iic设备驱动程序.doc
实验八 51系列单片机IIC

I2C总线上的所有器件连接在一个公共的总线上,因此,主器件在进行数据传输前选择需要通信的从器件,即进行总线寻址。 I2C总线上所有外围器件都需要有惟一的地址,由器件地址和引脚地址两部分组成,共7位。器件地址是I2C器件固有的地址编码,器件出厂时就已经给定,不可更改。引脚地址是由I2C总线外围器件的地址引脚(A2,A1,A0)决定,根据其在电路中接电源正极、接地或悬空的不同,形成不同的地址代码。引脚地址数也决定了同一种器件可接入总线的最大数目。 地址位与一个方向位共同构成I2C总线器件寻址字节。寻址字节的格式如表所示。方向位(R/)规定了总线上的主器件与外围器件(从器件)的数据传输送方向。当方向位R/=1,表示主器件读取从器件中的数据;R/=0,表示主器件向从器件发送数据。
从地址中读取一个字节的数据
INT8U read_random(INT8U RomAddress) { INT8U Read_data; I_Start(); I_Write8Bit(WriteDeviceAddress); I_TestAck(); I_Write8Bit(RomAddress); I_TestAck(); I_Start(); I_Write8Bit(ReadDeviceAddress); I_TestAck(); Read_data=I_Read8Bit(); I_NoAck(); I_Stop(); return (Read_data); }
8.4.1 串行EEPROM存储器简介
串行EEPROM存储器是一种采用串行总线的存储器,这类存储器具有体积小、功耗低、允许工作电压范围宽等特点。目前,单片机系统中使用较多的EEPROM芯片是24系列串行EEPROM。其具有型号多、容量大、支持I2C总线协议、占用单片机I/O端口少,芯片扩展方便、读写简单等优点。 目前,Atmel、MicroChip、National等公司均提供各种型号的I2C总线接口的串行EEPROM存储器。下面以Atmel公司的产品为例进行介绍。 AT24C01/02/04/08系列是Atmel公司典型的I2C串行总线的EEPROM。这里以AT24C08为例介绍。AT24C08具有1024×8位的存储容量,工作于从器件模式,可重复擦写100万次,数据可以掉电保存100年。8引脚DIP封装的AT24C08的封装结构,如图所示。
I2C总线简介(很经典)

I2C总线简介1.概述:I²C是Inter-Integrated Circuit的缩写,发音为"eye-squared cee" or"eye-two-cee", 它是一种两线接口。
I²C 只是用两条双向的线,一条 Serial Data Line (SDA) ,另一条Serial Clock (SCL)。
SCL:上升沿将数据输入到每个EEPROM器件中;下降沿驱动EEPROM器件输出数据。
(边沿触发)SDA:双向数据线,为OD门,与其它任意数量的OD与OC门成"线与"关系。
2.输出级每一个I2C总线器件内部的SDA、SCL引脚电路结构都是一样的,引脚的输出驱动与输入缓冲连在一起。
其中输出为漏极开路的场效应管,输入缓冲为一只高输入阻抗的同相器,这种电路具有两个特点:1)由于SDA、SCL为漏极开路结构(OD),因此它们必须接有上拉电阻,阻值的大小常为1k8, 4k7 and 10k ,但1k8 时性能最好;当总线空闲时,两根线均为高电平。
连到总线上的任一器件输出的低电平,都将使总线的信号变低,即各器件的SDA及SCL都是线"与"关系。
2)引脚在输出信号的同时还将引脚上的电平进行检测,检测是否与刚才输出一致,为"时钟同步"和"总线仲裁"提供了硬件基础。
3.主设备与从设备系统中的所有外围器件都具有一个7位的"从器件专用地址码",其中高4位为器件类型,由生产厂家制定,低3位为器件引脚定义地址,由使用者定义。
主控器件通过地址码建立多机通信的机制,因此I2C总线省去了外围器件的片选线,这样无论总线上挂接多少个器件,其系统仍然为简约的二线结构。
终端挂载在总线上,有主端和从端之分,主端必须是带有CPU的逻辑模块,在同一总线上同一时刻使能有一个主端,可以有多个从端,从端的数量受地址空间和总线的最大电容 400pF的限制。
RDA5807m+IIC收音机51单片机C程序

RDA5807m驱动程序+ IIC 程序/****************************************************************************** ************ 介绍: RD5807M收音机程序供电3.3v 主控使用51单片机显示使用LCD1602** 作者: 胖子** 时间:2016-1-5** 地点:桂林电子科技大学******************************************************************************* **********/#include <reg51.h>#include <string.h>#include <intrins.h>#define uchar unsigned char#define uint unsigned int#define ulint unsigned long int#define lint long intuchar code xian[4][4]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};uchar code hang[]={0xfe,0xfd,0xfb,0xf7}; //矩阵键盘扫描使用//RDA 的寄存器地址#define RDA_R00 0X00 //读出16个位的ID =0X5800#define RDA_R02 0X02 //DHIZ[15],DMUTE[14]静音,MONO[13]声道,BASS[12]重低音,SEEKUP[9],SEEK[8],SKMODE[7],CLK_MODE[6:4]时钟源选择,SOFTRESET[1]软复位,ENABLE[0]电源使能#define RDA_R03 0X03 //CHAN[15:6],TUNE[4],BAND[3:2],SPACE[1:0] 设置频率带宽步长#define RDA_R04 0X04 //STCIEN[14],DE[11],I2Senable[6],#define RDA_R05 0X05 //INT_MODE[15],SEEKTH[14:8](设定自动搜索信号强度阀值),LNA_PORT_SEL[7:6]=0b10,LNA_ICSEL_BIT[5:4],VOLUME[3:0]音量;#define RDA_R0A 0X0A //STC[14]seek complete SF[13]seek fail readchan[9:0]当前频道#define RDA_R0B 0X0B //RSSI[15:9],FM TRUE[8]当前频道是一个节目台#define RDA_READ 0X23 //读RDA5807#define RDA_WRITE 0X22 //写RDA5807//IO操作函数sbit SDA=P2^1;sbit SCL=P2^0;sbit RW =P1^1;sbit RS=P1^0;sbit EN=P2^5;uchar code a[]="FM: . ";uchar code b[]="Vol: RSSI: ";uchar code shu[]="0123456789";uchar num ;void delayms(uint x) //延迟程序uint i,j;for(i=x;i>0;i--)for(j=113;j>0;j--);}/*********************************************** 矩阵键盘程序********************************************************************/uchar ScanKey() //矩阵键盘扫描返回值是当前按键数值如没按下则返回值为零{uint x,y;for(x=0;x<4;x++){uchar temp,gaowei;P3=hang[x]; //分行置零temp=P3&0xf0;if(temp!