电力变压器基础知识和讲解

合集下载

电力变压器基础知识

电力变压器基础知识
电力变压器基础知识
(培训讲义课件)
目录
1.变压器的作用、原理、分类、基本结 构及其特性介绍。 2.电力变压器基本参数介绍。 3.变压器主要原材料及组部件介绍。

变压器作用

电力变压器是电力电网中的主要电气设 备,发电机所发出的电力一般均需经过 变压器升压并在用户端经变压器降压才 能被用户使用。
变压器线圈及其对变压器负载特 性的影响
根据电压等级、容量、电流的大小等使 用因素,线圈分为许多不同的形式,如 圆筒式、箔式、螺旋式、连续式、纠结 式、纠结连续式、插入电容连续式(内 屏蔽式)、以及双饼连续式、双饼纠结 式、交错式等等。 为了降低线圈中的附加损耗,增加线圈 轴向电容,降低变压器在冲击电压作用 下的线圈电压梯度等,线圈中的多根导 线在绕制过程中一般都要进行换位。
变压器铁心和变压器空载特性
变压器线圈及其对变压器负载特性的影响
线圈又称绕组,是变压器的主要构成部件之 一,根据电磁感应定律把磁和电联系在一起。 线圈是变压器的电路部分,它完成电能的传 输和转换:一次线圈将系统的电能引入变压 器,二次线圈将电能传输出去。 线圈一般由纸包或漆包的铜导线或铝导线连 续绕制成一组串联的线匝而成,为了绝缘和 散热的要求,其层间或段间一般设臵由绝缘 垫块组成的油道。
变压器铁心和变压器空载特性

变压器铁心本体的材料要求有高的磁导率和低的励 磁损耗等特点,经历了普通铁片、热轧磁性钢带、 冷轧磁性钢带、非晶合金、高导磁磁性钢带、磁畴 细化钢带等发展过程,磁导率越来越高,单位损耗 则越来越低。目前大型电力变压器所使用的铁心材 料一般为0.3mm厚的冷轧取向硅钢片,如国内武汉钢 铁集团产的30Q130、30Q(G)120、30QG105,日本 新日铁公司产的30ZH120、30ZH105,日本JFE公司 产的30JGH105、30JGH120等。

常用变压器基础知识及种类及特点讲解

常用变压器基础知识及种类及特点讲解

6 联结组别
Dyn11 或 Yyn0 或其他
7 冷却方式
ANAF
8 阻抗电压
6.0 %
9 外壳材料防护等级 铝合金 或 不锈钢
10 温控仪
是或否
11 其他要求
按国家标准
(2)卷铁芯变压器:一种把硅钢片卷绕成的铁芯做的变压器,一比较节能的 变压器,在配电网上比较常用。
(3)非晶合金变压器:非晶合金铁芯变压器是用新型导磁材料,其空载损耗、 空载电流下降约80%,是目前节能效果较理想的配电变 压器,特别适用于农村电 网和发展中地区等负载率变化较大的地方。
(4)壳式变压器:用于大电流的特殊变压器,如电炉变压器、电焊变压器;或 用于电子仪器及电视、收音机等的电源变压器。
分都带自锁防松螺母,采用了不吊心结构,能承受运输的颠震。
c、线圈和铁心采用真空干燥,变压器油采用真空滤油和注油的工
艺,使变压器内部的潮气降至最低。
d、油箱采用波纹片,它具有呼吸功能来补偿因温度变化而引起油
的体积变化。
e、由于波纹片取代了储油柜,使变压器油与外界隔离,这样就有
效地防止了氧气、水份的进入而导致绝缘性能的下降。
变压器产品型号及字母表示什么含义?
SZ11—M—□∕□ —□
低压绕组电压等级(kV) 高压绕组电压等级(kV) 额定容量(kVA) 全密封 性能水平代号
调压方式(只标有载)
相数(三相)
SCB10—□∕□ —□
低压绕组电压等级(kV) 高压绕组电压等级(kV)
额定容量(kVA) 性能水平代号
低压箔绕 干式(固体成型)
f、根据以上五点性能,保证了油浸式变压器在正常运行内不需要换
油,大大降低了变压器的维护成本,同时延长了变压器的使用寿命。

