全等三角形判定的识别
全等三角形的四种判定方法

全等三角形的四种判定方法方法一:SSS(边边边)判定法SSS法是指当两个三角形的三边相互对应相等时,这两个三角形是全等的。
具体步骤如下:1.假设有两个三角形ABC和DEF,边长分别为AB、BC、AC和DE、EF、DF。
2.检查AB/DE、BC/EF和AC/DF是否相等,如果这三组比值相等,则可以判断三角形ABC和DEF是全等的。
方法二:SAS(边角边)判定法SAS法是指当两个三角形的两边和夹角互相对应相等时,这两个三角形是全等的。
具体步骤如下:1.假设有两个三角形ABC和DEF,已知AB/DE、∠B/∠E、BC/EF。
2.检查AB/DE和BC/EF是否相等,并且检查∠B/∠E是否相等,如果这两组比值相等,则可以判断三角形ABC和DEF是全等的。
方法三:ASA(角边角)判定法ASA法是指当两个三角形的两角和夹边互相对应相等时,这两个三角形是全等的。
具体步骤如下:1.假设有两个三角形ABC和DEF,已知∠A/∠D、BC/EF、∠C/∠F。
2.检查∠A/∠D和∠C/∠F是否相等,并且检查BC/EF是否相等,如果这两组比值相等,则可以判断三角形ABC和DEF是全等的。
方法四:RHS(直角边斜边)判定法RHS法是指当两个三角形的一个直角边和斜边,以及对应的斜边分别相等时,这两个三角形是全等的。
具体步骤如下:1.假设有两个三角形ABC和DEF,已知∠C为直角,AC/DF和BC/EF。
2.检查AC/DF和BC/EF是否相等,并且检查∠C是否为直角,如果这两组比值相等,并且∠C是直角,则可以判断三角形ABC和DEF是全等的。
这四种判定方法是判断全等三角形最常用的方法。
根据给定的条件,可以选择适用的方法进行判定。
值得注意的是,判定全等三角形时需要满足条件的对应关系,不能只满足其中一部分条件。
同时,在实际问题中,可能需要组合使用多种方法来判断三角形的全等关系。
判定全等三角形的五种方法

判定全等三角形的五种方法判定全等三角形的五种方法全等三角形是指两个三角形的所有对应边和对应角均相等。
在几何学中,判定两个三角形是否全等是非常重要的一项任务。
下面将介绍五种方法来判定全等三角形。
方法一:SSS法SSS法是指如果两个三角形的三条边分别相等,则这两个三角形全等。
这种方法可以通过测量每条边的长度来确定是否相等。
如果两个三角形的边长完全相同,则它们是全等的。
方法二:SAS法SAS法是指如果两个三角形有两条边和它们之间夹角分别相等,则这两个三角形全等。
这种方法可以通过测量其中两条边和它们之间的夹角来确定是否相等。
如果两个三角形有同样大小的夹角并且有一个共同的边,则它们是全等的。
方法三:ASA法ASA法是指如果两个三角形有一个夹在它们之间且大小相同的夹角,并且其余两个对应边也分别相等,则这两个三角形全等。
这种方法可以通过测量其中一个夹在它们之间并且大小相同的夹角以及另外两条对应边来确定是否相等。
如果两个三角形有同样大小的夹角和对应边,则它们是全等的。
方法四:AAS法AAS法是指如果两个三角形有两个角和一个对应边分别相等,则这两个三角形全等。
这种方法可以通过测量其中两个角和它们之间的对应边来确定是否相等。
如果两个三角形有两个相同的角和一个共同的对应边,则它们是全等的。
方法五:HL法HL法是指如果两个直角三角形的斜边和一个直角边分别相等,则这两个直角三角形全等。
这种方法可以通过测量其中一个直角边和斜边来确定是否相等。
如果两个直角三角形有同样大小的斜边并且有一个共同的直角边,则它们是全等的。
以上五种方法都可以用来判定全等三角形。
在实际问题中,我们可以根据给定条件选择合适的方法来判定是否存在全等三角形。
同时,需要注意测量精度,避免误差影响结论。
判定全等三角形的五种方法

