3.1.1 随机事件的概率

合集下载

《3.1.1-随机事件的概率》讲课课件(邢台一中董学全)

《3.1.1-随机事件的概率》讲课课件(邢台一中董学全)

C
A
(3)、下列事件: ① a,b∈R且a<b,则a-b∈R; ②小华将一石块抛出地球; ③掷一枚硬币,正面向上; ④掷一颗骰子出现点8. 其中是不可能事件的是 A、①② B、②③ C、②④

D、①④
C)
(4)、随机事件在n次试验中发生了m次,则( C) (A) (C) 0<m<n 0≤m≤n (B) 0<n<m (D) 0≤n≤m
出生婴儿数 出生男婴数
2011年 21840 11453
2012年 23070 12031
2013年 2014年 20094 19982 10297 10242
(1)试计算男婴各年出生频率(精确到0.001); (2)该市男婴出生的概率约是多少? 11453 0.524. 解题示范: (1)2011年男婴出生的频率为:
历史上曾有人作过抛掷硬币的大量重复实验,结果如下表所示
抛掷次数(n)
2048 4040 2048 0.506
蒲丰
12000 6019 0.501
皮尔逊
24000 12012 0.5005
皮尔逊
3000 0 1498 4 0.499
维尼
正面朝上次数(m) 1061 频率(m/n) 频率m/n
1
0.51
6.
(1)事件的分类:必然事件、不可能事件和随机事件; (2)随机事件概率的定义; (3)频率与概率的关系; (4)统计的思想方法—试验、观察、探究、归纳和总结.
作业
1、必做题:
课本113页练习1,2题
2、选做题:
(1)选一个生活背景下的随机事件,设计恰当的数学试 验,估计上述随机事件发生的概率。 (2)查阅有关资料,了解更多关于概率应用的故事及概 率的发展史。

3.1.1随机事件的概率

3.1.1随机事件的概率

第一步:全班每人各取一枚同样的硬币,
做10次掷硬币的试验,每人记录
下试验结果,填在表格中:
姓名 试验次数 正面朝上的次数 正面朝上的比例
第二步:每个小组把本组同学的试验结果 统计一下,填入下表:
组次
试验总次数
正面朝上总的次数
正面朝上的比例
第三步:把全班同学的试验结果统计一下, 填入下表:
班级
试验总次数
1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件 B.随机事件 C.不可能事件 D.无法确定 2.下列说法正确的是( ) A.任一事件的概率总在(0.1)内 B.不可能事件的概率不一定为0 C.必然事件的概率一定为1 D.以上均不对 3.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答题。
4、确定事件:
必然事件与不可能事件统称为相对于条件s 的确定事件,简称确定事件。
5、事件:
确定事件和随机事件统称为事件,一 般用大写字母A、B、C……表示。
例1 指出下列事件是必然事件,不可能事件,还是随机事件:
(1)“抛一石块,下落”.
(2)“在标准大气压下且温度低于0℃时,冰融化”; (3)“某人射击一次,中靶”; (4)“如果a,b都是实数,则a+b=a+b;”; (5)“将一枚硬币抛掷4次出现两次正面和两次反面”; (6)“导体通电后,发热”; (7)“从分别标有号数1,2,3,4,5的5张标签中任取 一张,得到4号签”; (8)“某电话机在1分钟内收到2次呼叫”; (9)“没有水份,种子能发芽”; (10)“在常温下,焊锡熔化”.
课堂小结:
①了解必然事件,不可能事件,随机事件的概念;
②理解随机事件的发生在大量重复试验下,呈现规 律性; ③理解事件A出现的频率的意义,概率的概念

人教版数学必修三3.1.1《随机事件的概率》实用教学教案设计

人教版数学必修三3.1.1《随机事件的概率》实用教学教案设计

3.1.1随机事件教学目标1、知识与技能目标(1)理解必然事件、不可能事件、随机事件的概念;(2)区分必然事件、不可能事件和随机事件;(3)在改变条件的情况下,必然事件、不可能事件和随机事件可以互相转化。

. 2、过程与方法目标经历活动、试验、猜测、收集、整理和分析试验结果、听故事等过程,会判断必然事件、不可能事件、随机事件。

3、情感与态度目标(1)学生通过亲身体验,亲自演示,感受数学就在身边,促进学生乐于亲近数学,喜欢数学;(2)让学生在与他人合作中增强互助、协作的精神;(3)培养学生的数学素养,体验数学与生活密切相关,激发学生学以致用的热情。

教学重难点重点:能对必然事件、不可能事件、随机事件的类型作出正确判断。

难点:必然事件、不可能事件、随机事件的区别与转化关系。

教法、学法和辅助手段教法分析情境引人,游戏探索,游戏体验,拓展新知。

学法分析参与活动,发现新知;探究合作,体验新知;抢答活动,巩固新知;听故事,拓展新知。

教学辅助手段红、白球若干,不透明盒子两个,透明杯子一个,签筒一个,笔签五支,骰子若干。

教学过程:一、创设情境,导入新课:师:同学们,你们买过彩票吗?中过奖吗?(学生有的说买过,绝大部分的同学说没有买过,没有中过奖)师:你们想买彩票吗?想中奖吗?生:想。