电力变压器理论

电力变压器理论

电力变压器基础知识变压器是一种静止的电气设备,它利用电磁感应原理将一种电压等级的交流电能转变成另一种电压等级的交流电能。

变压器用途一般分为电力变压器和特种变压器及仪用互感器 (电压互感器和电流互感器)。

电力变压器按冷却介质可分为油浸式和干式两种。

在电力系统中,电力变压器 (以下简称变压器)是一个重要的设备。

发电厂的发电机输出电压由于受发电机绝缘水平限制,通常为6.3kV、l0.5kV,最高不超过2OkV。

在远距离输送电能时,须将发电机的输出电压通过升压变压器将电压升高到几万伏或几十万伏,以降低输电线电流,从而减少输电线路上的能量损耗。

输电线路将几万伏或几十万伏的高压电能输送到负荷区后,须经降压变压器将高电压降低,以适合于用电设备的使用。

故在供电系统中需要大量的降压变压器,将输电线路输送的高压变换成不同等级的电压,以满足各类负荷的需要。

由多个电站联合组成电力系统时,要依靠变压器将不同电压等级的线路连接起来。

所以,变压器是电力系统中不可缺少的重要设备。

第一节变压器的工作原理与结构一、变压器的工作原理变压器是根据电磁感应原理工作的。

图2-1是单相变压器的原理图。

图中在闭合的铁芯上,绕有两个互相绝缘的绕组,其中,接入电源的一侧叫一次侧绕组,输出电能的一侧为二次侧绕组。

当交流电源电压U1加到一次侧绕组后,就有交流电流I1通过该绕组,在铁芯中产生交变磁通φ,这个交变磁通不仅穿过一次侧绕组,同时也穿过二次侧绕组,两个绕组分别产生感应电势E1和E2,。

这时,如果二次侧绕组与外电路的负荷接通,便有电流I 2,流入负荷,即二次侧绕组有电能输出。

根据电磁感应定律可以导出:一次侧绕组感应电势为:E 1=4.44fN 1φm二次侧绕组感应电势为:E 2=4.44fN 2φm式中:f------电源频率;N 1-----一次侧绕组匝数;N 2-----二次侧绕组匝数;φm ---铁芯中主磁通幅值。

由(2-1)、(2-2)式得出: 2121N N E E =由此可见,变压器一、二次侧感应电势之比等于一、二次侧绕组匝数之比。

变压器基础知识培训

变压器基础知识培训

变压器基础知识培训变压器是电力系统中常见且重要的电气设备,承担着改变电压、输配电、节能减排等重要任务。

为了更好地了解和应用变压器,下面将对变压器的基础知识进行培训。

一、什么是变压器变压器是一种通过电磁感应原理,将交流电能从一个电路传输到另一个电路的静态电气设备。

它由两个或多个线圈(一般为铜线绕制)和铁芯组成,其中一个线圈为输入侧,另一个线圈为输出侧。

通过变压器,可以实现电压的升高或降低。

二、变压器的工作原理变压器的工作原理基于电磁感应现象。

当输入端通入交流电流时,通过线圈产生的磁场会在铁芯中形成磁通。

磁通的变化又会诱导出输出线圈中的电动势,进而产生输出电流。

变压器工作时,输入和输出的电能通过铁芯以电磁能量的形式进行传递。

三、变压器的结构变压器的主要组成部分包括铁芯、线圈和外壳。

铁芯通常由层叠的硅钢片组成,其目的是增加磁阻,从而减小铁芯的功率损耗。

线圈则是由导线绕制而成,一般采用铜线,以减小线圈的电阻和电能损耗。

外壳则是保护变压器内部零部件,并使其具有结构完整性和耐腐蚀性。

四、变压器的类型根据使用场合和用途的不同,变压器可以分为多种类型,包括配电变压器、电力变压器、自耦变压器、隔离变压器等。

配电变压器主要用于城市或工业区的低压电网中,将高压电能转换为低压供给用户;电力变压器通常用于电力系统中的发电厂、变电站等,起到输电、分配和传输电能的作用。

五、变压器的额定容量和参数变压器的额定容量和参数是指变压器设计和制造时的设计工作条件和技术规格。

额定容量表示变压器设计能够正常运行的最大容量,一般以千伏安(KVA)为单位。

额定电压则是指输入侧和输出侧的额定电压值。

此外,变压器还具有负载损耗、空载损耗、短路阻抗等参数,这些参数直接影响着变压器的运行效率和质量。

六、变压器的保护和维护为了保障变压器的正常运行和延长使用寿命,必须进行相应的保护和维护措施。

主要的保护装置包括过流保护、过压保护、温度保护等,这些装置可以监测变压器的工作状态,并在故障发生时采取相应的措施。

变压器基本工作基础学习知识原理

变压器基本工作基础学习知识原理

第1章 变压器的基本知识和结构1.1变压器的基本原理和分类一、变压器的基本工作原理变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。

变压器工作原理图当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。

原、副绕组的感应分别表示为dt d N e Φ-=11 dtd Ne Φ-=22 则k N N e e u u ==≈212121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。

