剂(三环类抗抑郁药)②单胺氧化酶抑制剂③选择性5- 羟色胺重摄取抑制剂④其它类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
barbital
phenobarbital
amobarbital
cyclobarbital
secobarbital
pentobarbital
hexobarbital
thiopental sodium
二、巴比妥类药物
理化性质: ➢巴比妥酸在水溶液中存在三酮式(原形)、单内酰亚胺、双 内酰亚胺和三内酰亚胺之间的平衡
三、非苯二氮䓬类GABAA受体激动剂
咪唑并吡啶类:唑吡坦 zolpidem 第一个上市的咪唑并吡啶类镇静催眠药 目前已成为欧美国家的主要镇静催眠药 常用酒石酸盐 选择性地与苯二氮䓬1受体亚型结合
➢ 与2 、3受体亚型亲和力很差 ➢ 在正常治疗周期内,极少产生耐受性和身体依赖性
三、非苯二氮䓬类GABAA受体激动剂
一、环内酰脲类 合成路线:
一、环内酰脲类
吸湿性和酸性:
❖ 钠盐具有吸湿性 ❖ 空气中 易吸收CO2,析出苯妥英
▪ 水溶液呈碱性 ▪ 苯妥英的pKa 8.3 (H2CO3 pKa
3.9,6.35 )
一、环内酰脲类
水解性: ❖ 水解 (环状酰脲结构)
▪ 与碱加热,分解产生二苯基脲基乙酸,最后生成二 苯基氨基乙酸,并释放出氨。(可供鉴别)
59
化学结构分类
❖ 吩噻嗪类 ❖ 噻吨类(硫杂蒽类) ❖ 丁酰苯类 ❖ 二苯氮䓬类 ❖ 其他类
60
一、吩噻嗪类
1. 发现和发展
异丙嗪(非那根)
盐酸氯丙嗪
氯丙嗪的合成路线
母核 + 侧链
62
还原性
❖ 苯并噻嗪母环,易氧化
▪ 注射液 在日光作用下 变质,pH值下降 ▪ 部分病人 用药后发生 严重的光化毒反应
药物化学第二章中枢神经系 统药物
第二章 中枢神经系统药物 Central Nervous System Drugs
1
镇静催眠药
2
抗癫痫药物
3
抗精神病药
4
抗抑郁药
5
镇痛药
6 神经退行性疾病治疗药物
第一节 镇静催眠药 sedative-hypnotics
简介
❖ 镇静药:可使病人的紧张,烦躁、焦虑、失眠等精 神过度兴奋受到抑制、变为平静、安宁的药物。
一、环内酰脲类
体内代谢:
❖ 主要被肝微粒体酶代谢 ❖ 具有“饱和代谢动力学”的特点
▪ 如果用量过大或短时内反复用药,可使代谢酶饱和,代谢将显著 减慢,并易产生毒性反应
❖ 约20%以原形由尿排出 ❖ 主要代谢产物为无活性的5-(4-羟苯)-5-苯乙内酰脲
▪ 与葡萄糖醛酸结合排出体外
二、苯并二氮䓬类
抗癫痫药物分类
❖ 根据化学结构:
环内酰脲类 苯并二氮䓬类 二苯并氮杂䓬类 GABA衍生物 脂肪羧酸类 其他类
一、环内酰脲类
结构类型:
一、环内酰脲类
❖苯妥英钠 Phenytoin Sodium
▪ 大伦丁钠(Dilantin Sodium)
❖ 治疗癫痫大发作和部分性发作的首选药 ❖ 但对小发作无效
药物特点
❖ 具有不同程度的镇静作用 ❖ 抗精神病作用不是通过镇静,而是药物的选择性
对抗和治疗作用 ❖ 长期应用一般无成瘾性
58
作用机制
❖ 病因:精神分裂症可能与患者脑内多巴胺(dopamine, DA)神经系统功能亢进,多巴胺过多或多巴受体过敏 。
• 本类药物能阻断中脑-边缘系统及中脑-皮质通路 的DA受体,减低DA功能 。
二、巴比妥类药物
代谢与药物持续作用时间: 易代谢:药物作用时间短 不易代谢:药物作用时间长 5位取代基的氧化:巴比妥类药物代谢的主要途径 饱和直链烷烃或芳烃时,作用时间长
➢ 由于不易被氧化而重吸收
二、巴比妥类药物
代谢与药物持续作用时间: 5位取代基为支链或不饱和烃时,代谢迅速,
➢ 主要以代谢产物形式排出体外 ➢ 镇静、催眠作用时间短
❖ 催眠药:能抑制中枢神经系统的功能,使之进入睡 眠状态的药物。
❖ 两者并无明确界限,而只有量的差别。一般小剂量 时则可产生镇静作用,中等剂量时引起睡眠。
分类
❖ 苯并二氮䓬类:地西泮,奥沙西泮,等 ❖ 巴比妥类:苯巴比妥,硫喷妥钠,等 ❖ 非苯二氮氮䓬类GABAA受体激动剂:唑吡坦,等
一、苯并二氮䓬类药物
4,5双链被饱和或骈入 四氢唑环,增加镇静和 抗抑郁作用。
5位为苯基取代,专属性很强 ,若以其他基团替代,活性 降低;在苯基2位引入吸电子 基团,如氟,可明显增强活 性。
二、巴比妥类药物
结构特点: ➢环丙二酰脲(巴比妥酸)衍生物 ➢5位被乙基和异戊基双取代
二、巴比妥类药物 临床常用巴比妥类镇静催眠药物:
二、巴比妥类药物
作用机制: ➢作用于网状兴奋系统的突触传递过程,