师:我们来模拟买彩票中大奖,请你们在纸上写出一个你认为幸运的三位数,老师立即开奖。

学生写好后,展示开奖结果。

师:有中奖的吗?请举手,我为中奖的同学准备了奖品。

(为个别中了奖的同学发奖品,安慰没有中奖的同学)师:买一注彩票一定能中奖还是可能中奖?生:可能中奖。

师:我们这个游戏中一定要中奖,你能算出至少要买多少注彩票吗?(少数同学在算,很多同学不知道怎样算)师:《概率初步》会告诉我们怎样计算。

我们今天就学习第一节《随机事件》。

请打开教材。

(多媒体展示课题)二、试验运气好坏,发现新知(摸出红球表示运气好)1、教师拿出事先准备好的一只装的全部是红球的不透明盒子,让坐在教室左边部分的三四位同学摸球,显然学生摸到的全是红球,摸到红球的学生个个惊叹自己运气好啊。

课件3:3.1.1 随机事件的概率

课件3:3.1.1 随机事件的概率

频率
频数
4.概率 (1)定义:对于给定的随机事件 A,如果随着试验次数 的增加,事件 A 发生的频率 fn(A)会稳定在某个常数上, 把这个常数记为 P(A),称它为事件 A 的概__率__. (2)由概率的定义可知,事件 A 的概率可以通过大量 的重复试验后,用频率值估计概率. (3)必然事件的概率为_1_,不可能事件的概率为_0_, 因此概率的取值范围是[_0_,_1_] .
【变式与拓展】 3.某篮球运动员在同一条件下进行投篮练习,结果如下表:
投篮次数 n/次 8 10 15 20 30 40 50 进球次数 m/次 6 8 12 17 25 32 38
(1)填写表中的进球频率; (2)这位运动员投篮一次,进球的概率大约是多少? 解:(1)从左到右依次填:0.75,0.8,0.8,0.85,0.83,0.8,0.76. (2)由于进球频率都在 0.8 左右摆动,故这位运动员投篮一次,进球 的概率约是 0.8.
第三章 概率
3.1 随机事件的概率
3.1.1 随机事件的概率
1.事件的分类 (1)确定事件: ①必然事件:在条件 S 下,_一__定__会__发__生_的事件; ②不可能事件:在条件 S 下,_一__定__不__会__发__生_的事件. 必然事件与不可能事件统称为相对于条件 S 的确定事件. (2)随机事件: 在条件 S 下,_可__能__发__生__也__可__能__不_发__生__的事件. 确定事件和随机事件统称为事件,一般用大写字母 A,B, C…表示.
(B ) A.3 个都是男生
B.至少有 1 个男生
C.3 个都是女生
D.至少有 1 个女生
2.抛掷一枚骰子两次,请就这个试验写出一个随机事件: 两__次__的__点__数__都__是__奇__数__,一个必然事件:_两__次__点__数__之__和__不__小__于__2_, 一个不可能事件:_两__次__点__数__之__差__的__绝__对__值__等__于___6__.

随机事件的概率教学反思及说课稿

随机事件的概率教学反思及说课稿

《3.1.1随机事件的概率》说课稿梁潇一、教材的地位和作用“随机事件的概率”是人教A版《数学必修3》第三章第一节的内容,本节课是其中的第一课时.课程标准要求:“在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别”.并指出:“概率教学的核心问题是让学生了解随机现象与概率的意义”.要求“教师应通过日常生活中的大量实例,鼓励学生动手试验,正确理解随机事件发生的不确定性及其频率的稳定性,并尝试澄清日常生活遇到的一些错误认识.”本节课“随机事件的概率”主要研究事件的分类,概率的意义,概率的定义及统计算法。

现实生活中存在大量不确定事件,而概率正是研究不确定事件的一门学科。

作为“概率统计”这个学习领域中的第一节课它在人们的生活和生产建设中有着广泛的应用,它以初中概率学为基础,又为选修2-3重新进行了知识建构,所以它在教材中处于非常重要的位置。

二、教学目标1、教学目标:(1)知识目标:使学生了解必然事件,不可能事件,随机事件的概念;理解频率和概率的含义和两者的区别和联系.(2)能力目标:培养学生观察和思考问题的能力,提高综合运用知识的能力和分析解决问题的能力.(3)德育目标:结合随机事件的发生既有随机性,又存在着统计规律性,了解偶然性寓于必然性之中的辨证唯物主义思想.(4)情感目标:通过师生、生生的合作学习,培养学生团结协作的精神和主动与他人合作交流的意识.同时,概率的定义与性质是学生学习概率的基石,其中也蕴含了重要的数学思想,因此,我确定重点、难点和教学方法如下:2、教学重点:①事件的分类;②概率的统计定义;③概率的性质.3、教学难点:随机事件的发生所呈现的规律性.4、教学方法:以多媒体教学课件为教学辅助.三、学情分析学生在初中阶段学习了概率初步,对频率与概率的关联有一定的认识,有阅读、观察的基础,具备一定的合作交流,自主探究能力。