改变变压器的变比,就能改变输出电压。

但应注意,变压器不能改变电能的频率。

二、电力变压器的分类变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。

按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器;按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器;按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等;按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。

三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。

1.2电力变压器的结构一、铁心1.铁心的材料采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。

为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。

变压器用的硅钢片其含硅量比较高。

硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。

2.铁心形式铁心是变压器的主磁路,电力变压器的铁心主要采用心式结构。

二、绕组1.绕组的材料铜或铝导线包绕绝缘纸以后绕制而成。

2.形式圆筒式、螺旋式、连续式、纠结式等结构。

为了便于绝缘,低压绕组靠近铁心柱,高压绕组套在低压绕组外面,两个绕组之间留有油道。

关于变压器的基础知识

关于变压器的基础知识

13、变压器调压有哪几种?变压器分接头为何多在高压侧? 变压器调压方式有有载调压和无载调压两种:有载调压是指变压器在运行中可 以调节其分接头位置,从而改变变压器变比,以实现调压目的。有载调压变压 器中又有线端调压和中性点调压二种方式,即变压器分接头在高压绕组线端侧 或在高压绕组中性点侧之区别。 分接头在中性点侧可降低变压器抽头的绝缘水平,有明显的优越性,但要求变 压器运行时其中性点必须直接接地。无载调压是指变压器在停电、检修情况下 进行调节变压器分接头位置,从而改变变压器变比,以实现调压目的。 变压器分接头一般都从高压侧抽头,其主要是考虑: (1)变压器高压绕组一般在外侧,抽头引出连接方便; (2)高压侧电流小些,引出线和分头开关的载流部分导体截面小些,接触不良 的影响好解决。原理上,抽头在哪一侧都可以,要进行经济技术比较,如 500kV大型降压变压器抽头是从220kV侧抽出的,而500kV侧是固定的。
14、什么是变压器的过励磁?变压器的过励磁是怎样产生的? 当变压器在电压升高或频率下降时都将造成工作磁通密度增加,变压器的铁芯 饱和称为变压器过励磁。 电力系统因事故解列后,部分系统的甩负荷过电压、铁磁谐振过电压、变压器 分接头连接调整不当、长线路末端带空载变压器或其他误操作、发电机频率未 到额定值过早增加励磁电流、发电机自励磁等情况都可能产生较高的电压引起 变压器过励磁。
3、变压器在运行中有哪些损失?怎样减少损失? 变压器运行中的损失包括两部分: (1)是由铁芯引起的,当线圈通电后,由于磁力线是交变的,引起铁芯中涡流 和磁滞损耗,这种损耗统称铁损。 (2)是线圈自身的电阻引起的,当变压器初级线圈和次级线圈有电流通过时, 就要产生电能损失,这种损失叫铜损。铁损与铜损的和就是变压器损失,这些 损失与变压器容量、电压和设备利用率有关。 因此,在选用变压器时,应尽量使设备容量和实际使用量一致,以提高设备利 用率,注意不要使变压器轻载运行。

变压器基础知识--文厚明

变压器基础知识--文厚明

12
36
00
24
48
12
36
00
24
第一通道 第二通道 第三通道 第四通道 第七通道 第十通道
二、变压器基本结构——出线装置组成简介
1)绝缘套管 (分为高压绝缘套管和低压绝缘套管)
• 作用:使绕组引出线与油箱绝缘。 • 绝缘套管一般是陶瓷的,其结构取决于电压等级。1kV以下采用实心
磁套管,10~35kV采用空心充气或充油式套管,110kV及以上采用电 容式套管。为了增大外表面放电距离,套管外形做成多级伞形裙边。 电压等级越高,级数越多。
一、变压器基础知识——分类
变压器基本参数
2.1 型号:SSZ11-180000/220 2.2 相数: 三相 2.3 额定频率: 50 Hz 2.4 联接组标号:YN yn0 d11 2.5 冷却方式: ONAN(100%) 2.6 额定容量: 180/180/90MVA 2.7 额定电压: 220/121/11kV 分接范220±8×1.25%kV 2.8 空载损耗: P0=81kW 2.9 负载损耗: Pk=550kW 2.10 空载电流: I0=0.56% 2.11 短路阻抗: 中-低8.0 、高-中13.0、高-低23.0 2.12 顶层油温升: 55K(用温度计测量) 2.13 绕组平均温升: 65K(用电阻法测量) 2.14 声功率级: ≤ 80dB(A) 2.15 局部放电: 1.5Um/√3时 ≤ 100pC
一、变压器基础知识 二、变压器基本结构 三、变压器生产工艺流程 四、变压器的运行及维护 五、变压器的安装
二、变压器基本结构
1、变压器结构 2、变压器结构组成简介
二、变压器基本结构——外形图样
二、变压器基本结构——结构组成简介