判定全等三角形的五种方法全等三角形是指具有相同形状和相等边长的三角形。
判定两个三角形是否全等是数学中的一个重要问题。
下面将介绍判定全等三角形的五种方法。
方法一:SSS判定法(边边边)SSS判定法是指通过比较两个三角形的三条边是否相等来判定其是否全等。
如果两个三角形的三条边长度相等,则可以判断它们是全等三角形。
方法二:SAS判定法(边角边)SAS判定法是指通过比较两个三角形的两条边和夹角是否相等来判定其是否全等。
如果两个三角形的一边和夹角分别相等,则可以判断它们是全等三角形。
方法三:ASA判定法(角边角)ASA判定法是指通过比较两个三角形的两个角和夹边是否相等来判定其是否全等。
如果两个三角形的两个角和夹边分别相等,则可以判断它们是全等三角形。
方法四:AAS判定法(角角边)AAS判定法是指通过比较两个三角形的两个角和非夹边的对应边是否相等来判定其是否全等。
如果两个三角形的两个角和非夹边的对应边分别相等,则可以判断它们是全等三角形。
方法五:HL判定法(斜边和直角边)HL判定法是指通过比较两个直角三角形的斜边和直角边是否相等来判定其是否全等。
如果两个直角三角形的斜边和直角边分别相等,则可以判断它们是全等三角形。
通过以上五种方法,我们可以准确地判定两个三角形是否全等。
这些方法都是基于几何学中的一些定理和公理推导而来,经过严谨的数学证明,可以确保判定结果的准确性。
需要注意的是,在判定全等三角形时,我们需要确保给定的条件足够,即要求已知的边长、角度等信息能够满足相应的判定条件。
如果给定的信息不足够,或者不满足判定条件,那么就无法准确地判定两个三角形是否全等。
判定全等三角形的方法还可以用于解决一些实际问题,例如在建筑设计、图形测量等领域。
通过判定三角形是否全等,可以确保设计和测量的准确性,提高工作效率。
总结起来,判定全等三角形的五种方法分别是SSS判定法、SAS判定法、ASA判定法、AAS判定法和HL判定法。
这些方法都是基于几何学中的定理和公理推导而来,通过比较边长、角度等信息,可以准确地判定两个三角形是否全等。
直角三角形全等的判定

直角三角形全等的判定
直角三角形同余的判断:1。
对应边相等的两个三角形的三组同余。
2.两条边和它们的夹角相等的两个三角形。
3.两个三角形有两个角,它们的夹紧边全等。
判定方法
方法一:SSS(边边边),即三边对应相等的两个三角形全等。
方法二:SAS(边角边),即三角形的其中两条边对应相等,且两条边的夹角也对应相等的两个三角形全等。
方法三:ASA(角边角),即三角形的其中两个角对应相等,且两个角夹的的边也对应相等的两个三角形全等。
方法四:AAS(角角边),即三角形的其中两个角对应相等,且对应相等的角所对应的边也对应相等的两个三角形全等。
方法五:HL(斜边、直角边),即在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等。
性质
1.全等三角形的对应角相等。
2.全等三角形的对应边相等。
3.。
能够完全重合的顶点称为对应顶点。
4.全等三角形的对应边上的高对应相等。
5.全等三角形的对应角的角平分线相等。
6.全等三角形的对应边上的中线相等。
7.全等三角形面积和周长相等。
8.全等三角形的对应角的三角函数值相等。
全等直角三角形的判定

全等直角三角形的判定要点一:判定直角三角形全等的一般方法;由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理.要点二:判定直角三角形全等的特殊方法——斜边,直角边定理。
在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.【典型例题】类型一、直角三角形全等的判定——“HL”例1. 判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和斜边对应相等;()(3)两直角边对应相等;()(4)一条直角边和斜边对应相等.()【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SAS”;(4)全等,“HL”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【总结升华】直角三角形全等可用的判定方法有5种:SAS、ASA、AAS、SSS、HL.举一反三:【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()【答案】(1)√;(2)×;在△ABC和△DBC中,AB=DB,AE和DF 是其中一边上的高,AE=DF(3)×. 在△ABC和△ABD中,AB=AB,AD=AC,AE为第三边上的高,例2.如图AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.【思路点拨】若能证得AD=AE,由于∠ADB、∠AEC 都是直角,可证得Rt△ADF≌Rt△AEF,而要证AD=AE,就应先考虑Rt△ABD与Rt△AEC,由题意已知AB=AC,∠BAC是公共角,可证得Rt△ABD≌Rt△ACE.【答案与解析】证明:在Rt△ABD与Rt△ACE中∴Rt△ABD≌Rt△ACE(AAS)∴AD=AE(全等三角形对应边相等)在Rt△ADF与Rt△AEF中∴Rt△ADF≌Rt△AEF(HL)∴∠DAF=∠EAF(全等三角形对应角相等)∴AF平分∠BAC(角平分线的定义)【总结升华】条件和结论相互转化,有时需要通过多次三角形全等得出待求的结论.例3、如图,△ABC中,∠ACB=90°,AC=BC,AE 是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD ⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12图片,求BD的长.【答案与解析】(1)证明:∵DB⊥BC,CF⊥AE,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC.又∵∠DBC =∠ECA =90°,且BC =CA ,∴△DBC ≌△ECA (AAS ).∴AE =CD .(2)解:由(1)得AE =CD ,AC =BC ,∴△CDB ≌△AEC (HL )∴BD =EC =21BC =21AC ,且AC =12. ∴BD =6cm .【总结升华】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件。
全等三角形的性质及判定(经典讲义)