=0xf0){delayms(10);if(temp!=0xf0){gaowei=P3/16; //判断是第几列的按键按下,将数据装入高四位switch(gaowei){case 0xe:y=0; break;case 0xd:y=1; break;case 0xb:y=2; break;case 0x7:y=3; break;}while(temp!=0xf0){temp=P3&0xf0;}return xian[x][y];}}}return 0;}/******************************************************* LCD1602程序************************************************************************/void write_com(unsigned char com)RS=0;P0=com;delayms(5);EN=1;delayms(5);EN=0;}void write_data(unsigned char date){RS=1;P0=date;delayms(5);EN=1;delayms(5);EN=0;}void init_1602(){P0=0xc0;RW =0;EN=0;write_com(0x38); //éè??16*2??ê?£?5*7μ??ó£?8??êy?Y?úwrite_com(0x0c); //éèa??ê?£?2ê?1a±êwrite_com(0x06); //D′ò×?·?oóμ??·ó1write_com(0x01); //??êá?£?êy?Yá?}void DisplayFrq(float Frq) //显示频率{uint F;F=Frq*10;write_com(0x80+3);write_data(shu[F/1000]);delayms(1);write_data(shu[F/100%10]);delayms(1);write_data(shu[F/10%10]);delayms(1);write_com(0x80+7);write_data(shu[F%10]);delayms(1);}void DisplayVol(uint Vol) //显示音量{write_com(0x80+0x40+4);write_data(shu[Vol/10]);delayms(1);write_data(shu[Vol%10]);delayms(1);}void Display_mute() //显示静音{write_com(0x80+0x40+4);write_data('x');delayms(1);write_data('x');delayms(1);}void Display_RSSI(uint RSSI) //显示信号强度{write_com(0x80+0x40+14);write_data(shu[RSSI/10]);delayms(1);write_data(shu[RSSI%10]);delayms(1);}/*----------------------------------------IIC通信程序---------------------------------------------------*/ void IIC_delayms() //用于IIC延时{_nop_();_nop_();_nop_();_nop_();}void OpenIIC() //IIC启动信号{SDA=1;SCL=1;IIC_delayms();SDA=0;IIC_delayms();SCL=0;}void CloseIIC() //IIC停止信号{SCL=0;SDA=0;IIC_delayms();SCL=1;SDA=1;IIC_delayms();}uchar IIC_Wait_Ack(void) //IIC发送字节后等待从机发送响应信{uchar ucErrTime=0;SDA=1;IIC_delayms();SCL=1;IIC_delayms();while(SDA==1){ucErrTime++;if(ucErrTime>250){CloseIIC();return 1;}}SCL=0;return 0;}void IIC_Ack(void) //{SCL=0;SDA=0; //0±íê?ó|′eIIC_delayms();SCL=1;IIC_delayms();SCL=0;}void IIC_NAck(void) //IIC 非应答信号{SCL=0;SDA=1;IIC_delayms();SCL=1;IIC_delayms();SCL=0;}void IICsendByte(uchar txd) //IIC·写一个字节{uchar t;SCL=0;for(t=0;t<8;t++){if(((txd&0x80)>>7)==1)SDA=1;elseSDA=0;txd<<=1;IIC_delayms();SCL=1;IIC_delayms();SCL=0;IIC_delayms();}}uchar IICReadByte(unsigned char ack) //IIC读一个字节{unsigned char i,receive=0;SDA=1; //51单片机讲引脚置高可设为输入引脚for(i=0;i<8;i++ ){SCL=0;IIC_delayms();SCL=1;receive<<=1;if(SDA==1)receive++;IIC_delayms();}if (!ack)IIC_NAck();elseIIC_Ack();return receive;}uint ReadReg(uchar regAddr) //芯片读寄存器{uint buf;OpenIIC();IICsendByte(RDA_WRITE); //发送芯片地址方向为写IIC_Wait_Ack();IICsendByte(regAddr); //发送寄存器地址IIC_Wait_Ack();OpenIIC();IICsendByte(RDA_READ); // 发送芯片地址方向为读IIC_Wait_Ack();buf = IICReadByte(1);buf = buf<<8;buf =buf|IICReadByte(0);CloseIIC();return buf;}void WriteReg(uchar regAddr,uint val) //芯片写寄存器{OpenIIC();IICsendByte(RDA_WRITE); //发送芯片地址方向为写IIC_Wait_Ack();IICsendByte(regAddr); //发送寄存器地址IIC_Wait_Ack();IICsendByte(val>>8);IIC_Wait_Ack();IICsendByte(val&0XFF);IIC_Wait_Ack();CloseIIC();}void Vol_Set(uchar vol) //音量设置0~15{uint temp=0;temp=ReadReg(RDA_R05);temp&=0xfff0;WriteReg(0x05,vol|temp) ;}void Mute_Set(uchar mute) //静音设置1为静音0为不静音{uint temp=0;temp=ReadReg(0X02);if(!mute)temp|=1<<14;else temp&=~(1<<14);WriteReg(0X02,temp) ;}void Bass_Set(uchar bass) //频带设置{uint temp=0;temp=ReadReg(0X02);if(bass)temp|=1<<12;else temp&=~(1<<12);WriteReg(0X02,temp) ;}uchar Rssi_Get(void) //信号强度获取0~63{uint temp=0;temp=ReadReg(0X0B);temp=(temp>>9)&0x7f;return temp;}void Seekth_Set(uint rssi) //自动搜台信号阈值强度0~15 默认为8 数值越低搜到的台越多{uint temp;rssi = rssi & 0xf;temp=ReadReg(0X05);temp&=~(0xf<<8);temp|= rssi<<8;WriteReg(0X05,temp) ;}void Seek_direction(uchar direction) //搜台方向1向上搜索0向下搜索{uint temp;temp=ReadReg(RDA_R02);temp&=~(1<<9);if(direction == 1)temp|= 1<<9;// if(direction == 0)// temp|= 0<<9;WriteReg(0X05,temp) ;}void Freq_Set(uint freq) //频率设置单位是:10KHz 6500~10800{uint temp;uchar spc=0,band=0;uint fbtm,chan;temp=ReadReg(0X03);temp&=0X001F;band=(temp>>2)&0x03;spc=temp&0x03;if(spc==0)spc=10;else if(spc==1)spc=20;else spc=5;if(band==0)fbtm=8700;else if(band==1||band==2)fbtm=7600;else{fbtm=ReadReg(0X53);fbtm*=10;}if(freq<fbtm)return;chan=(freq-fbtm)/spc;chan&=0X3FF;temp|=chan<<6;temp|=1<<4;WriteReg(RDA_R03,temp) ;delayms(20);// while((ReadReg(0X0B)&(1<<7))==0);}unsigned int seek_channel(void) //半自动搜台{unsigned long temp;temp=ReadReg(RDA_R02);temp |= (1<<8);WriteReg(RDA_R02,temp) ; //SEEK位置一使能自动搜台while( (ReadReg(RDA_R0A)&(1<<14)) == 0 ) // 等待STC位置一表示搜索完成{delayms(10); //?óê±10ms}temp = ((ReadReg(RDA_R0A)&0x3FF) * 100000 + 87000000)/10000 ; //获取当前频率return temp; //返回搜到电台频率单位是:10Khz}void FM_enable(uchar flag) //1 使能芯片0 禁用芯片{uint temp;temp=ReadReg(RDA_R02);if(flag ==1 )temp |=1;if(flag == 0)temp &= ~0x1;WriteReg(RDA_R02,temp);}void RDA_Init(void) //RDA3?ê??ˉ{WriteReg(RDA_R02,0x0002); //软复位delayms(30);WriteReg(RDA_R02,0xd081); //?§32.768Khz ?òé÷??μíò? á¢ì?éùSKMODE = 1÷μ?±??μê±í£?1WriteReg(RDA_R03,0x0000); //?μ?êéè?a87MHz £?2100Khz ?μ′??a87M~108MWriteReg(RDA_R04,0x0040); //?ù±WriteReg(RDA_R05,0X8882); //ò?á?éèavol=2 ÷·§?μ?a8FM_enable(1); //??Dé?μ?Seekth_Set(8); //自动搜台信号阈值强度0~15 默认为8 数值越低搜到的台越多}void display_1602(){write_com(0x80);for(num=0;num<34;num++){write_data(a[num]);delayms(5);}write_com(0x80+0x40);for(num=0;num<34;num++){write_data(b[num]);delayms(5);}}void main(){unsigned char Key_num=0,Vol=1,RSSI=0,mute=1;unsigned int RXFreq=8830,time=0;unsigned int Diantai[40]={8830};char Num=0,station=1;unsigned int test=7896;unsigned int temp=10;init_1602();display_1602();RDA_Init(); //RDA5807初始化Freq_Set(8830); //频率设置Vol_Set(2) ;DisplayFrq(88.3);DisplayVol(2); //显示音量while (1){time++;if(time>1000)Display_RSSI(Rssi_Get()); //显示信号强度Key_num=ScanKey();switch(Key_num){case 1: { if(RXFreq==8800)RXFreq=8800; //频率减else RXFreq-=10;Freq_Set(RXFreq);DisplayFrq(RXFreq/100.0);while(0!=ScanKey()); //按键释放break;}case 2:{ if(RXFreq==10800)RXFreq=10800;//频率加else RXFreq+=10;Freq_Set(RXFreq);DisplayFrq(RXFreq/100.0);while(0!=ScanKey()); //按键释放break;}case 5: { //声音减if(Vol==0)Vol=0;elseVol-=1;Vol_Set(Vol);DisplayVol(Vol); //显示音量while(0!=ScanKey()); //按键释放break;}case 6:{ if(Vol==15)Vol=15; //声音加else Vol+=1;Vol_Set(Vol);DisplayVol(Vol); //显示音量while(0!=ScanKey()); //按键释放break;}case 7:{ if(mute==1) //静音{Mute_Set(1);Display_mute(); //显示静音while(0!=ScanKey()); //按键释放mute=0;break;}if(mute==0){Mute_Set(0);DisplayVol(Vol); //取消静音显示音量mute=1;}while(0!=ScanKey());break;}case 9:{ //电台减但是必须先按9进行电台搜索while(0!=ScanKey()); //按键释放Seek_direction(0); //向下搜索RXFreq = seek_channel(); //搜索下一个频道Freq_Set(RXFreq);DisplayFrq(RXFreq/100.0);break;}case 10:{ //电台加但是必须先按11进行电台搜索while(0!=ScanKey()); //按键释放Seek_direction(1); //向上搜索RXFreq = seek_channel(); //搜索下一个频道Freq_Set(RXFreq);DisplayFrq(RXFreq/100.0);break;}default:break;}}}// case 9:{ //电台减但是必须先按11进行电台搜索// if(station==0)break;// if(Num>0)Num-=1;// else Num=station-1;// Freq_Set(Diantai[Num]);// DisplayFrq(Diantai[Num]/100.0);// RXFreq=Diantai[Num];// Display_now(1) ; //显示当前电台号// while(0!=ScanKey()); //按键释放// break;// }// case 10:{ if(station==0)break; //电台加但是必须先按11进行电台搜索// if(Num<(station-1))Num+=1;// else Num=0;// Freq_Set(Diantai[Num]);// DisplayFrq(Diantai[Num]/100.0);// RXFreq=Diantai[Num];// Display_now(Num) ; //显示当前电台号// while(0!=ScanKey()); //按键释放// break;// }//// case 11:{ //自动搜台并且存储按9 或者10 可以上下变换电台。