电力系统变压器保护基础知识讲解

电力系统变压器保护基础知识讲解
涌流。
iμ =
24
变压器的励磁涌流及鉴别方法
. 励磁涌流的波形如上图所示,波形完全偏离时间轴的 一侧,且是间断的。波形间断的宽度称为励磁涌流的 间断角θJ ,显然有θ J=2 θ1
. 间断角是区别励磁涌流和故障电流的一个重要特征, 饱和越严重间断角越小。间断角与变压器电压幅值、 合闸角以及铁芯剩磁有关。
25
变压器的励磁涌流及鉴别方法
13
减小不平衡电流的措施
纵差保护回路中的不平衡电流,是影响纵差保护可 靠性和灵敏度的重要因素,目前使用的各种纵差保 护装置,为减小不平衡电流而采用的措施如下: • 1. 减小稳态情况下的不平衡电流 纵差保护各侧用的电流互感器,要尽量选用同型号、 同样特性的产品,当通过外部短路电流时,纵差保 护回路的二次负荷要能满足10%误差的要求。 • 2. 减小电流互感器的二次负荷 这实际上相当于减小二次侧的端电压,相应地减少 电流互感器的励磁电流。减小二次负荷的常用办法 有:减小控制电缆的电阻和增大互感器的变比。
. 可以通过改变纵差保护的接线方式消除这个电流,就 是将引入差动继电器的Y侧电流也采用两相电流差, 这样就消除了两侧电流不对应。
8
变压器纵差保护的接线方式
. 由于Y侧采用了两相电 流差,该侧流入差动
继电器的电流增加了
倍 3,为此,该侧电
流互感器的变比也要
相应增大 3倍。
9
变压器纵差保护的接线方式
. 为了消除电流差,变压器两侧电流互感器采用不同的 接线方式,三角侧采用Y,d12的接线方式,将各相 电流直接接入差动继电器内; Y侧采用Y,d11的接线 方式,将两相电流差接入差动继电器。
. 模拟式差动保护都是采用上图所示的接线方式;对于 数字式保护,一般将Y侧的三项电流直接接入保护装 置,由计算机软件实现电流移向功能,以简化接线。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

– 11+
2 1
N1
i2
+–e2e+–2u+–2 Z N2
u1 i1 ( i1N1)
1
dΦ 有载时,铁心中
e1 N1 dt
主磁通是由一
次、二次绕组磁
e2
dΦ N2 dt
通势共同产生的 合成磁通。
eσ1
Lσ1
di1 dt
i2 ( i2N2)
2
eσ2
Lσ2
di2 dt
4. 电压变换(设加正弦交流电压)
则 U 1 E 1 U 1 E 1 4 .4f4 m N 1
对二次侧,根据KVL:
E 2 R R2 2II 2 2 E j X σ22 I 2U 2U 2
式中 R2 为二次绕组的电阻;
i1
u+– 1e+–σe+–11
X2=L2 为二次绕组的感抗;N 1
U2 为二次绕组的端电压。
(2) 一次、二次侧电压 变压器一次侧等效电路如图
I1 R 1
根据KVL:
+
U 1 R R1 1II 1 1 E j X σ11 I 1E 1E 1
U1

––
E1 E1
++
式中 R1 为一次侧绕组的电阻;
X1=L1 为一次侧绕组的感抗(漏磁感抗,由漏
磁产生)。
由于电阻 R1 和感抗 X1 (或漏磁通)较小,其两端 的电压也较小,与主磁电动势 E1比较可忽略不计,
电力变压器基础知识和讲解
一、变压器概述
变压器是一种常见的电气设备,在电力系统和电 子线路中应用广泛。它是一种静止的电气设备,利用 电磁感应原理将一种电压、电流的交流电能转换成同 频率的另一种电压、电流的电能。换句话说,变压器 就是实现电能在不同等级之间进行转换。
在能量传输过程中,当输送功率P =UI cos 及 负载功率因数cos 一定时:
有载运行
Z
I2
ห้องสมุดไป่ตู้
U2 Z
+
不论变压器空载还是 有载,一次绕组上的阻
u–1
i1

e1
+
Φ
N1 N2
i2
++
e 2 u 2 |Z|
––
抗压降均可忽略,故有
U 1E 14.4f4m N 1
当U1、 f 不变,则 m 基本不变,近于常数。
即:铁心中主磁通的最大值m在变压器空载和
有载时基本是恒定的。
空载:i0N1m 有载:i1N 1i2N2 m
发电厂 10.5kV
输电线 220kV
变电站 10kV
升压
降压
降压