全等三角形的性质及判定知识要点1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等, 对应角的平分线相等.(3)全等三角形的周长、面积相等.3、全等三角形判定方法:(1)全等判定一:三条边对应相等的两个三角形全等(SSS )(2)全等判定二:两角和它们的夹边对应相等的两个三角形全等(ASA ) (3)全等判定三:两角及其中一个角的对边对应相等的两个三角形全等(AAS) (4)全等判定四:两边和它们的夹角对应相等的两个三角形全等(SAS )专题一、全等图形的性质——全等图形的对应边(对应中线、角平分线、高线)、对应角、对应周长、对应面积相等例题1:下列说法,正确的是( )A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形 例题2:如图1,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD=7cm ,DM=5cm ,∠DAM=39°,则AN =____cm ,NM =____cm ,NAB ∠= .【仿练1】如图2,已知ABC ADE ∆≅∆,AB AD =,BC DE =,那么与BAE ∠相等的角是 . 【仿练2】如图3,ABC ADE ∆≅∆,则AB= ,∠E= _.若∠BAE=120°,∠BAD=40°,则∠BAC= .、图4EDCB A图2 图3M DA NBC 图1三角形全等的判定一(SSS )相关几何语言考点∵AE=CF ∵CM 是△的中线∴_____________( )∴____________________∴__________( ) 或 ∵AC=EF∴____________________∴__________( )AB=AB ( )在△ABC 和△DEF 中∵⎪⎩⎪⎨⎧___________________________ ∴△ABC ≌△DEF ( )例1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?例2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .BFECAFE DCB ACMBA B A例3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证∠A=∠D.练习1..如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD2、如图所示,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACD B.△BDE≌△CDEC.△ABE≌△ACE D.以上都不对3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSS B.SAS C.AASD.HL4.如图,AB=AC,D为BC的中点,则△ABD≌_________.5.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:.6.如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是°.7、.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。
5种判定三角形全等的方法

5种判定三角形全等的方法判定三角形全等是几何学中的重要内容之一,意味着两个三角形的所有对应的边和角都相等。
全等的三角形具有相同的形状和大小,并且可以完全重合。
在此文章中,我们将介绍五种常用的判定三角形全等的方法。
方法一:SSS法(边边边法)SSS法是最简单和常用的方法之一、根据SSS法,如果两个三角形的对应边长度相等,则它们是全等的。
例如,如果三角形ABC和三角形DEF 的三条边AB、BC、AC对应相等,则可以判定三角形ABC和三角形DEF是全等的。
方法二:SAS法(边角边法)SAS法是另一种常用的方法,根据SAS法,如果两个三角形的两个对应边和它们之间的夹角相等,则它们是全等的。
例如,如果三角形ABC和三角形DEF的一对对应边AB、DE相等,且它们之间的夹角ABC和DEF相等,则可以判定三角形ABC和三角形DEF是全等的。
方法三:ASA法(角边角法)ASA法是另一种常用的方法,根据ASA法,如果两个三角形的两个对应角和它们之间的一对对应边相等,则它们是全等的。
例如,如果三角形ABC和三角形DEF的一对对应角∠ABC和∠DEF相等,且对应边AB和DE 相等,则可以判定三角形ABC和三角形DEF是全等的。
方法四:AAS法(角角边法)AAS法是另一种常用的方法,根据AAS法,如果两个三角形的两个对应角和它们之间的一对对应边夹角相等,则它们是全等的。
例如,如果三角形ABC和三角形DEF的一对对应角∠ABC和∠DEF相等,且对应边AB之间的夹角与DE之间的夹角相等,则可以判定三角形ABC和三角形DEF是全等的。
方法五:HL法(斜边-高法)HL法是另一种常用于判定直角三角形全等的方法,根据HL法,如果两个直角三角形的斜边和高相等,则它们是全等的。
在此方法中,由于直角三角形的一个内角为90度,因此通过比较两个直角三角形的斜边和高就足够判断它们的全等性。
这五种方法是判定三角形全等的基本方法,可以结合使用,根据具体的题目情况选择合适的方法进行判定。
直角三角形全等的判定