IIC驱动 IO模拟

QPSKSTV0903 TUNER STV6110 驱动设计1.IIC 理论MEGA128 模拟IIC时序控制QPSK 中的STV0903 STV6110STV0903 STV6110 连接图IIC时序理论先看下STV0903写时序图1)起总线先将SCL、SDA拉高,然后维持SCL为高先将SDA拉低参考代码如下:void Start(void){SBI(PORTD,SAA7113_DA TA);SBI(PORTD,SAA7113_CLK);IIC_delay();CBI(PORTD,SAA7113_DA TA);IIC_delay();CBI(PORTD,SAA7113_CLK);IIC_delay();}2)停总线先将SCL、SDA拉低,然后先拉高SCL,维持SCL为高时拉高SDA参考代码:void Stop(void){CBI(PORTD,SAA7113_DA TA);CBI(PORTD,SAA7113_CLK);IIC_delay();SBI(PORTD,SAA7113_CLK);IIC_delay();SBI(PORTD,SAA7113_DA TA);IIC_delay();}3)写总线在写总线时将SDA设置为输出,参考代码:void write_byte(unsigned char data){uchar m,tmp;SBI(SAA7113_DDR,SAA7113_DA TA);for(m = 0; m < 8; m++){if(data & 0x80)SBI(PORTD,SAA7113_DA TA);elseCBI(PORTD,SAA7113_DA TA);IIC_delay();SBI(PORTD,SAA7113_CLK);IIC_delay();data = data<<1;CBI(PORTD,SAA7113_CLK);}IIC_delay();saa7113_ack();IIC_delay();}4)应答应答由被控制芯片回应过来,在此时SDA应该设置为输入等待ACK, 在CLK第九个脉冲时,CLK为高电平,而SDA为一个低电平在表示收到器件的一个ACK应答。
IIC接口 I2C接口 LCD1602 程序

PIC16F1824驱动IIC/I2C接口LCD1602液晶模块前一段时间,做一个显示电路,7段码显示内容太少,LCD1602占用的IO又太多,最后找到一种IIC/I2C接口LCD1602转接板。
T宝上买的LCD1602转接板,有资料,不过是针对Arduino的。
决定自己写程序。
首先得知道从器件地址。
T宝卖家给的地址是0x27(针对Arduino),而单片机使用的时候需要先左移一位,0x4E;测试的时候一直没反应,用示波器看,单片机发送的地址没问题,但转接板没有应答,ACK 一直是高电平,推测还是地址错误;后来搜索发现,PCF8574与PCF8574A的地址是不一样的,而T宝卖的是PCF8574A,给的资料还是PCF8574。
最后确认,从器件PCF8574A地址应该是0x7E;后来发送地址0x7E后,有应答ACK,又搜了写LCD1602的显示程序,稍微改了改,显示成功了;主要的程序如下:MCU:PIC16F1824IIC/I2C接口LCD1602转接板:PCF8574ATmain.c中包含:I2CInit();LCD1602Init();Dip_Single_char(1,5,'A');//********************************************************************// 文件名称: I2C.h// 创建日期: 2016-10-11// 最新更改: 2016-10-11// 描述: I2C初始化//********************************************************************//#define _XTAL_FREQ 2000000 // 延时函数delay_us/ms使用此值#define Slave_Add 0x7E // 从器件地址,PCF8574A,0x7E// PCF8574,0x27,左移1位,0x4E,#define I2C_BPS 0x18 // I2C波特率Fclock = Fosc/((I2C_BPS+1)*4) // 2MHz,20k,0x18#define Idle !(SSP1STATbits.R_nW|(0x1F & SSP1CON2)) // 空闲void I2CInit ( );void I2CStart ( );void I2CStop ( );void ReStart ( );void I2CSendByte(unsigned char I2CSnBy);void WriteCommand(unsigned char Command);void WriteData (unsigned char Data);void LCD1602Init(void);void Dip_Single_char(unsigned char col,unsigned char row,unsigned char sign); void DisDec(unsigned char col_D,unsigned char row_D,unsigned int Temp_k );/*********************************************************************** The End*********************************************************************///********************************************************************// 文件名称: I2C.c// 创建日期: 2016-10-11// 最新更改: 2016-10-11// 描述: I2C初始化//********************************************************************//#include "xc.h"#include "I2C.h"/*********************************************************************** Function name: I2CInit** Descriptions: 注意:必须将SDA、SCL引脚配置为输入引脚,<<DS P293>>** input parameters: 无** output parameters: 无** Returned value: 无**********************************************************************/void I2CInit (void){SSP1STATbits.SMP = 1; // 禁止标准速度模式下的压摆率控制SSP1STATbits.CKE = 0; // 禁止SMBus特定输入SSP1CON1bits.SSPEN = 1; // 使能I2C,并将SDA 和SCL引脚配SSP1CON1bits.SSPM = 0x8; // I2C主模式SSP1ADD = I2C_BPS; // Fclock = Fosc / ((SSP1ADD + 1)*4)}/*********************************************************************** Function name: I2CStart ( )** Descriptions: I2C开始** input parameters: 