实验室
380 / 220V
降压
仪器 36V
降压
二、变压器的分类
变压器的种类很多,可按其用途、相数、结构、 调压方式、冷却方式等不同来进行分类。
按用途分类:电力变压器(升压、降压)、仪用变 压器(电压互感器、电流互感器)、整流变压器; 按相数分类:单相变压器和三相变压器; 按线圈数分类:双绕组变压器、三绕组变压器和自 耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载调压变压器、有载调压变压 器;
磁动势
i0 ( i0N1)
dΦ e1 N1 dt

1
eσ1
Lσ1
di0 dt
e2
由于漏磁 通不经过
N2 dt
铁心线圈
铁心,所 是一个非
以励磁电 线性电感
流与漏磁 元件,所
空载时, 铁心中主
磁通是由
一次绕组 磁通势产 生的。
(2) 带负载运行情况
i1
一次侧接交流电源, +
二次侧接负载。
u

1
e+–σe
按冷却介质和冷却方式分类:油浸式变压器和干 式变压器等;
按容量大小分类:小型变压器、中型变压器、大型 变压器和特大型变压器。
三、变压器的工作原理
1、变压器的原理模型 接交流电源的绕组称为原绕
组或称一次绕组,该侧是通入交流电流侧,即吸收电能侧, 输入电能侧,也称一次侧。接负载的绕组称为副绕组或称二次 绕组,该侧是接负载侧,即输出电能侧,也称二次侧。
2、工作原理
当原边绕组接到交流电源时,绕组中便有交流电流流过, 并在铁心中产生与外加电压频率相同的磁通(主磁通),这个交 变磁通同时交链着原边绕组和副边绕组。并且在一、二次绕组 中分别产生感应电动势。
铁心
+
i1
Φ
u1

一次 绕组
N1
变压器原理图
i2
+
u 2 Z
– N2 二次
绕组
其感应电动势大小可分别表示为:
i2 +–ee+–22u+–2 N2
变压器空载时: I 2 0 ,U 2 U 2 0 E 2 4 .4f4 m N 2
式中U20为变压器空载电压。
故有
U1 E1 N1 K U20 E2 N2
K为变比(匝比)
结论:一次、二次侧电压与匝数成正比。
改变匝数比,就能改变输出电压。
5. 电流变换 (一次、二次侧电流关系)
e1
N1
d
dt
e2
N2
d
dt
式中 N 2、N 2 —— 一、二次绕组的匝数;
d ——磁通变化率。 dt
一次、二次绕组互不相连,能量的传递靠磁耦合。
3. 电磁关系 (1)空载运行情况
i0
一二次次侧侧接开交路流。电源,u+– 1
e+–σe
– 11+
1
N1
i2 0
++
–e 2
u 20

N2
u1
漏磁通主 要经过空 气或其他 非导磁性 物质而闭 合。
(1) 一次、二次侧主磁通感应电动势
主磁通按正弦规律变化,设为 msi nt,则
e1N 1d d tN 1d dt(m sin t)
N 1m co ts E 1m si( nt90 )
有效值:
E1 E12m
2fN1m
2
E 14.4f4m N 1
同 理: e2E 2m si( n t9)0
E 24.4f4 m N 2
可得磁势平衡式:i1N1i2N2i0N1
有载磁势
或:i1N1i0N1i2N2
空载磁势
一般情况下:I0 (2~3)%I1N 很小可忽略。
所以 i1N 1i2N 2 或 I 1N1I 2N2
所 以 I1N 1I2N 2
I1 N2 1 I2 N1 K
结论:一次、二次侧电流与匝数成反比。
• 一般情况下,由于 N2 N1 ,所以e2 e1 ,如果 忽略一、二次绕组本身的阻抗压降这个次要因素 时,e1 u1,e2 u2。则 u2 u1 。这就实现了改变电 压等级的目的。若二次绕组接上负载,就有电流 流过,变压器就向负载输出电能,从而实现了不 同电压等级的电能传递。
P = I²r 电能损耗小
U I
I S 节省金属材料(经济)
所以远距离输电采用高电压是最为经济的。
•发电机的输出电压一般有3.15kV、6.3kV、10.5 kV、 15.75 kV、18 kV、20 kV等几种,因此必须用升压变压器将电压升 高才能实现远距离经济输送。电力工业中常采用高压输电低压 配电,实现节能并保证用电安全。目前,我国交流输电的电压 最高已达750kV。
相关文档
最新文档