但学生的表达能力、归纳能力相对较弱,教学过程中要不断增强学生学习的兴趣,让学生主动发掘本节课的重点。

人教版高中数学必修三 3.1.1《随机事件的概率》要点梳理+跟踪检测

人教版高中数学必修三 3.1.1《随机事件的概率》要点梳理+跟踪检测

人教版高中数学必修三第三章统计3.1.1《随机事件的概率》要点梳理【学习目标】在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.【要点梳理·夯实知识基础】12.频数与频率在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中______________为事件A出现的频数,称______________________为事件A 出现的频率.[答案]事件A出现的次数nA 事件A出现的比例fn(A)=nAn3.概率(1)含义:概率是度量随机事件发生的________的量.(2)与频率联系:对于给定的随机事件A,事件A发生的频率fn(A)随着试验次数的增加稳定于________,因此可以用__________来估计概率P(A).[答案](1)可能性(2)概率P(A) 频率fn(A)【考点探究·突破重点难点】考点一:事件类型的判断1.下列事件:①明天下雨;②3>2;③航天飞机发射成功;④x∈R,x2+2<0;⑤某艘商船遭遇索马里海盗;⑥任给x0∈R,x0+2=0.其中随机事件的个数为()A.1B.2C.3D.4答案:D2.下列说法正确的是()A.某人购买福利彩票一注,中奖500万元,是不可能事件B.三角形的两边之和大于第三边,是随机事件C.没有空气和水,人类可以生存下去,是不可能事件D.科学技术达到一定水平后,不需任何能量的“永动机”将会出现,是必然事件答案:C3.从一副牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情()A.可能发生B.不可能发生C.很可能发生D.必然发生答案:D解析:∵若这10张牌中抽出了全部的红桃与梅花共9张,一定还有1张黑桃;若抽出了全部的梅花与黑桃共7张,则还会有3张红桃;若抽出了全部的红桃与黑桃共8张,则还会有2张梅花;∴这个事件一定发生,是必然事件.考点而:试验的结果分析4.下列命题中正确的个数是()①先后抛掷两枚质地均匀的硬币的结果为正面,正面;正面,反面;反面,反面,共计3种.②从12个同类产品(其中10个是正品,2个次品)中,任意抽取3个产品的每一个结果中一定含有正品.③某地举行运动会,从来自A学校的a,b志愿者中选一人,从来自B学校的c,d,e志愿者中选一人共2人为体操馆服务,则有ac,ad,ae,bc,bd,be,共6种选法. A.0 B.1 C.2 D.3答案:C解析:①中应该有4个结果,即正面,正面;正面,反面;反面,正面;反面,反面.故①不正确.②③正确.5.先后投掷2枚均匀的一分、二分的硬币,观察落地后硬币的正反面情况,则包含3个试验结果的是()A.至少一枚硬币正面向上B.只有一枚硬币正面向上C.两枚硬币都是正面向上D.两枚硬币一枚正面向上,另一枚反面向上答案:A解析:“至少一枚硬币正面向上”包括“一分正面向上,二分正面向上”,“一分正面向上,二分正面向下”,“一分正面向下,二分正面向上”3种试验结果.6.同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).(1)写出这个试验的所有结果.(2)“x+y=5”包含的结果有哪些?“x<3且y>1”呢? (3)“xy=4”包含的结果有哪些?“x=y ”呢?解:(1)结果为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(2)“x+y=5”包含的结果为(1,4),(2,3),(3,2),(4,1).“x<3且y>1” 包含的结果为(1,2),(1,3),(1,4),(2,2),(2,3),(2,4). (3)“xy=4”包含的结果为(1,4),(2,2),(4,1). “x=y ”包含的结果为(1,1),(2,2),(3,3),(4,4). 考点三:随机事件的频率与概率7.下列说法:①频率反映的是事件发生的频繁程度.概率反映的是事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率nm就是事件A 的概率;③频率是不能脱离具体的n 次的试验值,而概率是确定性的,不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确说法的序号是 . 答案:①③④解析:由频率及概率的定义可知①是正确的.在②中,nm是事件A 发生的频率,虽然概率是与频率接近的一个常数,但是概率不一定等于频率,故②是错误的.由概率的定义知③④是正确的.8.在抛掷骰子的游戏中,将一枚质地均匀的骰子抛掷6次,对于点数4的出现有下列说法:①一定会出现;②出现的频率为61;③出现的概率是61;④出现的频率是32.其中正确的是 . 答案:③9.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩分布:经济学院一年级的学生王小慧下学期将修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位):(1)90分以上;(2)60~69分;(3)60分以下.解:由题意知总人数为40+200+400+100+40+20=800.则选修李老师高等数学的学生考试成绩在90分以上,60~69分,60分以下的频率分别为80040=201;800100=81;80060=403.用以上信息估计王小慧得分的概率情况如下:(1)“得90分以上”的概率为201,(2)“得60~69分”的概率为81,(3)“得60分以下”的概率为403.[3.1.1《随机事件的概率》跟踪检测一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.32.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .45.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.517.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2%12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确B.错误C.不一定D.无法解释二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .15.