无** output parameters: 无** Returned value: 无**********************************************************************/void I2CStart ( ){while (!Idle);SSP1CON2bits.SEN = 1; // 在SDA和SCL引脚上发出启动条件,硬件自动清零 while(SSP1CON2bits.SEN); // 启动条件发送完成while(!Idle);}/*********************************************************************** Function name: I2CStop ( )** Descriptions: I2C停止** input parameters: 无** output parameters: 无** Returned value: 无**********************************************************************/void I2CStop(){while (!Idle);SSP1CON2bits.PEN = 1; // 在SDA和SCL引脚上发出停止条件,硬件自动清零 while(SSP1CON2bits.PEN); // 停止条件发送完成while(!Idle);}/*********************************************************************** Function name: ReStart()** Descriptions: I2C ,ReStart** input parameters: 无** output parameters: 无** Returned value: 无**********************************************************************/void ReStart(){while (!Idle);SSP1CON2bits.RSEN = 1; // 在SDA和SCL引脚上发出重复启动条件,硬件自动清零while(SSP1CON2bits.RSEN); // 重复启动条件发送完成while(!Idle);}/*********************************************************************** Function name: I2CSendByte()** Descriptions: SSP1BUF中写入字节** input parameters: I2CSnBy,要发送的数据** output parameters: 无** Returned value: 无**********************************************************************/void I2CSendByte(unsigned char I2CSnBy) {while (!Idle);SSP1BUF = I2CSnBy; // SSP1BUF中写入字节while(!Idle);}/*********************************************************************** Function name:** Descriptions:** input parameters:** output parameters: 无** Returned value: 无**********************************************************************/void WriteCommand(unsigned char Command){I2CStart(); // I2C开始I2CSendByte(Slave_Add); // 从器件地址unsigned char Temp_C;Temp_C = Command & 0xF0;Temp_C |= 0x0C; // P3=1 EN=1 RW=0 RS=0I2CSendByte(Temp_C);Temp_C &= 0xF8; // P3=1 EN=0 RW=0 RS=0I2CSendByte(Temp_C);Temp_C = (Command & 0x0F)<< 4;Temp_C |= 0x0C; // P3=1 EN=1 RW=0 RS=0I2CSendByte(Temp_C);Temp_C &= 0xF8; // P3=1 EN=0 RW=0 RS=0I2CSendByte(Temp_C);I2CStop(); // I2C停止}/********************************************************************* ** Function name:** Descriptions:** input parameters:** output parameters: 无** Returned value: 无**********************************************************************/void WriteData (unsigned char Data){I2CStart(); // I2C开始I2CSendByte(Slave_Add); // 从器件地址unsigned char Temp_D;Temp_D = Data & 0xF0;Temp_D |= 0x0D; // P3=1 EN=1 RW=0 RS=1I2CSendByte(Temp_D);Temp_D &= 0xF9; // P3=1 EN=0 RW=0 RS=1I2CSendByte(Temp_D);Temp_D = (Data & 0x0F)<< 4;Temp_D |= 0x0D; // P3=1 EN=1 RW=0 RS=1I2CSendByte(Temp_D);Temp_D &= 0xF9; // P3=1 EN=0 RW=0 RS=1I2CSendByte(Temp_D);I2CStop(); // I2C停止}/*********************************************************************** Function name: LCD1602Init(void),LCD1602初始化** Descriptions: 写一次,偶尔不能正常显示,重复2次** input parameters:** output parameters: 无** Returned value: 无**********************************************************************/void LCD1602Init(void){__delay_ms(10);WriteCommand(0x33); __delay_ms(5);WriteCommand(0x32); __delay_ms(5);WriteCommand(0x28); __delay_ms(5);WriteCommand(0x0C); __delay_ms(5);WriteCommand(0x06); __delay_ms(5);WriteCommand(0x01); __delay_ms(5); // 清屏__delay_ms(10);WriteCommand(0x33); __delay_ms(5);WriteCommand(0x32); __delay_ms(5);WriteCommand(0x28); __delay_ms(5);WriteCommand(0x0C); __delay_ms(5);WriteCommand(0x06); __delay_ms(5);WriteCommand(0x01); __delay_ms(5); // 清屏}/********************************************************************** Function