三角形全等的判定
两边及其中一边的对角对应相等的两个三 角形不一定全等.
如果其中一边的所对的角是直角呢?
两边及其中一边的对角对应相等的两个三角形不一定全等.但如 果其中一边的所对的角是直角,那么这两个三角形全等. 已知:如图,在△ABC和△A′B′C′中, AC=A′C ′,
AB=A′B′, ∠C=∠C′=900.
C D
F
E
A
B
老师期望:请将证明过程规范化书写出来 .
3、已知BE和CF是△ABC的高, BE=CF, H是BE和CF的交点。求证:HB=HC。
A
F
H
E
B
C
2. 如图, AB是圆O的直径, ∠ 1 = ∠ 2 , 试说明△ABC≌△ABD
C
1
2 A
•O
B
D
回味无穷
直角三角形全等的判定定理: 1.斜边和一条直角边对应相等的两个直角三角形全等(斜 边,直角边或
求证:△ABC≌△A′B′C′.
B
B′
C
A C′
A′
直角三角形全等的判定定理
定理: 斜边和一条直角边对应相等的两个直角三角形全 等(斜边,直角边或HL).
如图,在△ABC和△A′B′C′中, ∠C=∠C′=900 , ∵ AC=A′C ′
AB=A′B′ ∴Rt△ABC≌Rt△A′B′C′(HL).
H.L.). 2.三边对应相等的两个三角形全等(S.S.S.).
3.两边及其夹角对应相等的两个三角形全等(S.A.S.).
4.两角及其夹边对应相等的两个三角形全等(A.S.A.).
5.两角及其中一角的对边对应相等的两个三角形全等(A.A.S.).
综上所述,直角三角形全等的判定条件可归纳为: 一边及一个锐角对应相等的两个直角三角形全等; 两边对应相等的两个直角三角形全等;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形判定的识别(人教版)
一、单选题(共9道,每道11分)
1.已知:如图,AB=DE,∠A=∠D,∠ABC=∠DEF,下列说法正确的是( )
A.△ACB≌△DFE,所用的判定定理是AAS
B.△ABC≌△DEF,所用的判定定理是ASA
C.△ABC≌△DEF,所用的判定定理是AAA
D.△CAB≌△FED,所用的判定定理是ASA
2.已知:如图,AB=AD,AC=AE,∠CAB=∠EAD,下列结论正确的是( )
A.△ABC≌△ADE,所用的判定定理是ASA
B.△ABD≌△ACE,所用的判定定理是SAS
C.△ACB≌△ADE,所用的判定定理是SAS
D.△ABC≌△ADE,所用的判定定理是SAS
3.已知:如图,AB=AC,∠ADC=∠AEB,下列结论正确的是( )
A.△AEB≌△ACD,所用的判定定理是ASA
B.△ABE≌△ACD,所用的判定定理是ASA
C.△BAE≌△ACD,所用的判定定理是SAS
D.△AEB≌△ADC,所用的判定定理是AAS
4.已知:如图,∠BCA=∠ADB,∠BAD=∠ABC,下列结论正确的是( )
A.△ABD≌△BAC,所用的判定定理是AAA
B.△DAB≌△CBA,所用的判定定理是AAS
C.△ABD≌△ABC,所用的判定定理是ASA
D.△BAD≌△BAC,所用的判定定理是SAS
5.如图,已知△ABC的6个元素,下面甲、乙、丙3个三角形中标出了一些元素,其中能证明与△ABC全等的三角形是( )
A.只有乙
B.只有丙
C.甲和乙
D.乙和丙
6.如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE交于点F,已知AD=BD,∠CAD=∠FBD.由题意可证△ACD≌______,理由是______.横线处依次所填正确的是( )
A.△BDF,AAS
B.△BFD,ASA
C.△BDF,HL
D.△BFD,SAS
7.如图,点C,F在BE上,∠1=∠2,BC=DF,若加上一个条件_____________,可以推证△ABC≌△EDF,理由是________,横线处依次所填正确的是( )
A.AB=ED,SAS
B.BF=CE,SAS
C.∠B=∠D,ASA
D.∠B=∠E,AAS
8.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长.判定△EDC≌△ABC最恰当的理由是( )
A.AAA
B.ASA
C.SAS
D.HL
9.如图所示,要测量池塘两岸相对的两点A,B之间的距离,可先在平地上取一个可以直接到达点A和B的点C,连接AC并延长到点D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE.可以说明
△DEC≌△ABC,得ED=AB,那么量出DE的长,就能求A,B两点间的距离.判定△DEC≌△ABC 最恰当的理由是( )
A.SSS
B.ASA
C.SAS
D.ASS。