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 .18.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 .三、解答题19.从含有两个正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A为“取出两件产品中恰有一件次品”,写出事件A对应的结果.20.对一批U盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U盘,至少需进货多少个U盘?21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.3.1.1《随机事件的概率》跟踪检测解答一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.3答案:A2.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 答案:D解析:三角形的三条边必须满足两边之和大于第三边.3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定答案:B4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .4 答案:B解析:①为必然事件;④为不可能事件. 5.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边 答案: C6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.51答案:B7.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 答案:B解析:从A ,B ,C ,D ,E 五人中选2人,不同的选法有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E )共10种.8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个答案: C9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 答案:A解析:①错误;②出现正面的概率为21,故错误;③频率与概率不是一回事,故错误. 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}答案: C11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2% 答案: D解析:抽取出次品的频率是1002=2%,用频率估计概率,抽出次品的概率大约是2%. 12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确 B.错误 C.不一定D.无法解释答案: B 二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).答案:52解析:数据在155.5~170.5之间有8名学生,则身高在此范围内的频率为208=52,所以概率约为52.14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .答案: 52 0.5215.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 答案:(-1,2),(1,-2) 解析:由直线与圆相切知,543b a +=1,所以3a+4b=±5,依次取a=-2,-1,0,1,2,验证知,只有⎩⎨⎧=-=21b a ,⎩⎨⎧==2-1b a 满足等式.16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为 . 答案: 0.51 241 800 0.5解析:a=200102=0.51,b=500×0.482=241;c=505.0404=800. 易知正面向上的频率在0.5附近,所以若掷硬币一次,正面向上的概率应为0.5.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 . 答案: 0.3518.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 . 答案: 0.03 三、解答题19.从含有两个正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A 为“取出两件产品中恰有一件次品”,写出事件A 对应的结果. [解析](1)试验所有结果:a 1,a 2;a 1,b 1;a 2,b 1;a 2,a 1;b 1,a 1;b 1,a 2.共6种. (2)事件A 对应的结果为:a 1,b 1;a 2,b 1;b 1,a 1;b 1,a 2. 20.对一批U 盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U 盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U 盘,至少需进货多少个U 盘?[解析](1)表中各个次品频率分别为0.06,0.04,0.025,0.017,0.02,0.018. (2)当抽取件数a 越来越大时,出现次品的频率在0.02附近摆动,所以从这批U 盘中任抽一个是次品的概率是0.02.(3)设需要进货x 个U 盘,为保证其中有2 000个正品U 盘,则x(1-0.02)≥2 000,因为x 是正整数,所以x ≥2 041,即至少需进货2 041个U 盘.21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.解:(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为1513.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为87.以频率估计概率,运动会期间不下雨的概率为87.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.[解析] 设水库中鱼的尾数为n,从水库中任捕一尾,每尾鱼被捕的频率(代替概率)为n2000,第二次从水库中捕出500尾,带有记号的鱼有40尾,则带记号的鱼被捕 的频率(代替概率)为50040,由n 2000=50040,得n=25 000.所以水库中约有25 000尾.。