name: L1602_char(uchar col,uchar row,char sign)** Descriptions: 改变液晶中某位的值,如果要让第一行,第五个字符显示"b" ,调用该函数如,Dip_Single_char(1,5,'A');** input parameters: 行,列,需要输入1602的数据** output parameters: 无** Returned value: 无*********************************************************************/void Dip_Single_char(unsigned char col,unsigned char row,unsigned char sign){ unsigned char a;if(col == 1) a = 0x80;if(col == 2) a = 0xc0;a = a + row - 1;WriteCommand(a);WriteData(sign);}/********************************************************************** Function name: Dip_Single_char** Descriptions: 显示int型数据,5位** input parameters: 行,列,数据** output parameters: 无** Returned value: 无*********************************************************************/void DisDec(unsigned char col_D,unsigned char row_D,unsigned int Temp_k ){if(Temp_k>=65535) Temp_k=65535;unsigned int Temp_Ts;unsigned char Table[5]; // 数字与1602显示码转换Table[0] = Temp_k/10000+48; // 万位Temp_Ts = Temp_k%10000; // 取余,0-9999Table[1] = Temp_Ts/1000+48; // 千位Temp_Ts = Temp_Ts%1000; // 取余,0-999Table[2] = Temp_Ts/100+48; // 百位Temp_Ts = Temp_Ts%100; // 取余,0-99Table[3] = Temp_Ts/10+48; // 十位Table[4] = Temp_Ts%10+48; // 个位unsigned char q;for(q=0;q<5;q++){ // 显示Dip_Single_char(col_D,q+row_D,Table[q]);}}/*********************************************************************** The End*********************************************************************/。
24Cxx I2C EEPROM字节读写驱动程序

_nop_();_nop_();_nop_();_nop_();_nop_();_nop_(); //Thd:STA
SCL=0; //START
write_8bit(0xa0 | page); //写页地址和操作方式,对于24C32-24C256,page不起作用
ACK(ห้องสมุดไป่ตู้;
if(eepromtype>IIC24C16) //如果是24C01-24C16,地址为一字节;24C32-24C256,地址为二字节
调用方式:void WriteIIC_24CXX(enum EEPROMTYPE eepromtype,unsigned int address,unsigned char ddata) ﹫2001/09/18
函数说明:对于IIC芯片24CXX,在指定地址address写入一个字节ddata
SDA=0;
_nop_();_nop_();_nop_();_nop_();_nop_();_nop_(); //Thd:STA
SCL=0; //START
write_8bit( (address<<1) | 0x01); //写页地址和操作方式
ACK();
while (i--)
{
SDA=1;
#include "reg51.h"
#include "intrins.h"
sbit SCL= P2^7;
sbit SDA= P2^6;
enum EEPROMTYPE {IIC24C01,IIC24C01A,IIC24C02,IIC24C04,IIC24C08,IIC24C16,IIC24C32,IIC24C64,IIC24C128,IIC24C256};
三轴加速度传感器MMA8452驱动程序

}
MMA8452_RecvACK();
}
/**************************************
从IIC总线接收一个字节数据
**************************************/
NOP();//NOP();NOP();NOP();
//NOP();NOP();NOP();NOP();
}
/**************************************
延时5毫秒(STC90C52RC@12M)
不同的工作环境,需要调整此函数
当改用1T的MCU时,请调整此延时函数
SCL = 1; //拉高时钟线
Delay5us(); //延时
SCL = 0; //拉低时钟线
Delay5us(); //延时
Delay5us(); //延时
SDA = 1; //产生上升沿
Delay5us(); //延时
}
/**************************************
void MMA8452_Start()
{
SDA_LOW();
SDA = 1; //拉高数据线
SCL = 1; //拉高时钟线
Delay5us(); //延时
//***************************************
// GY-45 MMA8452 IIC测试程序
// 使用单片机PIC16F877A
// 晶振:4M
// 显示:Nokia 5110
STM32模拟iic驱动eeprom24c128

STM32模拟iic驱动eeprom24c128void IIC_Init(void) //IIC初始化函数{GPIO_InitTypeDef GPIO_InitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOE, ENABLE);//使能GPIOB时钟GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2|GPIO_Pin_3;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //推挽输出GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOE, &GPIO_InitStructure);GPIO_SetBits(GPIOE,GPIO_Pin_2|GPIO_Pin_3); //PE2,PE3 输出高}void IIC_Start(void) //IIC开始函数{SDA_OUT(); //sda线输出IIC_SDA=1;IIC_SCL=1;delay_us(5);IIC_SDA=0;//START:when CLK is high,DATA change form high to lowdelay_us(5);IIC_SCL=0; //钳住I2C总线,准备发送或接收数据}void IIC_Stop(void) //IIC停止函数{SDA_OUT();//sda线输出IIC_SCL=0;IIC_SDA=0;//STOP:when