• 通过抑制上行激活系统的功能; • 使大脑皮层细胞兴奋性下降; ➢产生镇静催眠及抗惊厥作用。
临床应用: ➢催眠药; ➢治疗癫痫大发作。
二、巴比妥类药物
合成通法: 丙二酸二乙酯的合成方法
二、巴比妥类药物
构效关系: 巴比妥酸无镇静催眠作用
氯氮䓬
地西泮diazepam
(Roche的目标化合物) (反应的主要产物无活性) (反应的副产物有活性) (结构简化产物)
一、苯并二氮䓬类药物
地西泮的水解特点:
•1,2位的酰胺键和4,5位的亚胺键,在酸性条件下两者都容易发生水解开环反应; •4,5位开环是可逆性反应,在酸性情况下水解开环,中性和碱性情况下脱水闭环。 •在胃酸作用下,4,5位水解开环,开环化合物进入弱碱性的肠道,又闭环形成原药。因此 ,4,5位间开环,不影响药物的生物利用度。
进入脑内的药量极微 无镇静、催眠作用
巴比妥酸 苯巴比妥酸
pKa
4.12 3.75
未解离百分率 0.05 0.02
二、巴比妥类药物
分子态易于吸收及进入中枢发挥作用: Phenobarbital、Hexobarbital未解离的分子分别为 50%和90.91% Hexobarbital 的作用比Phenobarbital快
结构特点: 苯二氮䓬体系-苯环和七元亚胺内 酰胺环并合的母核
作用机制:
当苯二氮䓬类药物占据苯二氮䓬受 体时,则GABA就更易打开Cl通道 ,促进Cl离子内流,导致镇静、催 眠、抗焦虑,抗惊厥和中枢性肌松 等药理作用。
一、苯并二氮䓬类药物
代表药物: 地西泮-偶然获得的创新药物
苯并庚氧二嗪化合物 喹唑啉N-氧化物
二、巴比妥类药物
药物的分子和离子形式: 药物应有适当的解离度
➢ 分子形式透过生物膜 ➢ 离子形式产生作用
二、巴比妥类药物 解离度与药效的关系: 在生理pH7.4的条件下体内解离度
影响 进入脑内药物的量 影响 镇静、催眠作用的强弱和作用的快慢
二、巴比妥类药物
巴比妥酸无活性: 巴比妥酸和苯巴比妥酸几乎不能透过细胞膜和血脑屏障
咪唑并吡啶类:扎来普隆 zaleplon 苯二氮䓬1受体完全激动剂 镇静、抗焦虑、抗惊厥和抗癫痫作用 还可用作肌肉、骨骼肌松弛剂 副作用较小,没有精神依赖性
三、非苯二氮䓬类GABAA受体激动剂
吡咯酮类:佐匹克隆 zopiclone 苯二氮䓬1受体选择性激动剂 无成瘾性和耐受性 “第三代催眠药”
构效关系
以长链烃基取代,如 环氧甲基,可延长作 用;1,2位并入三唑 环,增强药物与受体 的亲和力和代谢稳定 性,活性大大增强。
七元亚胺内酰胺环是活 性必需结构;3位的一 个氢原子可被羟基取代 ,虽然活性稍有下降, 但毒性很低。
引入吸电子基团,如硝 基,可使水解反应几乎 都在4,5位上进行,可 明显增强活性;当A环被 其他芳杂环,如噻吩、 吡啶等取代,仍有较好 的生理活性。
三、二苯并氮杂䓬类
合成路线:
三、二苯并氮杂䓬类
体内代谢: • 初级代谢物Carbamazepine的10,11位环氧化物也具有抗
癫痫活性
三、二苯并氮杂䓬类
临床作用:
❖ 从胃肠道吸收
▪ 由于水溶性差,故吸收较慢且不规则
❖ 用于治疗癫痫大发作和综合性局灶性发作 ❖作用机理与Phenytoin Sodium相似
去甲地西泮
替马西泮 temazepam
奥沙西泮 oxazepam
一、苯并二氮䓬类药物
地西泮的合成
一、苯并二氮䓬类药物
其他本类药物
flurazepam
lorazepam
nitrazepam
flunitrazepam
brotizolam
triazolam
estazolam
alprazolam
一、苯并二氮䓬类药物
药理学作用
❖ 作用于GABA受体发挥作用 ❖ 对癫痫、痉挛状态和运动失调均有良好的治疗效
果 ❖ 口服吸收迅速
五、脂肪羧酸类
丙戊酸
丙戊酸钠
丙戊酰胺
六、其他结构类药物
非氨酯 felbamate
拉莫三嗪 lamotrigine
第三节 抗精神失常药 Antipsychotic Drugs
56
抗精神失常药是用来治疗精神疾病的一类药物。 主要包括: ❖ 抗精神病(精神分裂症)药(Antipsychotic drugs) ❖ 抗焦虑药 (Antianxiety drugs) ❖ 抗抑郁药 (Antidepressant drugs) ❖ 抗躁狂药 (Antimanic drugs)
一、苯并二氮䓬类药物
地西泮的体内代谢过程
•C-3位羟基化生成temazepam; •N去甲基生成去甲地西泮,继而C-3位羟基化生成oxazepam; •temazepam和oxazepam均为活性代谢物,且副作用小,半衰期较短,适宜于老年人和肝 肾功能不良者使用,已广泛用于临床。
地西泮 diazepam