高二数学 必修三教案:§3.1.1 随机事件的概率

高二数学  必修三教案:§3.1.1  随机事件的概率

第三章概率§3.1 随机事件的概率§3.1.1 随机事件的概率(一)导入新课思路1日常生活中,有些问题是很难给予准确无误的回答的.例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等.尽管没有确切的答案,但大体上围绕一个数值在变化,这个数值就是概率.教师板书课题:随机事件的概率.思路21名数学家=10个师在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战”搞得盟军焦头烂额.为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后发现,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船(为100艘)编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大.美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.在自然界和实际生活中,我们会遇到各种各样的现象.如果从结果能否预知的角度来看,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定性现象;另一类现象的结果是无法预知的,即在一定的条件下,出现那种结果是无法预先确定的,这类现象称为随机现象.随机现象是我们研究概率的基础,为此我们学习随机事件的概率.(二)推进新课、新知探究、提出问题(1)什么是必然事件?请举例说明.(2)什么是不可能事件?请举例说明.(3)什么是确定事件?请举例说明.(4)什么是随机事件?请举例说明.(5)什么是事件A的频数与频率?什么是事件A的概率?(6)频率与概率的区别与联系有哪些?活动:学生积极思考,教师引导学生考虑问题的思路,结合实际的情形分析研究.(1)导体通电时,发热;抛一块石头,下落;“如果a>b,那么a-b>0”;这三个事件是一定要发生的.但注意到有一定的条件.(2)在常温下,焊锡熔化;在标准大气压下且温度低于0 ℃时,冰融化;“没有水,种子能发芽”;这三个事件是一定不发生的.但注意到有一定的条件.(3)抛一块石头,下落;“如果a>b,那么a-b>0”;在标准大气压下且温度低于0 ℃时,冰融化;“没有水,种子能发芽”;这四个事件在一定的条件下是一定要发生的或一定不发生的.是确定的,不是模棱两可的.(4)掷一枚硬币,出现正面;某人射击一次,中靶;从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签;“某电话机在1分钟内收到2次呼叫”;这四个事件在一定的条件下是或者发生或不一定发生的,是模棱两可的.(5)做抛掷一枚硬币的试验,观察它落地时哪一个面朝上.通过学生亲自动手试验,突破学生理解的难点:“随机事件发生的随机性和随机性中的规律性”.通过试验,观察随机事件发生的频率,可以发现随着实验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,重视了掌握知识的过程,体现了试验、观察、探究、归纳和总结的思想方法,也体现了新课标的理念.具体如下:第一步每个人各取一枚硬币,做10次掷硬币试验,记录正面向上的次数和比例,填在下表中:姓名试验次数正面朝上总次数正面朝上的比例思考试验结果与其他同学比较,你的结果和他们一致吗?为什么?第二步由组长把本小组同学的试验结果统计一下,填入下表.组次试验总次数正面朝上总次数正面朝上的比例思考与其他小组试验结果比较,正面朝上的比例一致吗?为什么?通过学生的实验,比较他们实验结果,让他们发现每个人实验的结果、组与组之间实验的结果不完全相同,从而说明实验结果的随机性,但组与组之间的差别会比学生与学生之间的差别小,小组的结果一般会比学生的结果更接近0.5.第三步用横轴为实验结果,仅取两个值:1(正面)和0(反面),纵轴为实验结果出现的频率,画出你个人和所在小组的条形图,并进行比较,发现什么?第四步把全班实验结果收集起来,也用条形图表示.思考这个条形图有什么特点?引导学生在每组实验结果的基础上统计全班的实验结果,一般情况下,班级的结果应比多数小组的结果更接近0.5,从而让学生体会随着实验次数的增加,频率会稳定在0.5附近.并把实验结果用条形图表示,这样既直观易懂,又可以与第二章统计的内容相呼应,达到温故而知新的目的.第五步请同学们找出掷硬币时“正面朝上”这个事件发生的规律性.思考如果同学们重复一次上面的实验,全班汇总结果与这一次汇总结果一致吗?为什么?引导学生寻找掷硬币出现正面朝上的规律,并让学生叙述出现正面朝上的规律性:随着实验次数的增加,正面朝上的频率稳定在0.5附近.由特殊事件转到一般事件,得出下面一般化的结论:随机事件A在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件A发生的频率会逐渐稳定在区间[0,1]中的某个常数上.从而得出频率、概率的定义,以及它们的关系.一般情况下重复一次上面的实验,全班汇总结果与这一次汇总结果是不一致的,这更说明随机事件的随机性.进一步总结事件的频数与频率,概括出概率的概念.(6)通过(5)的概括和总结写出频率与概率的区别与联系.讨论结果:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件(certain event),简称必然事件.(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件(impossibleevent ),简称不可能事件.(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件.(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件(random event ),简称随机事件;确定事件和随机事件统称为事件,用A,B,C,…表示.(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n a 为事件A 出现的频数(frequency );称事件A 出现的比例f n (A)=nn A为事件A 出现的频率(relative frequency );对于给定的随机事件A,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率(probability ).(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n a 与试验总次数n 的比值nn A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小.我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小.频率在大量重复试验的前提下可以近似地作为这个事件的概率.