CLK is high DATA change form low to highdelay_us(5);IIC_SCL=1;IIC_SDA=1;//发送I2C总线结束信号delay_us(5);}u8 IIC_Wait_Ack(void) //等待应答{u8 ucErrTime=0;SDA_IN(); //SDA设置为输入IIC_SDA=1;delay_us(5);IIC_SCL=1;delay_us(1);while(READ_SDA){ucErrTime++;if(ucErrTime>250){IIC_Stop();return 1;}}IIC_SCL=0;//时钟输出0return 0;}void IIC_Ack(void) //SDA输出低电平,IIC应答{IIC_SCL=0;SDA_OUT();IIC_SDA=0;delay_us(2);IIC_SCL=1;delay_us(4);IIC_SCL=0;}void IIC_NAck(void) //SDA输出高电平,IIC非应答{IIC_SCL=0;SDA_OUT();IIC_SDA=1;delay_us(2);IIC_SCL=1;delay_us(4);IIC_SCL=0;}void IIC_Send_Byte(u8 txd) //IIC发送一个字节{u8 t;SDA_OUT(); //数据线输出模式IIC_SCL=0; //拉低时钟开始数据传输for(t=0;t<8;t++){IIC_SDA=(txd&0x80)>>7;txd<<=1;delay_us(5); //对TEA5767这三个延时都是必须的IIC_SCL=1;delay_us(5);IIC_SCL=0;delay_us(5);}}u8 IIC_Read_Byte(unsigned char ack) //IIC读取一个字节{unsigned char i,receive=0;SDA_IN();//SDA设置为输入for(i=0;i<8;i++ ){IIC_SCL=0;delay_us(5);IIC_SCL=1;receive<<=1;if(READ_SDA){receive++;}delay_us(5);}if (!ack)IIC_NAck();//发送nACKelseIIC_Ack(); //发送ACKreturn receive;}void AT24CXX_Init(void) //AT254C128初始化{IIC_Init();}u8 AT24CXX_ReadOneByte(u16 ReadAddr) //AT24C128读取一个字节{u8 temp=0;IIC_Start();IIC_Send_Byte(0XA0); //发送写命令IIC_Wait_Ack();IIC_Send_Byte(ReadAddr>>8);//发送高地址IIC_Wait_Ack();IIC_Send_Byte(ReadAddr%256); //发送低地址IIC_Wait_Ack();IIC_Start();IIC_Send_Byte(0XA1); //进入接收模式IIC_Wait_Ack();temp=IIC_Read_Byte(0);IIC_Stop(); //产生一个停止条件return temp;}void AT24CXX_WriteOneByte(u16 WriteAddr,u8 DataToWrite) {IIC_Start();IIC_Send_Byte(0XA0); //发送写命令IIC_Wait_Ack();IIC_Send_Byte(WriteAddr>>8);//发送高地址IIC_Wait_Ack();IIC_Send_Byte(WriteAddr%256); //发送低地址IIC_Wait_Ack();IIC_Send_Byte(DataToWrite); //发送字节IIC_Wait_Ack();IIC_Stop();//产生一个停止条件delay_ms(20);}u8 AT24CXX_Check(void){u8 temp;temp=AT24CXX_ReadOneByte(12333);//避免每次开机都写AT24CXXif(temp==0X55){return 0;}else//排除第一次初始化的情况{AT24CXX_WriteOneByte(12333,0X55);temp=AT24CXX_ReadOneByte(12333);if(temp==0X55){return 0;}}return 1;}void AT24CXX_Read(u16 ReadAddr,u8 *pBuffer,u16 NumToRead) {while(NumToRead){*pBuffer++=AT24CXX_ReadOneByte(ReadAddr++);NumToRead--;}}void AT24CXX_Write(u16 WriteAddr,u8 *pBuffer,u16 NumToWrite) {while(NumToWrite--){AT24CXX_WriteOneByte(WriteAddr,*pBuffer);WriteAddr++;pBuffer++;}}BY MaiLaoDie。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
IIC设备驱动程序IIC设备是一种通过IIC总线连接的设备,由于其简单性,被广泛引用于电子系统中。
在现代电子系统中,有很多的IIC设备需要进行相互之间通信IIC总线是由PHILIPS公司开发的两线式串行总线,用于连接微处理器和外部IIC设备。
IIC设备产生于20世纪80年代,最初专用与音频和视频设备,现在在各种电子设备中都广泛应用IIC总线有两条总线线路,一条是串行数据线(SDA),一条是串行时钟线(SCL)。
SDA负责数据传输,SCL负责数据传输的时钟同步。
IIC设备通过这两条总线连接到处理器的IIC总线控制器上。
一种典型的设备连接如图:与其他总线相比,IIC总线有很多重要的特点。
在选择一种设备来完成特定功能时,这些特点是选择IIC设备的重要依据。
主要特点:1,每一个连接到总线的设备都可以通过唯一的设备地址单独访问2,串行的8位双向数据传输,位速率在标准模式下可达到100kb/s;快速模式下可以达到400kb/s;告诉模式下可以达到3.4Mb/s3,总线长度最长7.6m左右4,片上滤波器可以增加抗干扰能力,保证数据的完成传输5,连接到一条IIC总线上的设备数量只受到最大电容400pF的限制6,它是一个多主机系统,在一条总线上可以同时有多个主机存在,通过冲突检测方式和延时等待防止数据不被破坏。
同一时间只能有一个主机占用总线IIC总线在传输数据的过程中有3种类型的信号:开始信号、结束信号、和应答信号>>开始信号(S): 当SCL为高电平时,SDA由高电平向低电平跳变,表示将要开始传输数据>>结束信号(P):当SCL为高电平时,SDA由低电平向高电平跳变,表示结束传输数据>>响应信号(ACK): 从机接收到8位数据后,在第9个周期,拉低SDA电平,表示已经收到数据。
这个信号称为应答信号开始信号和结束信号的波形如下图:主机:IIC总线中发送命令的设备,对于ARM处理器来说,主机就是IIC控制器从机:接受命令的设备主机向从机发送数据:主机通过数据线SDA向从机发送数据。
当总线空闲时,SDA和SCL信号都处于高电平。
主机向从机发送数据的过程:1,当主机检测到总线空闲时,主机发出开始信号2,主机发送8位数据。
这8位数据的前7位表示从机地址,第8位表示数据的传输方向。
这时,第8位为0,表示向从机发送数据3,被选中的从机发出响应信号ACK4,从机传输一系列的字节和响应位5,主机接受这些数据,并发出结束信号P,完成本次数据传输由上图可知,IIC控制器主要是由4个寄存器来完成所有的IIC操作的。
IICCON:控制是否发出ACK信号,是否开启IIC中断IICSTAT:IICADD:挂载到总线上的从机地址。
该寄存器的[7:1]表示从机地址。
IICADD寄存器在串行输出使能位IICSTAT[4]为0时,才可以写入;在任何时候可以读出IICDS:保存将要发送或者接收到的数据。