频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.在实际问题中,通常事件的概率未知,常用频率作为它的估计值.频率本身是随机的,在试验前不能确定.做同样次数的重复实验得到事件的频率会不同. 概率是一个确定的数,是客观存在的,与每次试验无关.比如,一个硬币是质地均匀的,则掷硬币出现正面朝上的概率就是0.5,与做多少次实验无关.(三)应用示例思路1例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件. (1)“抛一石块,下落”.(2)“在标准大气压下且温度低于0℃时,冰融化”; (3)“某人射击一次,中靶”; (4)“如果a >b,那么a-b >0”; (5)“掷一枚硬币,出现正面”; (6)“导体通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”; (8)“某电话机在1分钟内收到2次呼叫”; (9)“没有水分,种子能发芽”; (10)“在常温下,焊锡熔化”.分析:学生针对有关概念,思考讨论,教师及时指点,为后续学习打下基础.根据自然界的规律和日常生活的经验积累,根据定义,可判断事件(1)(4)(6)是必然事件;事件(2)(9)(10)是不可能事件;事件(3)(5)(7)(8)是随机事件.答案:事件(1)(4)(6)是必然事件;事件(2)(9)(10)是不可能事件;事件(3)(5)(7)(8)是随机事件.点评:紧扣各类事件的定义,结合实际来判断.例2 某射手在同一条件下进行射击,结果如下表所示:射击次数n 10 20 50 100 200 500 击中靶心次数m 8 19 44 92 178 455 击中靶心的频率nm(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是多少?分析:学生回顾所学概念,教师引导学生思考问题的思路,指出事件A 出现的频数n a 与试验次数n 的比值即为事件A 的频率,当事件A 发生的频率f n (A )稳定在某个常数上时,这个常数即为事件A 的概率.解:(1)表中依次填入的数据为:0.80,0.95,0.88,0.92,0.89,0.91.(2)由于频率稳定在常数0.89,所以这个射手击一次,击中靶心的概率约是0.89.点评:概率实际上是频率的科学抽象,求某事件的概率可以通过求该事件的频率而得之. 变式训练一个地区从某年起几年之内的新生儿数及其中男婴数如下:时间范围 1年内 2年内 3年内 4年内 新生婴儿数 5 544 9 607 13 520 17 190 男婴数 2 883 4 970 6 994 8 892 男婴出生的频率(1)填写表中男婴出生的频率(结果保留到小数点后第3位); (2)这一地区男婴出生的概率约是多少?答案:(1)0.520 0.517 0.517 0.517 (2)由表中的已知数据及公式f n (A )=nn A即可求出相应的频率,而各个频率均稳定在常数0.518上,所以这一地区男婴出生的概率约是0.518.思路2例1 做掷一枚骰子的试验,观察试验结果.(1)试验可能出现的结果有几种?分别把它们写出; (2)做60次试验,每种结果出现的频数、频率各是多少?分析:学生先思考或讨论,教师提示学生注意结果的可能情况,因为每一枚骰子有六个面,每个面上的点数分别是1,2,3,4,5,6,所以应出现六种结果,试验结果可列表求之.解:(1)试验可能出现的结果有六种,分别是出现1点、2点、3点、4点、5点、6点. (2)根据实验结果列表后求出频数、频率,表略.例2 某人进行打靶练习,共射击10次,其中有2次中10环,有3次中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?分析:学生先思考或讨论,教师提示学生注意结果的可能情况,中靶的频数为9,试验次数为10,所以中靶的频率为109=0.9,所以中靶的概率约为0.9. 解:此人中靶的概率约为0.9;此人射击1次,中靶的概率为0.9;中10环的概率约为0.2.(四)知能训练1.指出下列事件是必然事件、不可能事件、还是随机事件.(1)某地1月1日刮西北风;(2)当x是实数时,x2≥0;(3)手电简的电池没电,灯泡发亮;(4)一个电影院某天的上座率超过50%.答案:(1)随机事件;(2)必然事件;(3)不可能事件;(4)随机事件.2.大量重复做掷两枚硬币的实验,汇总实验结果,你会发现什么规律?解答:随机事件在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件发生的频率会逐渐稳定在区间[0,1]中的某个常数上,从而获取随机事件的概率.点评:让学生再一次体会了试验、观察、探究、归纳和总结的思想方法.(五)拓展提升1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是()A.必然事件B.随机事件C.不可能事件D.无法确定答案:B提示:正面向上恰有5次的事件可能发生,也可能不发生,即该事件为随机事件.2.下列说法正确的是()A.任一事件的概率总在(0,1)内B.不可能事件的概率不一定为0C.必然事件的概率一定为1D.以上均不对答案:C提示:任一事件的概率总在[0,1]内,不可能事件的概率为0,必然事件的概率为1.3.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答问题.每批粒数 2 5 10 70 130 310 700 1 500 2 000 3 000 发芽的粒数 2 4 9 60 116 282 639 1 339 1 806 2 715 发芽的频率(1)完成上面表格;(2)该油菜子发芽的概率约是多少?解:(1)填入表中的数据依次为1,0.8,0.9,0.857,0.892,0.910,0.913,0.893,0.903,0.905.(2)该油菜子发芽的概率约为0.897.4.某篮球运动员,在同一条件下进行投篮练习,结果如下表所示.投篮次数48 60 75 100 100 50 100进球次数m 36 48 60 83 80 40 76 m进球频率n(1)计算表中进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?解:(1)填入表中的数据依次为0.75,0.8,0.8,0.83,0.8,0.8,0.76.(2)由于上述频率接近0.80,因此,进球的概率约为0.80.(六)课堂小结本节研究的是那些在相同条件下,可以进行大量重复试验的随机事件,它们都具有频率稳定性,即随机事件A在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A发生的频率逐渐稳定在区间[0,1]内的某个常数上(即事件A的概率),这个常数越接近于1,事件A发生的概率就越大,也就是事件A发生的可能性就越大.反之,概率越接近于0,事件A发生的可能性就越小.因此说,概率就是用来度量某事件发生的可能性大小的量.(七)作业完成课本本节练习.。

3.1.1 随机事件的概率 课件

3.1.1 随机事件的概率 课件

m≤n
0.4948 0.50105 0.501 0.49876
随机事件及其概率
很多 当抛掷硬币的次数很多时,出现正面 常数 的频率值是稳定的,接近于常数0.5,在它 稳定
附近摆动.
随机事件及其概率
某种油菜籽在相同条件下的发芽试验结果 表:
很多 当试验的油菜籽的粒数很多时,油菜籽 m 常数 发芽的频率 接近于常数0.9,在它附近摆 n 动。
不可能事件
事件B:抛一石块,下落
必然事件
事件C:打开电视机,正在播放新闻
随机事件
事件D:在下届亚洲杯上,中国足球队以2:0 战胜日本足球队
随机事件
练一练
指出下列事件是必然事件,不可能事件还是随机事件?
(1)我国东南沿海某地明年将3次受到热带气旋的侵袭; 随机事件 (2)若a为实数,则|a+1|+|a+2|=0; 不可能事件
(3)江苏地区每年1月份月平均气温低于7月份月平均气温;
必然事件 (4)发射1枚炮弹,命中目标. 随机事件
活动与探究:
投掷一枚硬币,出现正面 的可能性有多大?
探究:投掷一枚硬币,出现正面可能性有多大?
活动 与 探究
——抛硬币试验
出现正面的次 出现正面的频 试验次数(n) m 数(m) 率 n 2 0.2 10 54 0.54 100 0.552 276 500 0.5114 5000 2557 10000 20000 50000 100000 4948 10021 25050 49876
(5)在刚才的图中转动转盘后,指针 指向黄色区域 可能发生也可能不发生 (6)两人各买1张彩票,均中奖 可能发生也可能不发生
确 定 事 件
随机事件
在一定条件下可能发生也可 能不发生的事件叫随机事件。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ks5u精品课件
思考5:既然随机事件A在大量重复试验 中发生的频率fn(A)趋于稳定,在某个常 数附近摆动,那我们就可以用这个常数 来度量事件A发生的可能性的大小,并把 这个常数叫做事件A发生的概率,记作 P(A).那么在上述抛掷硬币的试验中, 正面向上发生的概率是多少?在上述油 菜籽发芽的试验中,油菜籽发芽的概率 是多少?
ks5u精品课件
在条件S下,一定会发生的事件,叫做 相对于条件S的必然事件.
思考3:你能列举一些必然事件的实例吗?
思考4:考察下列事件: (1)在没有水分的真空中种子发芽; (2)在常温常压下钢铁融化; (3)服用一种药物使人永远年轻.
这些事件就其发生与否有什么共同特点?
ks5u精品课件
思考5:我们把上述事件叫做不可能事件, 你指出不可能事件的一般含义吗?
ks5u精品课件
2.从辨证的观点看问题,事情发生的 偶然性与必然性之间往往存在有某种 内在联系.例如,长沙地区一年四季的 变化有着确定的、必然的规律,但长 沙地区一年里哪一天最热,哪一天最 冷,哪一天降雨量最大,那一天下第 一场雪等,都是不确定的、偶然的.
ks5u精品课件
3.数学理论的建立,往往来自于解决 实际问题的需要.对于事情发生的必 然性与偶然性,及偶然性事情发生的 可能性有多大,我们将从数学的角度 进行分析与探究.
ks5u精品课件
思考6:在实际问题中,随机事件A发生 的概率往往是未知的(如在一定条件下 射击命中目标的概率),你如何得到事 件A发生的概率? 通过大量重复试验得到事件A发 生的频率的稳定值,即概率.
ks5u精品课件
思考7:在相同条件下,事件A在先后两次 试验中发生的频率fn(A)是否一定相等? 事件A在先后两次试验中发生的概率 P(A)是否一定相等?
在上述油菜籽发芽的试验中,每批油菜 籽发芽的频率的稳定值为多少?
ks5u精品课件
思考4:上述试验表明,随机事件A在每 次试验中是否发生是不能预知的,但是 在大量重复试验后,随着试验次数的增 加,事件A发生的频率呈现出一定的规 律性,这个规律性是如何体现出来的? 事件A发生的频率较稳定,在某 个常数附近摆动.
ks5u精品课件
理论迁移 例1 判断下列事件哪些是必然事件,哪 些是不可能事件,哪些是随机事件? (1)如果a>b,那么a一b>0; (2)在标准大气压下且温度低于0°C时, 冰融化; (3)从分别标有数字l,2,3,4,5的5 张标签中任取一张,得到4号签; (4)某电话机在1分钟内收到2次呼叫; 〈5)手电筒的的电池没电,灯泡发亮; (6)随机选取一个实数x,得|x|≥0.
物体的大小常用质量、体积等来 度量,学习水平的高低常用考试分数 来衡量.对于随机事件,它发生的可能 性有多大,我们也希望用一个数量来 反映.
ks5u精品课件