IICCDS在串行输出使能IICSTAT[4]为1时,才可以写入;在任何时间都可以读出因为IIC设备种类太多,如果每一个IIC设备写一个驱动程序,那么显得内核非常大。
不符合软件工程代码复用,所以对其层次话:这里简单的将IIC设备驱动分为设备层、总线层。
理解这两个层次的重点是理解4个数据结构,这4个数据结构是i2c_driver、i2c_client、i2c_algorithm、i2c_adapter。
i2c_driver、i2c_client属于设备层;i2c_algorithm、i2c_adapter属于总线型。
如下图:设备层关系到实际的IIC设备,如芯片AT24C08就是一个IIC设备。
总线层包括CPU中的IIC总线控制器和控制总线通信的方法。
值得注意的是:一个系统中可能有很多个总线层,也就是包含多个总线控制器;也可能有多个设备层,包含不同的IIC设备由IIC总线规范可知,IIC总线由两条物理线路组成,这两条物理线路是SDA和SCL。
只要连接到SDA和SCL总线上的设备都可以叫做IIC设备。
一个IIC设备由i2c_client数据结构进行描述:struct i2c_client{unsigned short flags; //标志位unsigned short addr;//设备的地址,低7位为芯片地址char name[I2C_NAME_SIZE];//设备的名称,最大为20个字节struct i2c_adapter *adapter;//依附的适配器i2c_adapter,适配器指明所属的总线struct i2c_driver *driver;//指向设备对应的驱动程序struct device dev;//设备结构体int irq;//设备申请的中断号struct list_head list;//连接到总线上的所有设备struct list_head detected;//已经被发现的设备链表struct completion released;//是否已经释放的完成量};设备结构体i2c_client中addr的低8位表示设备地址。
设备地址由读写位、器件类型和自定义地址组成,如下图:第7位是R/W位,0表示写,2表示读,所以I2C设备通常有两个地址,即读地址和写地址类型器件由中间4位组成,这是由半导体公司生产的时候就已经固化了。
自定义类型由低3位组成。
由用户自己设置,通常的做法如EEPROM这些器件是由外部I芯片的3个引脚所组合电平决定的(A0,A1,A2)。
A0,A1,A2 就是自定义的地址码。
自定义的地址码只能表示8个地址,所以同一IIC总线上同一型号的芯片最多只能挂载8个。
AT24C08的自定义地址码如图:A0,A1,A2接低电平,所以自定义地址码为0;如果在两个不同IIC总线上挂接了两块类型和地址相同的芯片,那么这两块芯片的地址相同。
这显然是地址冲突,解决的办法是为总线适配器指定一个ID号,那么新的芯片地址就由总线适配器的ID和设备地址组成除了地址之外,IIC设备还有一些重要的注意事项:1,i2c_client数据结构是描述IIC设备的“模板”,驱动程序的设备结构中应包含该结构2,adapter指向设备连接的总线适配器,系统可能有多个总线适配器。
内核中静态指针数组adapters记录所有已经注册的总线适配器设备3,driver是指向设备驱动程序,这个驱动程序是在系统检测到设备存在时赋值的IIC设备驱动i2c_driver:struct i2c_driver{int id; //驱动标识IDunsigned int class; //驱动的类型int (*attach_adapter)(struct i2c_adapter *); //当检测到适配器时调用的函数int (*detach_adapter)(struct i2c_adapter*); //卸载适配器时调用的函数int (*detach_client)(struct i2c_client *) __deprecated; //卸载设备时调用的函数//以下是一种新类型驱动需要的函数,这些函数支持IIC设备动态插入和拔出。
如果不想支持只实现上面3个。
要不实现上面3个。
要么实现下面5个。
不能同时定义int (*probe)(struct i2c_client *,const struct i2c_device_id *); //新类型设备探测函数int (*remove)(struct i2c_client *); //新类型设备的移除函数void (*shutdown)(struct i2c_client *); //关闭IIC设备int (*suspend)(struct i2c_client *,pm_messge_t mesg); //挂起IIC设备int (*resume)(struct i2c_client *); //恢复IIC设备int (*command)(struct i2c_client *client,unsigned int cmd,void *arg); //使用命令使设备完成特殊的功能。
类似ioctl()函数struct devcie_driver driver; //设备驱动结构体const struct i2c_device_id *id_table; //设备ID表int (*detect)(struct i2c_client *,int kind,struct i2c_board_info *); //自动探测设备的回调函数const struct i2c_client_address_data *address_data; //设备所在的地址范围struct list_head clients; //指向驱动支持的设备};结构体i2c_driver和i2c_client的关系较为简单,其中i2c_driver表示一个IIC设备驱动,i2c_client表示一个IIC设备。
关系如下图:IIC总线适配器就是一个IIC总线控制器,在物理上连接若干个IIC设备。
IIC总线适配器本质上是一个物理设备,其主要功能是完成IIC总线控制器相关的数据通信:struct i2c_adapter{struct module *owner; //模块计数unsigned int id; //alogorithm的类型,定义于i2c_id.h中unsigned int class; //允许探测的驱动类型const struct i2c_algorithm *algo; //指向适配器的驱动程序void *algo_data; //指向适配器的私有数据,根据不同的情况使用方法不同int (*client_register)(struct i2c_client *); //设备client注册时调用int (*client_unregister(struct i2c_client *); //设备client注销时调用u8 level;struct mutex bus_lock; //对总线进行操作时,将获得总线锁struct mutex clist_lock ; //链表操作的互斥锁int timeout; //超时int retries; //重试次数struct device dev; //指向适配器的设备结构体int nr ;struct list_head clients; //连接总线上的设备的链表char name[48]; //适配器名称struct completion dev_released; //用于同步的完成量};每一个适配器对应一个驱动程序,该驱动程序描述了适配器与设备之间的通信方法:struct i2c_algorithm{int (*master_xfer)(struct i2c_adapter *adap, struct i2c_msg *msg, int num); //传输函数指针,指向实现IIC 总线通信协议的函数,用来确定适配器支持那些传输类型int (*smbus_xfer)(struct i2c_adapter *adap, u16 addr, unsigned short flags, char read_write, u8 command, int size, union i2c_smbus_data *data); //smbus方式传输函数指针,指向实现SMBus总线通信协议的函数。