思考1:在相同的条件S下重复n次试验, 若某一事件A出现的次数为nA,则称nA 为事件A出现的频数,那么事件A出现的 频率fn(A)等于什么?频率的取值范围 是什么?
ks5u精品课件
例2 某射手在同一条件下进行射击,结 果如下表所示:
射击次数n
m 击中靶心次数m
击中靶心的频率
10 8
20 19
50 44
100 200 500 92 178 455
0.91
n
击中靶心的频率 m
n
0.8 0.95 0.88 0.92 0.89
(1)填写表中击中靶心的频率; (2)这个射手射击一次,击中靶心的概 率约是多少? 0.90
nA fn (A ) = n
[0,1]
ks5u精品课件
思考2:历史上曾有人作过抛掷硬币的大量
重复试验,结果如下表所示: 抛掷次数 正面向上次数 频率 0.5
2 048 4 040 12 000 24 000 30 000 72 088
1 061 2 048 6 019 12 012 14 984 36 124
频率具有随机性,做同样次数的重 复试验,事件A发生的频率可能不相同; 概率是一个确定的数,是客观存在的, 与每次试验无关.
ks5u精品课件
思考8:必然事件、不可能事件发生的概 率分别为多少?概率的取值范围是什么? 思考9:概率为1的事件是否一定发生? 概率为0的事件是否一定不发生?
思考10:怎样理解“4月3号长沙地区的 降水概率为0.6”的含义?
第三章
概 率
3.1
3.1.1
随机事件的概率
随机事件的概率
ks5u精品Βιβλιοθήκη 件问题提出1.日常生活中,有些问题是能够准确回 答的.例如,明天太阳一定从东方升起吗? 明天上午第一节课一定是八点钟上课吗? 等等,这些事情的发生都是必然的.同时 也有许多问题是很难给予准确回答的.例 如,你明天什么时间来到学校?明天中 午12:10有多少人在学校食堂用餐?你 购买的本期福利彩票是否能中奖?等等, 这些问题的结果都具有偶然性和不确定 性.
ks5u精品课件
ks5u精品课件
知识探究(一):必然事件、不可能事件和 随机事件
思考1:考察下列事件: (1)导体通电时发热; (2)向上抛出的石头会下落; (3)在标准大气压下水温升高到100°C 会沸腾.
这些事件就其发生与否有什么共同特点?
思考2:我们把上述事件叫做必然事件, 你指出必然事件的一般含义吗?
ks5u精品课件
思考9:你能列举一些随机事件的实例
吗?
思考10:必然事件和不可能事件统称为 确定事件,确定事件和随机事件统称为 事件,一般用大写字母A,B,C,„表示. 对于事件A,能否通过改变条件,使事件 A在这个条件下是确定事件,在另一条件 下是随机事件?你能举例说明吗?
ks5u精品课件
知识探究二):事件A发生的频率与概率
ks5u精品课件
3.任何事件的概率是0~1之间的一个确定的 数,小概率(接近0)事件很少发生,大概率 (接近1)事件则经常发生,知道随机事件的 概率的大小有利于我们作出正确的决策.
作业: P113 练习:1,2,3.
ks5u精品课件
在条件S下,一定不会发生的事件,叫 做相对于条件S的不可能事件
思考6:你能列举一些不可能事件的实
例吗?
ks5u精品课件
思考7:考察下列事件:
(1)某人射击一次命中目标; (2)马林能夺取北京奥运会男子乒乓球 单打冠军; (3)抛掷一个骰字出现的点数为偶数.
这些事件就其发生与否有什么共同特点?
思考8:我们把上述事件叫做随机事件, 你指出随机事件的一般含义吗? 在条件S下,可能发生也可能不发生的 事件,叫做相对于条件S的随机事件.
0.5181 0.5069 0.5016 0.5005 0.4996 0.5011
在上述抛掷硬币的试验中,正面向上发生的 频率的稳定值为多少?
ks5u精品课件
思考3:某农科所对某种油菜籽在相同条 件下的发芽情况进行了大量重复试验, 结果如下表所示: 0.9
130 310 700 1500 2000 3000 每批粒 2 5 10 70 数 116 282 639 1339 1806 2715 发芽的 2 4 9 60 粒数 发芽的 1 0.8 0.9 0.857 0.892 0.910 0.913 0.893 0.903 0.905 频率
ks5u精品课件
小结作业
1.概率是频率的稳定值,根据随机事件发生 的频率只能得到概率的估计值. 2.随机事件A在每次试验中是否发生是不能预 知的,但是在大量重复试验后,随着试验次 数的增加,事件A发生的频率逐渐稳定在区间 [0,1]内的某个常数上(即事件A的概率), 这个常数越接近于1,事件A发生的概率就越 大,也就是事件A发生的可能性就越大;反之, 概率越接近于0,事件A发生的可能性就越 小.因此,概率就是用来度量某事件发生的 可能性大小的量.
相关文档
最新文档